Monthly Archives: March 2015

On Tipping Points and Regime Shifts in Ecosystems

A new important paper raises red flags about our preoccupation with tipping points, alternative stable states and regime shifts (I’ll call them collectively sharp transitions) in ecosystems (Capon et al. 2015). I do not usually call attention to papers but this paper and a previous review (Mac Nally et al. 2014) seem to me to be critical for how we think about ecosystem changes in both aquatic and terrestrial ecosystems.

Consider an oversimplified example of how a sharp transition might work. Suppose we dumped fertilizer into a temperate clear-water lake. The clear water soon turns into pea soup with a new batch of algal species, a clear shift in the ecosystem, and this change is not good for many of the invertebrates or fish that were living there. Now suppose we stop dumping fertilizer into the lake. In time, and this could be a few years, the lake can either go back to its original state of clear water or it could remain as a pea soup lake for a very long time even though the pressure of added fertilizer was stopped. This second outcome would be a sharp transition, “you cannot go back from here” and the question for ecologists is how often does this happen? Clearly the answer is of great interest to natural resource managers and restoration ecologists.

The history of this idea for me was from the 1970s at UBC when Buzz Holling and Carl Walters were modelling the spruce budworm outbreak problem in eastern Canadian coniferous forests. They produced a model with a manifold surface that tipped the budworm from a regime of high abundance to one of low abundance (Holling 1973). We were all suitably amazed and began to wonder if this kind of thinking might be helpful in understanding snowshoe hare population cycles and lemming cycles. The evidence was very thin for the spruce budworm, but the model was fascinating. Then by the 1980s the bandwagon started to roll, and alternative stable states and regime change seemed to be everywhere. Many ideas about ecosystem change got entangled with sharp transition, and the following two reviews help to unravel them.

Of the 135 papers reviewed by Capon et al. (2015) very few showed good evidence of alternative stable states in freshwater ecosystems. They highlighted the use and potential misuse of ecological theory in trying to predict future ecosystem trajectories by managers, and emphasized the need of a detailed analysis of the mechanisms causing ecosystem change. In a similar paper for estuaries and near inshore marine ecosystems, Mac Nally et al. (2014) showed that of 376 papers that suggested sharp transitions, only 8 seemed to have sufficient data to satisfy the criteria needed to conclude that a transition had occurred and was linkable to an identifiable pressure. Most of the changes described in these studies are examples of gradual ecosystem changes rather than a dramatic shift; indeed, the timescale against which changes are assessed is critical. As always the devil is in the details.

All of this is to recognize that strong ecosystem changes do occur in response to human actions but they are not often sharp transitions that are closely linked to human actions, as far as we can tell now. And the general message is clearly to increase rigor in our ecological publications, and to carry out the long-term studies that provide a background of natural variation in ecosystems so that we have a ruler to measure human induced changes. Reviews such as these two papers go a long way to helping ecologists lift our game.

Perhaps it is best to end with part of the abstract in Capon et al. (2015):

“We found limited understanding of the subtleties of the relevant theoretical concepts and encountered few mechanistic studies that investigated or identified cause-and-effect relationships between ecological responses and nominal pressures. Our results mirror those of reviews for estuarine, nearshore and marine aquatic ecosystems, demonstrating that although the concepts of regime shifts and alternative stable states have become prominent in the scientific and management literature, their empirical underpinning is weak outside of a specific environmental setting. The application of these concepts in future research and management applications should include evidence on the mechanistic links between pressures and consequent ecological change. Explicit consideration should also be given to whether observed temporal dynamics represent variation along a continuum rather than categorically different states.”


Capon, S.J., Lynch, A.J.J., Bond, N., Chessman, B.C., Davis, J., Davidson, N., Finlayson, M., Gell, P.A., Hohnberg, D., Humphrey, C., Kingsford, R.T., Nielsen, D., Thomson, J.R., Ward, K., and Mac Nally, R. 2015. Regime shifts, thresholds and multiple stable states in freshwater ecosystems; a critical appraisal of the evidence. Science of The Total Environment 517(0): in press. doi:10.1016/j.scitotenv.2015.02.045.

Holling, C.S. 1973. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics 4: 1-23. doi:10.1146/

Mac Nally, R., Albano, C., and Fleishman, E. 2014. A scrutiny of the evidence for pressure-induced state shifts in estuarine and nearshore ecosystems. Austral Ecology 39: 898-906. doi:10.1111/aec.12162.

The Anatomy of an Ecological Controversy – Dingos and Conservation in Australia

Conservation is a most contentious discipline, partly because it is ecology plus a moral stance. As such you might compare it to discussions about religious truths in the last several centuries but it is a discussion among scientists who accept the priority of scientific evidence. In Australia for the past few years there has been much discussion of the role of the dingo in protecting biodiversity via mesopredator release of foxes and cats (Allen et al. 2013; Colman et al. 2014; Hayward and Marlow 2014; Letnic et al. 2011, and many more papers). I do not propose here to declare a winner in this controversy but I want to dissect it as an example of an ecological issue with so many dimensions it could continue for a long time.

Dingos in Australia are viewed like wolves in North America – the ultimate enemy that must be reduced or eradicated if possible. When in doubt about what to do, killing dingos or wolves has become the first commandment of wildlife management and conservation. The ecologist would like to know, given this socially determined goal, what are the ecological consequences of reduction or eradication of dingos or wolves. How do we determine that?

The experimentalist suggests doing a removal experiment (or conversely a re-introduction experiment) so we have ecosystems with and without dingos (Newsome et al. 2015). This would have to be carried out on a large scale dependent on the home range size of the dingo and for a number of years so that the benefits or the costs of the removal would be clear. Here is the first hurdle, this kind of experiment cannot be done, and only a quasi-experiment is possible by finding areas that have dingos and others that do not have any (or a reduced population) and comparing ecosystems. This decision immediately introduces 5 problems:

  1. The areas with- and without- the dingo are not comparable in many respects. Areas with dingos for example may be national parks placed in the mountains or in areas that humans cannot use for agriculture, while areas with dingo control are in fertile agricultural landscapes with farming subsidies.
  2. Even given areas with and without dingos there is the problem of validating the usual dingo reduction carried out by poison baits or shooting. This is an important methodological issue.
  3. One has to census the mesopredators, in Australia foxes and cats, with further methodological issues of how to achieve that with accuracy.
  4. In addition one has to census the smaller vertebrates presumed to be possibly affected by the mesopredator offtake.
  5. Finally one has to do this for several years, possibly 5-10 years, particularly in variable environments, and in several pairs of areas chosen to represent the range of ecosystems of interest.

All in all this is a formidable research program, and one that has been carried out in part by the researchers working on dingos. And we owe them our congratulations for their hard work. The major part of the current controversy has been how one measures population abundance of all the species involved. The larger the organism, paradoxically the more difficult and expensive the methods of estimating abundance. Indirect measures, often from predator tracks in sand plots, are forced on researchers because of a lack of funding and the landscape scale of the problem. The essence of the problem is that tracks in sand or mud measure both abundance and activity. If movements increase in the breeding season, tracks may indicate activity more than abundance. If old roads are the main sampling sites, the measurements are not a random sample of the landscape.

This monumental sampling headache can be eliminated by the bold stroke of concluding with Nimmo et al. (2015) and Stephens et al. (2015) that indirect measures of abundance are sufficient for guiding actions in conservation management. They may be, they may not be, and we fall back into the ecological dilemma that different ecosystems may give different answers. And the background question is what level of accuracy do you need in your study? We are all in a hurry now and want action for conservation. If you need to know only whether you have “few” or “many” dingos or tigers in your area, indirect methods may well serve the purpose. We are rushing now into the “Era of the Camera” in wildlife management because the cost is low and the volume of data is large. Camera ecology may be sufficient for occupancy questions, but may not be enough for demographic analysis without detailed studies.

The moral issue that emerges from this particular dingo controversy is similar to the one that bedevils wolf control in North America and Eurasia – should we remove large predators from ecosystems? The ecologist’s job is to determine the biodiversity costs and benefits of such actions. But in the end we are moral beings as well as ecologists, and for the record, not the scientific record but the moral one, I think it is poor policy to remove dingos, wolves, and all large predators from ecosystems. Society however seems to disagree.


Allen, B.L., Allen, L.R., Engeman, R.M., and Leung, L.K.P. 2013. Intraguild relationships between sympatric predators exposed to lethal control: predator manipulation experiments. Frontiers in Zoology 10(39): 1-18. doi:10.1186/1742-9994-10-39.

Colman, N.J., Gordon, C.E., Crowther, M.S., and Letnic, M. 2014. Lethal control of an apex predator has unintended cascading effects on forest mammal assemblages. Proceedings of the Royal Society of London, Series B 281(1803): 20133094. doi:DOI: 10.1098/rspb.2013.3094.

Hayward, M.W., and Marlow, N. 2014. Will dingoes really conserve wildlife and can our methods tell? Journal of Applied Ecology 51(4): 835-838. doi:10.1111/1365-2664.12250.

Letnic, M., Greenville, A., Denny, E., Dickman, C.R., Tischler, M., Gordon, C., and Koch, F. 2011. Does a top predator suppress the abundance of an invasive mesopredator at a continental scale? Global Ecology and Biogeography 20(2): 343-353. doi:10.1111/j.1466-8238.2010.00600.x.

Newsome, T.M., et al. (2015) Resolving the value of the dingo in ecological restoration. Restoration Ecology, 23 (in press). doi: 10.1111/rec.12186

Nimmo, D.G., Watson, S.J., Forsyth, D.M., and Bradshaw, C.J.A. 2015. Dingoes can help conserve wildlife and our methods can tell. Journal of Applied Ecology 52. (in press, 27 Jan. 2015). doi:10.1111/1365-2664.12369.

Stephens, P.A., Pettorelli, N., Barlow, J., Whittingham, M.J., and Cadotte, M.W. 2015. Management by proxy? The use of indices in applied ecology. Journal of Applied Ecology 52(1): 1-6. doi:10.1111/1365-2664.12383.

A Survey of Strong Inference in Ecology Papers: Platt’s Test and Medawar’s Fraud Model

In 1897 Chamberlin wrote an article in the Journal of Geology on the method of multiple working hypotheses as a way of experimentally testing scientific ideas (Chamberlin 1897 reprinted in Science). Ecology was scarcely invented at that time and this has stimulated my quest here to see if current ecology journals subscribe to Chamberlin’s approach to science. Platt (1964) formalized this approach as “strong inference” and argued that it was the best way for science to progress rapidly. If this is the case (and some do not agree that this approach is suitable for ecology) then we might use this model to check now and then on the state of ecology via published papers.

I did a very small survey in the Journal of Animal Ecology for 2015. Most ecologists I hope would classify this as one of our leading journals. I asked the simple question of whether in the Introduction to each paper there were explicit hypotheses stated and explicit alternative hypotheses, and categorized each paper as ‘yes’ or ‘no’. There is certainly a problem here in that many papers stated a hypothesis or idea they wanted to investigate but never discussed what the alternative was, or indeed if there was an alternative hypothesis. As a potential set of covariates, I tallied how many times the word ‘hypothesis’ or ‘hypotheses’ occurred in each paper, as well as the word ‘test’, ‘prediction’, and ‘model’. Most ‘model’ and ‘test’ words were used in the context of statistical models or statistical tests of significance. Singular and plural forms of these words were all counted.

This is not a publication and I did not want to spend the rest of my life looking at all the other ecology journals and many issues, so I concentrated on the Journal of Animal Ecology, volume 84, issues 1 and 2 in 2015. I obtained these results for the 51 articles in these two issues: (number of times the word appeared per article, averaged over all articles)

Explicit hypothesis and alternative hypotheses



















No. articles







There are lots of problems with a simple analysis like this and perhaps its utility may lie in stimulating a more sophisticated analysis of a wider variety of journals. It is certainly not a random sample of the ecology literature. But maybe it gives us a few insights into ecology 2015.

I found the results quite surprising in that many papers failed Platt’s Test for strong inference. Many papers stated hypotheses but failed to state alternative hypotheses. In some cases the implied alternative hypothesis is the now-discredited null hypothesis (Johnson 2002). One possible reason for the failure to state hypotheses clearly was discussed by Medawar many years ago (Howitt and Wilson 2014; Medawar 1963). He pointed out that most scientific papers were written backwards, analysing the data, finding out what it concluded, and then writing the introduction to the paper knowing the results to follow. A significant number of papers in these issues I have looked at here seem to have been written following Medawar’s “fraud model”.

But make of such data as you will, and I appreciate that many people write papers in a less formal style than Medawar or Platt would prefer. And many have alternative hypotheses in mind but do not write them down clearly. And perhaps many referees do not think we should be restricted to using the hypothetical deductive approach to science. All of these points of view should be discussed rather than ignored. I note that some ecological journals now turn back papers that have no clear statement of a hypothesis in the introduction to the submitted paper.

The word ‘model’ is the most common word to appear in this analysis, typically in the case of a statistical model evaluated by AIC kinds of statistics. And the word ‘test’ was most commonly used in statistical tests (‘t-test’) in a paper. Indeed virtually all of these paper overflow with statistical estimates of various kinds. Few however come back in the conclusions to state exactly what progress has been made by their paper and even less make statements about what should be done next. From this small survey there is considerable room for improvement in ecological publications.

Chamberlin, T.C. 1897. The method of multiple working hypotheses. Journal of Geology 5: 837-848 (reprinted in Science 148: 754-759 in 1965). doi:10.1126/science.148.3671.754

Howitt, S.M., and Wilson, A.N. 2014. Revisiting “Is the scientific paper a fraud?”. EMBO reports 15(5): 481-484. doi:10.1002/embr.201338302

Johnson, D.H. (2002) The role of hypothesis testing in wildlife science. Journal of Wildlife Management 66(2): 272-276. doi: 10.2307/3803159

Medawar, P.B. 1963. Is the scientific paper a fraud? In “The Threat and the Glory”. Edited by P.B. Medawar. Harper Collins, New York. pp. 228-233. (Reprinted by Harper Collins in 1990. ISBN: 9780060391126.)

Platt, J.R. 1964. Strong inference. Science 146: 347-353. doi:10.1126/science.146.3642.347

Demography Made Simple

I have grown weary of listening to radio and TV new announcers discuss the human population problem. I think a primer of a few principles of population arithmetic might be useful to remind us where we ecologists sit in these discussions. The problem centres on the issue of eternal growth and then the transition of any population from a growing one to a stable one. I concentrate here on human populations but the results apply to any long-lived species.

I list four empirical principles of demography.

  1. No population can continue growing without limit. This generalization is rock solid, so it would be good to keep mentioning it to sceptics of the following generalizations.
  2. Populations grow when births and immigration exceed deaths and emigration. If we consider the entire global human population, emigration and immigration disappear since we have not yet colonized space. Populations stabilize when births equal deaths.
  3. A population that moves from a growth phase to a stable phase must change in age structure. Every stable population must contain fewer young persons and more older persons.
  4. These changes in age structure have enormous implications for our requirements for hospitals, doctors, schools, teachers, and social support agencies. These changes are almost completely predicable for humans and should not come as a surprise to politicians.
  5. Pushing the panic button because a particular population like that of Japan is stabilizing and could even decline slightly may be useful for economists wishing for infinite growth but should be recognized as an expected event for every country in the future.

The bottom line is that we have the knowledge and the ability to plan for the cessation of human population growth. Many good books have been written to make these points and we need to keep repeating them. That many people do not understand the simple arithmetic of population change is a worry, and we should all try to communicate these 5 simple principles to all who will listen.

Cafaro, P., and Crist, E. 2012. Life on the Brink: Environmentalists Confront Overpopulation. University of Georgia Press, Athens, Georgia. 342 pp. ISBN: 978-0-8203-4385-3

Daly, H.E., and Farley, J. 2011. Ecological Economics: Principles and Applications. 2nd ed. Island Press, Washington, D.C. 509 pp. ISBN: 978-1-5972-6681-9

Washington, H. 2015. Demystifying Sustainability: Towards Real Solutions. Routledge, New York. 222 pp. ISBN: 978-1138812697

Why Do Physical Scientists Run Off with the Budget Pie?

Take any developed country on Earth and analyse their science budget. Break it down into the amounts governments devote to physical science, biological science, and social science to keep the categories simple. You will find that the physical sciences gather the largest fraction of the budget-for-science pie, the biological sciences much less, and the social sciences even less. We can take Canada as an example. From the data released by the research councils, it is difficult to construct an exact comparison but within the Natural Sciences and Engineering Research Council of Canada the average research grant in Chemistry and Physics is 70% larger than the average in Ecology and Evolution, and this does not include supplementary funding for various infrastructure. By contrast the Social Sciences and Humanities Research Council reports research grants that appear to be approximately one-half those of Ecology and Evolution, on average. It seems clear in science in developed countries that the rank order is physical sciences > biological sciences > social sciences.

We might take two messages from this analysis. If you listen to the news or read the newspapers you will note that most of the problems discussed are social problems. Then you might wonder why social science funding is so low on our funding agenda in science. You might also note that environmental problems are growing in importance and yet funding for environmental research is also at the low end of our spending priority.

The second message you may wish to ask is: why should this be? In particular, why do physical scientists run off with the funding pie while ecologists and environmental scientists scratch through the crumbs? I do not know the answer to this question. I do know that it has been this way for at least the last 50 years, so it is not a recent trend. I can suggest several partial answers to this question.

  1. Physical scientists produce along with engineers the materials for war in splendid guns and aircraft and submarines that our governments believe will keep us safe.
  2. Physical scientists produce economic growth by their research so clearly they should be more important.
  3. Physical sciences produce scientific progress on a time scale of months while ecologists and environmental scientists produce research progress on a time scale of years and decades.
  4. Physical scientists do the research that produce good things like iPhones and computers while ecologists and environmental scientists produce mostly bad news about the deterioration in the earth’s ecosystem services.
  5. Physical scientists and engineers run the government and all the major corporations so they propagate the present system.

Clearly there are specific issues that are lost in this general analysis. Medical science produces progress in diagnosis and treatment as a result of the research of biochemists, molecular biologists, and engineers. Pharmaceutical companies produce compounds to control diseases with the help of molecular biologists and physiologists. So research in these specific areas must be supported well because they affect humans directly. Medical sciences are the recipient of much private money in the quest to avoid illness.

Lost in this are a whole other set of lessons. Why were multi-billions of dollars devoted to the Large Hadron Collider Project which had no practical value at all and has only led to the need for a Very Large Hadron Collider in future to waste even more money? The answer seems to lie somewhere in the interface of three points of view – it may be needed for military purposes, it is a technological marvel, and it is part of physics which is the only science that is important. The same kind of thinking seems to apply to space research which is wildly successful burning up large amounts of money while generating more military competition via satellites and in addition providing good movie images for the taxpayers.

While many people now support efforts on the conservation of biodiversity and the need for action on climate change, the funding is not given to achieve these goals either from public or private sources. One explanation is that these are long-term problems and so are difficult to get excited about when the lifespan of the people in power will not extend long enough to face the consequences of current decision making. Finally, many people are convinced that technological fixes will solve all environmental problems so that the problems environmental scientists worry about are trivial (National Research Council 2015, 2015a). Physics will fix climate change by putting chemicals into the stratosphere, endangered species will be resurrected by DNA, and fossil fuels will never run out. And as a bonus Canada and Scandinavia will be warmer and what is wrong with that?

An important adjunct to this discussion is the question of why economics has risen to the top of the heap along with physical sciences. As such the close triumvirate of physical sciences-engineering-economics seems to run the world. We should keep trying to change that if we have concern for the generations that follow.


National Research Council. 2015. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration. The National Academies Press, Washington, DC. 140 pp. ISBN: 978-0-309-36818-6.

National Research Council. 2015a. Climate Intervention: Reflecting Sunlight to Cool Earth. The National Academies Press, Washington, DC. 234 pp. ISBN: 978-0-309-36821-6.