Ecology for Now or the Future

With the general belief that the climate is changing and that these changes must continue for at least 100 years due to the atmospheric physics of greenhouse gases, ecologists of all stripes face a difficult decision. The optimist says to continue with current studies, with due analysis of data from the past getting published, with the assumption that the future will be like the past. We know that the future will not be like the past so our belief in the future is a projection not a prediction. Does this mean that ecologists today should really be in the History Department of the Faculty of Arts?

Well, no one would allow this to happen, since we are scientists not the connivers of untestable stories of past events that masquerade as history, a caricature of the scientific method. The general problem is applicable to all the sciences. The physical sciences of physics and chemistry are fixed for all eternity, so physicists do not have to worry. The geological sciences are a mix of history and applied physics with hypotheses that are partly testable in the current time but with an overall view of future predictions that have a time scale of hundreds to thousands of years. One way to look at this problem is to imagine what a textbook of Physics would look like in 100 years, compared to a textbook of Geology or Biology or Ecology.

Ecological science is burdened by the assumption of equilibrium systems which we all know to be false since we have the long-term evidence of evolution staring at us as well as the short-term evidence of climate change. Ecologists have only two options under these constraints: assume equilibrium conditions over short time-frames or model the system to provide future projections of change. First, assume we are dealing with equilibrium systems within a defined time frame so that we can define clear hypotheses and test them on a short time scale of 10 to perhaps 20 years so we reach a 10–20-year time scale understanding of ecological processes. This is how most of our ecological work is currently carried out. If we wish to study the pollination of a particular set of plants or a crop, we work now to find out which species pollinate, and then hopefully in a short time frame try to monitor if these species are increasing or declining over our 10–20-year time span. But we do this research with the knowledge that the time frame of our ecological information is at most 100 years and mostly much less. So, we panic with bird declines over a 48 year time span (Rosenberg et al. 2019) with an analysis based on unreliable population data, and we fail to ask what the pattern might look like if we had data for the last 100 years or what it might look like in the next 100 years. We have the same problem with insect declines (Wagner et al. 2021, Warren et al. 2021).

If we wish to improve these studies we need much better monitoring programs, and with some notable exceptions there is little sign yet that this is happening (Lindenmayer et al. 2018, 2020). But the real question must come back to the time frame and how we can make future projections. We cannot do this with a 3-year funding cycle. If most of our conservation problems can be traced to human alterations of the biosphere then we must document these carefully with the usual scientific methods. At present I would hazard a guess that 95% of all endangered species are due directly to human meddling, even if we remove the effect of climate change.  

One way to make future projections is to model the population or community under study. A great deal of modelling is being done and has been done but there is little follow-through of how accurate the model predictions have been and little plan to test these projections. We may be successful with models that predict next year’s population or community dynamics, given much background data but that is only a tiny step to estimating what will be there in even 20 or 30 years. We need testable models more than panic calls about declining species with no efforts to discover if and why.

Where does that leave us? We must continue to analyse the ecological state of our current populations and communities and beware of the assumption that they are equilibrium systems. While physics for the future is rather well settled, ecological questions are not.

Lindenmayer, D.B., Likens, G.E., and Franklin, J.F. (2018). Earth Observation Networks (EONs): Finding the Right Balance. Trends in Ecology & Evolution 33, 1-3. doi: 10.1016/j.tree.2017.10.008.

Lindenmayer, D.B., Kooyman, R.M., Taylor, C., Ward, M., and Watson, J.E.M. (2020). Recent Australian wildfires made worse by logging and associated forest management. Nature Ecology & Evolution 4, 898-900. doi: 10.1038/s41559-020-1195-5.

Rosenberg, K.V., et al. (2019). Decline of the North American avifauna. Science 366, 120-124. doi: 10.1126/science.aaw1313.

Wagner, D.L., Grames, E.M., Forister, M.L., Berenbaum, M.R., and Stopak, D. (2021). Insect decline in the Anthropocene: Death by a thousand cuts. Proceedings of the National Academy of Sciences 118, e2023989118. doi: 10.1073/pnas.2023989118.

Warren, M.S., et al. (2021). The decline of butterflies in Europe: Problems, significance, and possible solutions. Proceedings of the National Academy of Sciences 118 (2), e2002551117. doi: 10.1073/pnas.2002551117.

Leave a Reply

Your email address will not be published. Required fields are marked *