Identifying the Most Critical Problems in Environmental Science

A common perception of government policy makers is that ecologists fritter around doing interesting tidbits that produce nice 7 second sound-bites for radio or TV, but they never address the most serious environmental problems that the government faces in environmental science. So the question we need to address for any developed nation is this – what are the most critical environmental problems that ecologists could help to address? Since most critical environmental problems are long-term, one constraint would be that goals have to be achieved in the short term so that people could see progress. There would be funding constraints but let us assume that if we hit the right buttons, funding would be plentiful (think military).

There is no question that not all countries would have the same detailed list of critical environmental problems. But there ought to be communalities so we ought to cast a wide, general net to define problems. Start with some clear ecological principles: there is only one Earth and we ought to take care of it with a time frame that follows the First Nations principle of ‘seven generations’, about 300 years, as our time horizon. We know the solution to some environmental problems but new ones are continually a challenge. We need in every country the equivalent of an Environmental Army monitoring environmental problems.

1. Food security. All populations need food yet modern agriculture violates many simple ecological rules. Is the system sustainable in the long term? Probably not so the first major problem is how might we move modern agriculture toward sustainability. Subheadings here abound – pest control and alternatives to poisons, biological control of insect pests, cultural pest control, soil fertility decline, quarantine control, the list goes on. Implicit in all this is a regulatory framework that prevents the introduction of new miracle agricultural practices without adequate ecological background checks. The neonicotinoids-and-bees problem immediately comes to mind. We must get away from the attitude of ‘do it now’ and ‘clean up the mess later’ when we find problems.

2. Pollution effects. This is the hard one because it is climate change in the long term which must be emphasized. But in the shorter term detailed measurements of air quality and harmful effects of smoke and diesel fumes among other things on human and animal health could give an immediacy to such a detailed research program. The same principle applies here – do not put something new out in the environment and ask questions later. Fracking for natural gas and oil comes to mind, as well as the whole recycling system. Electricity generation is a key driver and mining for carbon-based energy ought to be eliminated gradually.

3. Conservation. Could our country be the first on Earth to have a complete inventory of species in all the taxonomic groups? It is a scandal that we do not have a list of life on Earth, and we need to get this message across with clever advertising. Taxonomists ought to be more important than bankers and be paid accordingly. Again many subheadings here – endangered species problems, pest management interactions with agriculture, disease ecology (always a hot button), monitoring, monitoring interacting with citizen science where possible.

4. The Oceans. We ought to be responsible for the health of at least our near-shore ecosystems, and monitoring protocols should be established so that we have ecosystem health scores presented as frequently as stock market reports. As global citizens we should be contributing to studying global problems of the high seas, the Antarctic Continent, and acting together with other nations to solve global issues.

The advantage of all these 4 topics with respect to convincing a politician to fund them is that they are interdisciplinary and consequently can be addressed only by carefully selected teams of ecologists, physicians, molecular biologists, geologists, chemists, and social scientists. A call for research proposals in these areas would soon build teams of scientists to address the major issues of our time. Money can help glue together scientific teams.

All of this will cost a lot of money and our current political philosophy seems to be that environmental costs are the lowest priority, and taxes for protecting the environment should be as near zero as possible. This must change soon lest the Earth become a garbage can unfit for human habitation.

Dicks, L. et al. (2013). What do we need to know to enhance the environmental sustainability of agricultural production? A prioritisation of knowledge needs for the UK food system. Sustainability 5, 3095-3115.

Sutherland, W.J.,et al. (2010) The identification of priority policy options for UK nature conservation. Journal of Applied Ecology 47(5): 955-965.

3 thoughts on “Identifying the Most Critical Problems in Environmental Science

  1. Dan Andrews

    Some what slightly off topic, did you see this analysis asking if ecology is explaining less and less? I wonder if this analysis was applied to other fields of science (e.g. genetics, medicine) would you have a similar result? That seems to be the nature of discovery where answers to the larger questions are sketched out, and then people start focusing on smaller areas, or on some of the details of the larger questions.

  2. Angela Wanczura

    Many people are already living in “garbage cans unfit for human habitation,” but they seem to accept that as long as they can reproduce and/or distract themselves from earthly reality. Consciousness-raising led by numerous promotions does not seem to be a powerful solution. I really wonder what could bridge the gap between people who care about nonhuman systems and those who don’t, but rather just see them as a resource serving human needs? I wonder what would puncture the faith in human ingenuity, the “later” approach?


Leave a Reply

Your email address will not be published. Required fields are marked *