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Sampling plants or animals with quadrats is not the only alternative to mark-recapture estimation 

of abundance. Quadrats are not natural sampling units and one must always decide what size and 

shape of quadrat to use. One alternative is to use "plotless" sampling procedures. These 

techniques have been developed by plant ecologists and have been applied recently by animal 

ecologists. They are useful for plants or animals that move little or can be located before they 

move. Plotless methods provide a third general class of methods for estimating abundance in 

plant and animal populations, and in addition to mark-recapture and quadrat counts provide an 

important tool for the field ecologist. 

5.1  LINE TRANSECTS 
The line intercept method discussed in Chapter 4 is one example of a family of methods for 

estimating abundance from transects. Another important method for estimating populations with 
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transect lines is line transect sampling. Much of the material on line transect sampling has been 

brought together in Buckland et al. (2001) and Thomas et al. (2010) which provide a detailed 

reference for these methods. Here I will summarize the general procedures of line transect 

sampling and highlight the assumptions you must make to use these methods to estimate 

abundance. 

Figure 5.1 illustrates how line transect sampling is done. A transect line is searched and 

each animal seen provide one measurement of the perpendicular distance to the transect line. 

Since in practice animals are often seen along the line, three measurements can be taken for each 

individual sighted (Figure 5.2): 

1. Sighting distance (ri) 

2. Sighting angle ( iΘ ) 

3. Perpendicular distance (xi )a 

 
Figure 5.1  Schematic view of the method of line transect sampling. The census zone is the whole area of 
the square. Only one transect is shown for illustration. The observer moves along the transect line and the 
distances indicated by the blue arrows are measured to the animals seen. In this example 13 animals were 
seen (including two right on the transect line). Note that many individuals were not seen and that 
detection falls of with distance from the transect line 

Transect lines may be traversed on foot, on horseback, in a vehicle, or in a helicopter or airplane. 

                                                 
a The perpendicular distance can be calculated from the other two by x = r sin θ 
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Figure 5.2  Illustration of the basic measurements that can be taken for each individual (green dot) 
sighted along a line transect. The key measurement is the perpendicular distance (xi, blue line). If the 
sighting distance (ri , green line) is easier to record in the field, the sighting angle (θ)must also be 
measured. The perpendicular distance x = r sin(θ). 

If a fixed width of strip is counted, and if all organisms in the strip are seen, estimates of 

population size are simple, because strips are just long thin quadrats. All the principles of quadrat 

sampling discussed in Chapter 4 can apply to this situation. Plant ecologists sometimes use line 

transects to mean these long, thin quadrats which are completely censused.  

In practice some organisms are undetected as one moves along a transect and in these cases 

it is best not to limit observations to a fixed strip width. Because individuals are missed, an 

undercounting bias occurs. In these cases estimation of population density is more difficult 

because we need to estimate the detection function (Figure 5.3). Figure 5.3 shows that in general 

the detectability will fall off with distance from the center line of the transect. If we can make 4 

assumptions we can estimate population density from the detection function. We must assume: 

1.  Animals directly on the transect line will never be missed (i.e. their detection probability = 1). 

2.  Animals are fixed at the initial sighting position; they do not move before being detected and 
none are counted twice. 
3.  Distances and angles are measured exactly with no measurement error and no rounding errors. 
4.  Sightings of individual animals are independent events. 

r
x

Observer detects 
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at this point
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There is a key assumption of uniformity that is critical to line transect sampling (Welsh 2002). 

We must assume that the items being sampled are distributed at random in the landscape so that 

no matter where we place the line transect we would get the same shaped detection function.  

 
Figure 5.3  Some possible detection functions of line transect surveys. The basic idea of these models is 
that the probability of detection fall off the farther an animal is from the line transect baseline. (a) The 
shaded area encloses the general zone for detection functions for wildlife populations. (b) The detection 
function for any particular set of data may take a variety of shapes, and the statistical problem is to decide 
what mathematical function to use and what values of its parameters fit best. The generalized exponential 
(A), the half-normal (B), and the Hayes and Buckland (1983) function (C) are illustrated here. Note that 
for all these detection functions, the area under the function represents the items counted and the area 
above the function represents the items missed. (Modified from Burnham et al. 1980 and Routledge and 
Fyfe 1992. 

If these assumptions are valid, we can estimate the density of the population by: 

ˆ
2

nD
La

=
 (5.1) 
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where   D = Density of animals per unit area 

   n = Number of animals seen on transect 

   L = Total length of transect 

   a = Half the effective strip width (a constant which must be estimated) 

The constant a is simply the total area under the detection function (Fig. 5.3), and it estimates 

how wide the strip width would be if every organism was seen and none were missed. It is scaled 

in the same units of measurement as the lengths. 

There are numerous ways of estimating a in the literature, and they have been reviewed 

comprehensively by Burnham et al. (1980; their Table 24) and by Buckland et al. (1993). We 

shall discuss three here. 

5.1.1  HAYNE ESTIMATOR 
This estimator was developed by Hayne (1949) to estimate densities of birds like grouse that 

flush as an observer comes within a certain radius. The basic assumption of this estimator is that 

there is a fixed flushing distance r such that if an observer comes closer than r units to the 

animal, it flushes and is observed. This is a restrictive assumption because it assumes the 

detection function of Figure 5.3 is rectangular. If this assumption is correct, then population 

density can be estimated by: 

1ˆ 1
2H

i

nD rL n
 =  
 

∑  (5.2) 

where   ˆ
HD  = Hayne's estimator of density 

    n = number of animals seen 
   L = length of transect 
   ri = sighting distance to each animal i (see Fig. 5.2)  
The variance of this density estimate is: 

( ) ( )
( )

2

2
2 2

1
var nˆVar

n 1
i

H H

Rr
D D

R n n

  −    = +
− 

  

∑
 (5.3) 

where   ˆ
HD  = Hayne's estimator of density 

   n = number of animals seen 

   var(n) = variance of n n≅  
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   ri = sighting distance for animal i (Fig. 5.2) 

   R = mean of the reciprocals of sighting distances i  

The standard error of the mean density is estimated by the square root of this variance. 

The one critical assumption of the Hayne estimator is that the sines of the angles θ of the 

observed sightings are a sample from a uniform random variable ranging from 0 to 1. This 

assumption implies* that the average sighting angle is 32.7o. This can be tested by the statistic: 

( )32.7
21.56

n
z

θ −
=  (5.4) 

where   z = standard normal deviate 

   n = observed number of sightings 

   θ  = observed mean sighting angle (Fig. 5.2) 

The decision rule is to reject the null hypothesis that the average angle is 32.7° if z is greater than 

1.96 or less than -1.96 for α  = .05. If this null hypothesis is rejected, the Hayne estimator of 

density should not be used. 

If the Hayne model is not applicable, because the angle of sightings does not average 32.7o, 

you may be able to use a modification of the Hayne model. Burnham and Anderson (1976) found 

that the average sighting angle θ was usually in the range 32o to 45o, and that in these cases a 

reasonable estimator is: 

ˆ ˆ
MH HD c D=  (5.5) 

where   ˆ
MHD  = modified Hayne estimator 

   ˆ
HD  = Hayne estimator (formula above, page 000) 

    c = correction factor = 1.9661 - 0.02954 θ  

    θ  = mean sighting angle for all n observations 

The variance of this estimator is: 

                                                 

* If the sine of θ ranges uniformly from 0 to 1, the mean value of θ is (D/2)-1 radians, or 32.7o. See Hayne (1949, p. 157). 
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( )
( )

( )
( )( )

2 2
2

2 2 2

1var( ) 0.000876ˆ ˆVar( )
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i i
MH MH

r RnD D
n c n n R n n

θ θ  − − −  = + +  − −   

∑ ∑  (5.6) 

Box 5.1 illustrates these calculations. 

Box 5.1   Line Transect Method of Density Estimation using the Hayne 
Estimator 

The following data are part of the data from a line transect to estimate the abundance of 
white-eared kob in the Sudan.  They are used only to illustrate the method, since in practice a 
larger sample size would be obtained. 

 Animal no. Perpendicular 
distance, yi  

 (m) 

Sighting 
distance, ri  

 (m) 

Measured 
angle (θ) 

 

 1 92.35 150 38  
 2 163.80 200 55  
 3 22.27 160 8  
 4 58.47 200 17  
 5 157.30 250 39  
 6 86.99 130 42  
 7 26.05 150 10  
 8 50.80 130 23  
 9 163.80 200 55  
 10 71.93 100 46  
 11 72.11 140 31  
 12 

 
84.52 200 25  

Transect length was 10 km.  For calculating convenience, express all the distances in 
kilometers (not in meters).   
1.  To calculate population density from equation (5.2) we have: 

( )
( ) 2

1ˆ 1
2

12 1 1 1 1 1 1
2 10 12 0.150 0.200 0.160 0.200 0.200
12 6.342 3.8055 animals/km
20

H
i

nD rL n
 =  
 

  = + + + + +    

= =

∑

  
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The variance of this density estimate is (equation 5.3): 

( ) ( )
( )

2

2
2 2

1
var nˆVar

n 1
i

H H

Rr
D D

R n n

  −    = +
− 

  

∑
 

( ) ( ) ( )
( )( )

2 2
2

2 2

1 0.150 6.34 1 0.200 6.34123.8055
12 6.34 12 11

1.2902

  − + − +
  = +

    
=



 

( )ˆS.E. = 1.2902 = 1.13589 HD  

2.  Calculate the 95% confidence interval in the usual manner: with 11 d.f. the t-value is 2.20 
and 

( ).025
ˆ ˆS.E.H HD t D ±    

3.8055 ±  2.20 (1.13589) 
3.8055 ±  2.4990 kob / km2 

The wide confidence interval is due to the small sample size and thus the recommendation 
that n should be 40 or more. 
3.  To test the critical assumption of the Hayne method that the average angle of detection is 
32.7o for these data (equation 5.4): 

( ) ( )32.7 12 32.42 32.7
0.05

21.56 21.56
n

z
θ − −

= = = −  

so the null hypothesis that the sighting angle is 32.7o is tentatively accepted for these data. 
Program HAYNE (Appendix 2, page 000) can do these calculations. 

5.1.2  FOURIER SERIES ESTIMATOR 
This is a robust estimator that is sufficiently general to fit almost any type of line transect data. It 

is a good general purpose estimator and is strongly recommended by Burnham et al. (1980) as 

the best model available. The estimate of density is the usual one: 

ˆ
2

nD
La

=  (5.7) 

where   D̂  = Estimated population density 

   n = Number of animals seen on the transect 

   L = Length of transect 

   a = Half the effective strip width (a constant) 
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The critical parameter a is estimated as: 

1

1 1
ˆ *

m

k
r

a
a w =

= + ∑  (5.8) 

where   w* = transect width (largest perpendicular distance observed) 

1

2ˆ cos
* *

n
i

k
i

K xa
nw w

π
=

  =   
  

∑  (5.9) 

where   n = Number of animals seen  

   π  = 3.14159 

   xi = Perpendicular distance of animal i (Fig. 3.14) 

   k = Number of term in equation (1, 2, 3, 4...) 

   m = Maximum number of cosine terms in the summation (< 6) 

Burnham et al. (1980) give a stopping rule for m as follows: choose m to be the smallest integer 
at which this inequality holds true: 

1
2

1
1 2
* 1 ma

w n +
  ≥ + 

 (5.10) 

where   w* = Transect width (largest perpendicular distance observed) 

   n = Number of animals counted 

   1ma +  = Absolute value of am+1 (defined above) 

The variance of the Fourier series estimator is complex and should probably be done with 

the computer using Program TRANSECT described by Burnham et al. (1980). The procedure in 

capsule form is as follows: 

(1) Estimate the variances of the ak: 

( ) 2
2

1 1 2ˆvar for  1
1 * *k k ka a a k

n w w
  = + − ≥  −   

 (5.11) 

(2) Estimate all the covariances of the ak: 

( )ˆ ˆcov ,k ja a = ( )1 1 for  1
1 * k j k j k ja a a a k j

n w + −
 + − ≥ ≥ −  

 (5.12) 

(3) Having determined m above and given that cov(ak,ak) is the same as var(ak), we obtain 

( )1 1

1 ˆ ˆvar cov ,
ˆ

m m
j kj k

a a
a = =

  = 
 

∑ ∑  (5.13) 
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(4) Estimate the variance of D̂ , the estimated population density, by: 

( ) ( ) ( )
( )

( ) ( )
( ) ( )

2
22

ˆvar 1varˆ ˆvar
ˆ1

ˆ ˆS.E. var

ˆ ˆ95% confidence interval = 1.96 S.E.

an
D D

n a

D D

D D

 
 = +
  

=

 ±  

 (5.14) 

One problem in these estimates for the variance of line-transect estimators is determining 

the variance of n, the number of animals counted. It is usually assumed that n is a Poisson 

variable, so the variance = the mean = n, but this assumption could be in error (Burnham et al. 

1980). A better way to use the line transect statistically is to count a series of replicate lines, 

ensuring that each line is long enough to have an adequate sample size (n > 20 or 25). Then the 

variance of the density estimate D can be obtained directly. We define, for R replicate lines: 

ˆ
ˆ2

i
i

i i

nD
l a

=  (5.15) 

where   ˆ
iD  = Density estimate for line i 

   ni = Number of animals counted on line i 

   li = Length of transect line i 

   ˆia  = Estimated parameter for line i 

   i = 1, 2, 3... R lines (replicate number) 

For each line we estimate a using one of the techniques just described. 

The overall density estimate is the weighted average: 

1

1

ˆ

R

i i
i

R

i
i

I D
D

I

=

=

=
∑

∑
 (5.16) 

The empirical estimate of the variance of D̂  is: 

( )
( )
( )

2

1

ˆ ˆ
ˆvar

1

R

i i
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l D D
D

L R
=

 −  =
−

∑
 (5.17) 
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where   L = il∑  

  D̂  = overall density estimate from equation (5.16) 
   R = number of replicate line transects 
The standard error of the overall density estimate is: 

( ) ( )ˆ ˆS.E. = var  D D  (5.18) 

and the 95% confidence interval is: 

( ).025
ˆ ˆS.E.D t D ±    (5.19) 

where  t.025 has (R - 1) degrees of freedom. 

5.1.3  SHAPE-RESTRICTED ESTIMATOR 
An efficient estimator of population density can be constructed for line transect data by 

placing two restrictions on the shape of the detection curve (Johnson and Routledge 1985). The 

first restriction is that the detection function must be a continuously decreasing function, as 

shown in Figure 5.3. The second restriction is more powerful and requires that the curve must 

have a concave shoulder followed by a convex tail with an inflection point between these two 

regions. Given these restrictions, Johnson and Routledge (1985) utilize a flexible least-squares 

procedure to specify the detection function. The procedure is too complex to summarize here, 

and is coded in a computer program TRANSAN described by Routledge and Fyfe (1992). This 

procedure permits one to specify the length of the horizontal shoulder (i.e the zone in which 

detectability is near 1), the inflection point, or the height of the right tail of the detection 

function. By altering assumptions about the shoulder width, the biologist can explore the impact 

on the resulting density estimates. For example, a biologist may from his or her experience be 

able to state that the horizontal shoulder extends 10 meters on either side of the transect line. 

Figure 5.4 illustrates data obtained on a line transect study of starfish (Pisaster brevispinus). The 

data suggest a rise in sightability over the first three meters from the transect line, but this is 

apparently only chance variation, and the first shape-restriction on these data would be that the 

shoulder width be at least 3 meters. A second restriction is the upper limit to the sighting 

distance. If starfish are not visible beyond 8 meters from the transect line, the upper limit can be 

constrained to be 8 m. Clearly the more you know about the natural history of the study animal, 

the more closely you can constrain the detection function. The detection function for these data is 

thus more like line A in Figure 5.3 than line B or C. Johnson and Routledge (1985) showed in 
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simulations that the shape-restricted estimator of detection functions was more robust than any of 

the more commonly used methods like the Fourier-series estimator or the half-normal function. 

  

Figure 5.4 Observed perpendicular distances for a set of line transects of starfish (Pisaster brevispinus) 
near Vancouver, B.C. The shape of the smoothed detection function for these data will have a broad 
shoulder out to about 3 m, and will fall off to zero around 8-10 m. (Data from Routledge and Fyfe 1992).  

Anderson et al. (1979) provide a useful set of guidelines for anyone using the line transect 

technique for population estimation. They recommend nine cautions in data collection: 

1. The centerline of the transect must be straight and well marked. 
2. Care must be taken that all animals on the centerline are seen with certainty. 
3. Transect width should be effectively unbounded, and all animals seen should be 

recorded. 
4. All measurements of distances and angles should be accurately done with a tape 

measure and compass. 
5. All 3 measurements should be taken in the field: perpendicular distance, sighting 

angle, sighting distance (Fig. 5.2). 
6. Measurements should be recorded separately for convenient lengths of transect; 

they can be combined later as needed. 
7. Sample size (n) should be at least 40, and 60-80 would be better if this is possible. 
8. Transects along roads or ridgetops should be avoided; a randomization procedure 

is essential for proper statistical inference. 
9. Only competent, interested personnel should be used. 
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There is an extensive discussion of the practical and statistical problems of line transect 

sampling in Buckland et al. (2001), Burnham and Anderson (1984), Routledge and Fyfe (1992), 

Southwell (1994), Southwell et al. (2008) and Thomas et al. (2010). Southwell (1994) found that 

line transect population estimates for kangaroo populations of known size tended to 

underestimate the true density and this could be explained by a violation of assumption 2– 

animals on the centerline were often disturbed and moved slightly before they were sighted by 

the observers. Porteus et al. (2011) found the same problem with line transect trials with known 

populations of domestic sheep in England.  

An important approach in line transect studies is to combine line transect estimation with 

mark-recapture studies so that detectability can be estimated directly and suitable corrections 

applied to the estimates. Borchers et al. (1998), Laake et al. (2008), and Thomas et al. (2010) 

discuss this approach. Southwell et al. (2008) illustrate the utility of this method for aerial census 

of penguin populations in Antarctica. Schmidt et al. (2012) gives another example of the use of 

line transect sampling in aerial census of Dall sheep in Alaska.  

With species that can occur in groups rather than as single animals, the detection function 

may vary with group size, since groups are easier to see. Southwell et al. (2008) found this effect 

with penguins in Antarctica (Figure 5.5). Group size is only one of several factors that can affect 

detection probability and all of the factors that affect aerial survey accuracy (see Chapter 4 page 

178) also apply to line transects whether done on the ground or in the air. . 
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Figure 5.5  Observed detection functions for different group sizes of Adelie and emperor penguins from 
aerial surveys in Antarctica. Transect width ranged up to 800 m from the flight line. Virtually all penguins 
were sighted within about 300 m of the flight path, but at greater distances the detectability of single 
animals fell off rapidly. Groups of 20 penguins could be sighted at considerably greater distances from the 
flight line. (Data from Southwell et al. 2008).  

  

Several computer programs are available to do line transect calculations. Program HAYNE 

(Appendix 2, page 000) computes the Hayne estimator and the modified Hayne estimator for line 

transect sampling. Program DISTANCE (http://www.ruwpa.st-and.ac.uk/distance/ ) of Buckland 

et al. (2001) is much larger and more comprehensive and will compute the Fourier-series 

estimator as well as a variety of other parametric functions like the half-normal. Program 

DISTANCE is the gold standard for line transect calculations. Program TRANSAN of Routledge 

and Fyfe (1992) computes the shape-restricted estimator for line transect data and is available in 

the programs set for Ecological Methodology 

(http://www.exetersoftware.com/cat/ecometh/ecomethodology.html ). 

5.2 DISTANCE METHODS 
Plant ecologists have developed a variety of plotless sampling methods that work well on trees 

and shrubs. These are all called distance methods because they utilize distances measured by 

means of two general approaches: 
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• 1. Select random organisms and measure the distance to its nearest neighbors 

• 2. Select random points and measure the distance from the point to the nearest 
organisms. 

Plotless sampling is usually applied to a single species of plant or animal, and is popular in 

ecology because it is a two-edged sword. We can use plotless sampling to estimate the density of 

the population. On the other hand, if we know the density of a population, we can use plotless 

sampling to determine whether the spatial pattern is random, aggregated, or uniform. We are 

concerned here with the first approach, estimating density, and we will discuss the investigation 

of spatial pattern in the next chapter. 

The general procedure in plotless sampling is illustrated in Figure 5.6. The census zone is 

the area of interest, but in practice a boundary strip must be added so that measurements made on 

individuals at the edge of the census zone are not biased. The data of interest are the 

measurements from a series of random points to the nearest organism, or from organisms to their 

nearest neighbor. In principle, one could extend this approach to measure, in addition, the 

distance to the second nearest neighbor, the distance to the third nearest neighbor, and so on. But, 

to begin, let us consider the simple case shown in Figure 5.6. 

If the entire population can be mapped as is shown in Figure 5.6, we would know 

population density exactly and our estimation problem would be simple. But in most cases we 

must sample individuals scattered over a large area. For example, we may need to estimate the 

density of a tree species in a large region of 10 km2 of forest. Statisticians call this 'sparse 

sampling' and state that the primary requirement of sparse sampling schemes is that the sample 

points should be well separated so that observations can be assumed to be independent. Usually 

this requires that we do not sample more than 5-10% of the total  
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Figure 5.6  Schematic illustration of distance measures. The census zone is surrounded by a boundary 
strip, and in some cases the nearest organism is located in the boundary strip. Two types of measurements 
can be taken: (1) A random point X is located in the census zone and the distance xi to the nearest 
organism is measured. (2) A random organism A is selected and the distance zi to the nearest neighbor B is 
measured. The nearest neighbor might be in the boundary strip outside the census zone (e.g., C to D). 

population, so that we assume sampling without replacement. Using the same general approach 

shown in Figure 5.6, we can make two kinds of measurements: 

 1. from random points to the nearest organism 
 2. from a random organism to its nearest neighbor. 
There is in principle no problem with setting out random points in a large area, although it may 

be very time consuming and less easy to achieve in the field than statisticians tend to assume 

(Pollard 1971). But there is definitely a problem of selecting a random individual. In principle it 

is easy: mark each individual with a number and select n of these at random. But of course this is 

impossible in the field because we would have to enumerate the entire population! The next idea 

was to select a random point and use the individual closest to that random point as the equivalent 

of a random organism. But Pielou (1977 p. 154) showed that this procedure is biased in favor of 

isolated individuals and thus should not be used to select a random individual. 

There appears to be no easy way out of this dilemma and the best compromises all involve 

some type of systematic sampling (see Chapter 8, page 000 for more discussion of systematic 

Census zone

Boundary strip

X

A
B zi

xi

random point

C

D



Chapter 5 Page 214 

sampling). A variety of plotless sampling methods have been proposed, and while most of them 

perform adequately for organisms that are randomly spread in the landscape, there is 

considerable variation in how accurately they perform for clumped patterns (Engeman et al. 

1994). There is a need for interaction between theory and field practice in developing the best 

methods for particular organisms. I will consider four distance techniques that appear to be 

relatively robust to deviations from random patterns. By applying them for equal time periods in 

the field one could determine which provides a more precise estimate of population density, but 

little work of this type has yet been done, and at present we must rely on computer simulation 

methods to evaluate the techniques (Engeman et al. 1994). 

5.2.1  T-SQUARE SAMPLING PROCEDURE 
A distance sampling scheme called T-square sampling was first described by Besag and Gleaves 

(1973). It is simple to implement in the field, and this simplicity if often preferred by field 

workers. 

Figure 5.7 illustrates the principles of T-square sampling. Random points are located in the 

study region and at each random point two distances are measured: 

1. The distance (xi) from the random point (O) to the nearest organism (P) 

2. The distance (zi) from the organism (P) to its nearest neighbor (Q) with the 
restriction that the angle OPQ must be more than 90° (the T-square distance). If 
the closest neighbor is not within this angle, use the next closest organism until 
you find one that satisfies this angle. 
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Figure 5.7  Schematic view of T-square sampling.  A random point O is located within the study area, 
and the distance x is measured from this point to the nearest organism P. A second distance z is measured 
from organism P to its nearest neighbor constrained to be in the hemisphere to the right of the dashed line. 
The angle OPQ must be more than 90o.  The study area is sampled with a series of n random points like 
this. Trees symbolize individual organisms.  

The point-to-organism distances obtained in T-square sampling can be used to estimate 

population density as follows:  

1 2
ˆ

( )i

nN
xπ

=
∑

 (5.20) 

where   1N̂  = Estimate of population density from point-to-organism data 

   n = Sample size 

   xi = Distance from random point i to nearest organism 

The T-square distances however are constrained by the 90° rule, and consequently the 

density estimator that utilizes T-square distances (zi) has a different formula: 

π
=

∑2 2
2ˆ

( )i

nN
z

 (5.21) 

where   2N̂  = T-square estimate of population density (analogous to 2
ˆ )N  

    n = Number of samples 
    zi = T-square distance associated with random point i 

Random 
point

O

Q

P

z

x
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This estimator should not be used unless it is known that the organisms being sampled have a 

random pattern. 

Byth (1982) showed that the most robust estimator of population density for use with T-

square sampling was the following compound measure of 1N̂  and 2N̂ : 

2
ˆ

2 ( ) 2 ( )
T

i i

nN
x z

=
 
 ∑ ∑

 (5.22) 

The standard error of ˆ
TN  is calculated on the reciprocal of the density and is given by (Diggle 

1983): 

  + +
=  

 

2 2 2 28( 2 )1Standard error ˆ
x xz z

T

z s x z s x s
nN

 (5.23) 

where   x  = Mean value of point-to-organism distances 

   z  = Mean value of T-square organism-to-neighbor distances 

   n = Sample size 

   2
xs .= Variance of point-to-organism distances 

   2
zs  = variance of T-square organism-to-neighbor distances 

   xzs  = covariance of x and z distances 

Box 5.2 gives an example of the use of these estimators. Program TREES (Appendix 2, page 

000) does these calculations. 

Box  5.2  Estimating Population Density from T-square Sampling 

Using the T-square sampling procedure illustrated in Figure 5.7, an ecology class measured 
the following distances on white spruce trees in the southwestern Yukon (n = 16): 

Sample point no. Point-to-tree distance, xi    
(m) 

T-square distance from 
tree to neighbor, zi      (m) 

1 12.6 8.7 
2 9.3 16.4 
3 7.5 9.3 
4 16.2 12.6 
5 8.8 3.5 
6 10.1 11.2 
7 6.2 13.6 
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8 1.5 9.1 
9 14.3 2.7 
10 9.6 8.6 
11 11.3 7.9 
12 8.9 12.1 
13 6.3 15.6 
14 13.9 9.9 
15 10.8 13.7 
16 7.6 8.4 

Sum 154.9 163.3 
Sum of items squared 1694.93 1885.05 

Mean 9.681 10.206 
From the usual statistical formulas we calculate: 

−
=

−

−
−

−
=

−

∑ ∑

∑ ∑

∑ ∑ ∑

2 2 2

2 2 2

( ) / 1694.93 - (154.9) / 16Variance of ( ) =  = 13.020
1 15

( ) / 1885.05 - (163.3) / 16Variance of ( )= =  = 14.558 
1 15

( )( ) / 1543.72 - (154.9)(163.3)/16Covariance of =
1 15

 and     

x x n
x

n
z z n

z
n

xz x z n
n

x z  = -2.4819
  

 

The density of trees is estimated from equation (5.22) as: 

( ) ( )

=
 
 

= =
 
 

∑ ∑
2

2
2

ˆ
2 ( ) 2 ( )

16 0.003578 trees per m
2 154.9 2 163.3

T
i i

nN
x z

 

Calculate the standard error of the reciprocal of this density estimate from equation (5.23): 

( ) ( ) ( )( )( ) ( ) ( )

+ +
=

 + − +=

=

2 2 2 2

2 2

8( 2 )ˆStandard error (1/ )

8 10.206 13.02 2 9.681 10.206 2.4819 9.681 14.558

16
33.3927

x xz z
T

z s x z s x sN
n

 

The 95% confidence interval for the reciprocal of this density estimate is thus 
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α α±ˆ ˆ1/ {S.E.(1/ )]          (  = 2.113 for 15 d.f.)T TN t N t  

( )( )279.49  2.131 33.3927      or     208.33 to 350.65±  

Taking reciprocals, we obtain confidence limits of 2.9 X 10-3 to 4.8 X 10-3 trees/m2, or 29 to 
48 trees per hectare for this small sample. 
Program TREES (Appendix 2, page 000) does these calculations. 
 

5.2.2  ORDERED DISTANCE METHOD 
The ordered distance method was first suggested by Morisita (1957) and further developed by 

Pollard (1971). The method involves measuring the distance from a random sampling point to the 

nth closest individual. Pollard (1971) was the first to recognize that the variance of the density 

estimate falls as n increases, so that measurements to the second nearest individual have more 

precise density estimates that those to the nearest individual. In practice it is difficult in the field 

to locate individuals beyond the third-nearest, and this is the method we will discuss here. 

Simulation studies suggest that the third nearest individual gives satisfactory results for clumped 

patterns, although the method may also be used for the nearest or second nearest organism. 

The general formula for estimating population density for the ordered distance method for 

the third nearest individual is as follows: 

( )2

3 - 1ˆ =
i

nD
Rπ ∑

 (5.24) 

where   D̂  = population density estimated by the ordered-distance method 

    n = number of random points sampled  

    π = 3.14159 

    Ri = distance from random point to third nearest organism 

The variance of this density estimate is given by: 

( ) ( )2ˆ
ˆVariance

3 2

D
D

n
=

−
 (5.25) 

and the standard error of the density estimate is the square root of this variance. 

Confidence intervals for D can be obtained in the following way when 4n > 30. The 95% 

confidence limits are given by Seber (1982 p. 42) as: 
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π

−

∑ 2

12 1 - 1.96ˆLower confidence limit for  is 
4 ( )i

n
D

R
 (5.26) 

2

12 1 + 1.96ˆUpper confidence limit for  is 
4 ( )i

n
D

Rπ

−

∑
 (5.27) 

and these limits are then squared to convert them to population densities.  

To apply this sampling method, one proceeds as follows: 

1. Locate a random point in the study zone. 
2. Determine the nearest individual, the second nearest individual, and the third 

nearest individual to the random point. You will need to use exact measurements 
to determine these if spacing of individuals is close. 

3. Measure the distance from the random point to the third individual (Ri). 
4. Repeat the entire procedure for the next random point. Try to obtain n = 30 to 50. 

Note that you do not need to measure the distances to the nearest and second nearest individuals. 

Only one distance is measured per random point. If you are measuring trees, measure to the 

center of the tree. If you measure in meters, your density estimate will be in numbers per square 

meter.  

The procedure is illustrated schematically in Figure 5.8 and Box 5.3 gives some sample 

calculations for the ordered distance method of density estimation.: 

 

Figure 5.8  Schematic illustration of the ordered distance method procedure of Morisita (1957) utilizing 
the third-nearest organism. Only one distance (blue arrow) is recorded for each random point, the distance 

random point random pointR

R
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to the third-nearest organism (Ri). Note that one does not need to measure the distances to the first and 
second nearest organisms (unless you need to do so to decide which is the third nearest organism 

 

Box  5.3  Estimating Population Density from Ordered Distance Sampling 

A forest ecologist used the ordered distance sampling procedure illustrated in Figure 5.8 to 
determine the regeneration success of loblolly pine trees in Georgia.  She measured the 
following distances from 24 random points to the third nearest pine tree: 

 Sample point no. Point-to-third 
nearest tree 
distance, xi    (m) 

 

 1 18.5 
 2 4.1 
 3 7.2 
 4 6.2 
 5 8.3 
 6 10.1 
 7 16.2 
 8 3.5 
 9 13.2 
 10 6.6 
 11 10.9 
 12 5.9 
 13 6.8 
 14 3.9 
 15 2.8 
 16 7.2 
 17 8.1 
 18 5.2 
 19 9.0 
 20 4.4 
 21 3.2 
 22 7.5 
 23 9.9 
 24 7.6  

 Sum 186.3 
 Sum of items squared 1802.75 
 Mean 7.7625 

Estimate the density of trees from equation (5.30): 
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( )
( )( )

( )2

3 24 13 - 1ˆ = 0.012536 trees per sq. m
3.14159 1802.75i

nD
Rπ

−
= =

∑  

or expressed per hectare , 125 trees per ha. 
The variance of this density estimate is from equation (5.31): 

( ) ( )
( )

2
2

7
ˆ 0.012536ˆVariance 2.2451 10

3 2 3 24 2

D
D

n
−= = = ×

− −  

which gives the standard error of the density as: 

7

ˆ ˆStandard error of ( ) Variance of ( )

2.24516 10 0.001498

D D
−

=

= × =  

The 90% confidence interval for this density estimate is obtained from equations (5.26) and 
(5.27), with a change of the z-value to .10 .051.645 from 1.96z z= = :  

( )
( )( )

2

12 1 - 1.645ˆLower confidence limit for  
4 ( )

12 24 1 1.645
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−
=

− −
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∑

 

so the lower 90% confidence limit is 0.101612 or 0.01033 trees per sq. m, or 103 trees per 
hectare. 

( )
( )( )

2

12 1 + 1.645ˆUpper confidence limit for  
4 ( )

12 24 1 + 1.645
0.12348

4 3.14159 1802.75

i

n
D

Rπ

−
=

−
= =

∑

 

so the upper 90% confidence limit is 0.123482 or 0.015249 trees per sq. m, or 152 trees per 
hectare. 

In practice one would like a larger sample size to reduce the width of the 
confidence band. 
Program TREES (Appendix 2, page 000) can do these calculations. 
 

5.2.3  VARIABLE AREA TRANSECT METHOD 
This method is a combination of distance and quadrat methods and was first suggested by Parker 

(1979). A fixed width strip is searched from a random point until the nth individual is located in 

the strip. A field worker needs to search in only one direction from the random point, and once 
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the nth individual is found, the length of transect is measured from the random point to point at 

which the nth individual occurred. This method can be used for any number of individuals, and 

we shall use n = 3 as a convenient number for field workers. 

The formula for population density estimated by the variable area transect methods was 

derived by Parker (1979) as follows: 

( )
3n - 1ˆ =v

i

D
w l∑

 (5.28) 

where   ˆ
vD  = Estimate of population density for the variable area transect method 

    n = Number of random points 
    w = Width of transect searched (fixed) 
    li = Length of transect i searched until the third organism was found  

The variance of this estimate of population density is given by Parker (1979) as: 

( ) ( )2ˆ
ˆVariance

3 2
v

v

D
D

n
=

−
 (5.29) 

Note that this is the same variance formula used in the ordered distance estimator. Confidence 
limits for population density are given by Parker (1979, now corrected) as: 

1

2

Lower 95% confidence limit
2

Upper 95% confidence limit
2

C
w n l
C
w n l

=

=
 (5.30) 

where   C1 = Value from chi-square distribution at α = 0.025 for 6n degrees of 
   freedom 
   C2 = Value from chi-square distribution at α = 0.975 for 6n d.f. 
   w = Transect width 
   n = Sample size 
   l  = Mean length of transect searched until third organism is located 
   D̂  = Estimate of population density from equation (5.28)  
The variable area transect method is illustrated in Figure 5.9. 
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Figure 5.9  Schematic illustration of the variable area transect method of population estimation.  This is a 
combination of quadrat and distance methods. One moves along a transect line from a random point, 
counting the organisms within a specified distance (dashed lines) from the line of travel, and marks the 
distance at which the third individual is located. These distances (li) are the data used in equation (5.28).   

To apply the variable area transect method one proceeds as follows: 

1. Locate a random point on a transect line in your study area. 
2. Move along the transect from the random point until you have found three 

individuals of the species being studied. Project a perpendicular to the line of 
travel (marked by a tape measure usually). 

3. Measure the distance l along the tape from the random point to the perpendicular 
line that projects to the third individual. 

4. Repeat the procedure until you have a sample of at least 30-50 distances. 
 

Density estimates from these plotless sampling methods can be obtained from Program 

TREES (Appendix 2, page 000), which includes the confidence limits for the density estimates.  

5.2.5  POINT QUARTER METHOD 
The classic distance method is the point quarter method which was developed by the first land 

surveyors in the U.S.A. in the nineteenth century. The four trees nearest to the corner of each 

section of land (1 sq. mile) were recorded in the first land surveys and they form a valuable data 

base on the composition of the forests in the eastern U.S. before much land had been converted to 

agriculture. The point quarter technique has been a commonly used distance method in forestry. 

It was first used in plant ecology by Cottam et al. (1953) and Cottam and Curtis (1956). Figure 

5.10 illustrates the technique. A series of random points is selected often along a transect line 

with the constraint that points should not be so close that the same individual is measured at two 

successive points. The area around each random point is divided into four 90° quadrants and the 

random point random point

Direction of search

l
l

Transect
width
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distance to the nearest tree is measured in each of the four quadrants. Thus 4 point-to-organism 

distances are generated at each random point, and this method is similar to measuring the 

distances from a random point to the 1st, 2nd, 3rd and 4th nearest neighbors. 

 

Figure 5.10  Point-quarter method of density estimation. The area around each random point is 
subdivided into four 90o quadrants and the nearest organism to the random point is located in each 
quadrant. Thus four point-to-organism distances (blue arrows) are obtained at each random point. This 
method is commonly used on forest trees. Trees illustrate individual organisms. 

The appropriate unbiased estimate of population density for the point-quarter method is 

from Pollard (1971): 

2
4 (4 1)ˆ

( )p
ij

nN
rπ
−

=
∑

 (5.31) 

where   ˆ
pN  = Point-quarter estimate of population density 

    n = Number of random points 
   π  = 3.14159 
    rij = Distance from random point i to the nearest organism in  
  quadrant j (j = 1,2,3,4; i = 1, ...n) 
The variance of this density estimate is given by Pollard (1971) as: 

2ˆ
ˆVariance ( )

4 2
p

p

N
N
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−
 (5.32) 

and the standard error is: 

Variance of ˆStandard error of 
4

P
P

NN
n

=  (5.33) 

random point
random point
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Confidence intervals for Np can be obtained in the following way when 4n > 30. The 95% 

confidence limits are given by Seber (1982 p. 42) as: 

2
ij

16 1 - 1.96ˆLower confidence limit for  is 
(r )

P
n

N
π

−

∑
 (5.34) 

2
ij

16 1 + 1.96ˆUpper confidence limit for  is 
(r )

P
n

N
π

−

∑
 (5.35) 

and these limits are then squared to convert them to population densities.  

Program TREES in Appendix 2 (page 000) can do these calculations for point-quarter data. 

The point-quarter method is very efficient when it is easy to divide the area around the 

random points into 4 quadrants accurately, and when random points take a long time to locate in 

the field. There have been two general criticisms of the point quarter method. First, since 4 trees 

are measured at each point, the number of points sampled is often too low to be representative of 

a large population spread over a large area. Second, the density estimates obtained from the 

point-quarter method are susceptible to bias if the spatial pattern is not random (Pollard 1971). 

But recent simulation studies by Engeman et al. (1994) suggest that In general the bias of the 

point quarter estimator for clumped patterns is as low as that of the ordered distance estimator 

and the variable area transect estimator that they recommend. Table 5.1 summarizes the size of 

the bias of these estimators in the simulations run by Engeman et al. (1994). It may be better to 

use the more statistically robust ordered-distance sampling procedure (Fig. 5.8) or variable-area-

transect sampling (Fig. 5.9) in preference to point-quarter sampling, but more field data are 

needed to test these potential biases when organisms are clumped and not spread in a random 

pattern. If point-quarter sampling is used, it is important to measure the 90o quadrant boundaries 

accurately. The difficulty of doing this in the field has been one of the arguments used against the 

application of this method in routine field surveys (Engeman et al. 1994). 

Table 5.1  Relative bias of density estimates for four distance methods. Simulation 
studies of 5 spatial patterns ranging from uniform to random to 3 types of clumped 
distributions were run 5000 times for 4 different sample sizes to obtain these estimates.  
Relative bias is expressed as a proportion of the true density. Negative bias means that 
the estimates were too low relative to the true values, positive bias means that the 
estimates were too high. (Data from Engeman et al. 1994.) 
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Estimator Random 
pattern 

Uniform 
pattern 

Clumped-
50 patterna 

Clumped-
15 patterna 

Double 
clumpinga 

T-square 0.28 0.26 0.21 0.52 0.50 
Ordered 
distance 

0.02 0.13 -0.09 -0.25 -0.48 

Variable area 
transect 

0.02 0.13 -0.06 -0.21 -0.41 

Point-quarter 0.01 0.17 0.06 -0.22 -0.29 
 
a  The clumped-50 pattern is moderately clumped, the clumped-15 pattern more severely clumped, and 
the double clumping pattern is extremely clumped. 
 

Other possible distance measures are reviewed in Diggle (1983) and Seber (1982). 

Batcheler (1971, 1975) has developed techniques for estimating population density from distance 

measurements that utilize empirically derived correction factors. Batcheler (1975) used this 

approach to estimate deer density from fecal pellet groups in New Zealand. Byth (1982) 

suggested that these kinds of empirically-derived estimates are not robust to many types of non-

random spatial patterns in natural populations, and thus she recommends avoiding them in favor 

of more robust estimators like those discussed above. 

5.3  SUMMARY 
Plotless sampling methods provide another method for estimating the abundance of plants and 

animals. This chapter discusses two approaches to estimating density that do not involve setting 

out quadrats or marking individuals. The line transect method utilizes the distances organisms are 

sighted from transect lines to estimate density. Distance methods use distances from random 

points to the nearest organism and distances from random organisms to their nearest neighbor to 

estimate density. For all these plotless estimators, sample sizes of the order of 40-60 are needed 

to achieve good precision. 

Line transects can be done on foot or in vehicles or airplanes and the critical assumption is 

that all the organisms directly on the transect line are seen. Detection falls with distance away 

from the transect line, and the rate at which it falls can be used to estimate the effective width of 

strip counted along the transect. The critical problem is specifying the form of the detection 

function, and many different mathematical functions can be used. If ecological constraints can be 

set on the shape of the detection function, more precise estimates of density can be obtained. 



Chapter 5 Page 227 

Distance measures have been used extensively in plant ecology. Five methods are 

described that utilize distances from random points to the nearest organism and distances from 

random individuals to their nearest neighbor to estimate density. While random points are easy to 

locate, the practical problems associated with sampling random individuals are considerable. 

When organisms are randomly spread in space, there are few problems. But when the spatial 

pattern is clumped most distance measures are negatively biased. Three sampling procedures are 

available that successfully overcome many of these problems. The ordered distance method, the 

variable area plot method, and the point-quarter sampling procedure are relatively easy to apply 

in the field and statistically robust. When patchiness occurs, distance methods typically 

underestimate the true density but for the better methods this bias is relatively small.  
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QUESTIONS AND PROBLEMS  
5.1. Mallard duck nests were searched for on foot by walking transect lines on the Monte Vista 

National Wildlife Refuge in Colorado. A total of 272 km (169 miles) was walked. The strip 
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width was limited to 3.66 m (12 ft). In 1986 102 duck nests were found with the following 
distribution of perpendicular distances to the transect lines: 

Perpendicular 
distance class (ft.) 

Number of nests 
found 

0-1 10 
1-2 4 
2-3 14 
3-4 14 
4-5 10 
5-6 10 
6-7 11 
7-8 6 
8-9 8 
9-10 4 
10-11 7 
11-12 4 

Discuss the shape of the detection function for these data and suggest possible 
improvements in how these surveys might be carried out.  
 

5.2. Discuss the possibility of applying line transect methods of analysis to data collected by 
aerial survey. What factors might limit the use of line- transect methods from aircraft? 
What advantages would accrue if you could use line transects for aerial surveys. Read 
Burnham and Anderson (1984) and discuss the application of their recommendations. 
 

5.3. The following data were gathered from a 160 meter line transect for pheasants in southern 
England. Strip width (w) was 65 m. 
 

Observation no. Sighting 
distance, xi 

Sighting 
angle, θ 

1 27.6 m 46o 

2 25.2 27 

3 16.2 8 

4 24.7 31 

5 44.4 42 

6 48.0 28 
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7 13.1 2 

8 6.9 18 

9 23.5 48 

10 5.3 29 

11 14.9 36 

12 23.7 31 

13 36.7 56 

14 10.9 68 

15 24.1 0 

16 61.8 46 

17 27.6 22 

18 8.3 18 

19 16.2 27 

20 25.2 34 

Calculate the Hayne estimate of population density for these data and compare the 
resulting confidence limits with those obtained using the Modified Hayne estimator 
and the Fourier -series estimator. 
 

5.4. Calculate an estimate of density from the variable area transect method for ground squirrel 
burrows counted along a transect of 7 m total width in which the following distances were 
measured from the start of the random quadrat to the perpendicular at which the third 
burrow was located: (n = 30) 

6.7, 19.6, 32.2, 7.2, 12.4, 11.1, 27.8, 12.4, 16.4, 8.9, 19.0, 12.1, 19.5, 23.3, 17.9, 12.3, 18.0, 
24.7, 21.8, 28.0, 12.2, 8.4, 19.2, 13.0, 26.2, 21.8, 13.9, 14.7, 37.7, and 24.5 m. 
Estimate 90% confidence limits for the density of burrows. 

5.5. Point-quarter sampling was done on Amabilis fir in the Coast Range of British 
Columbia by an ecology class with the following results: (n = 10 random points) 

 Distance from point to tree (m) 

Point Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4 
1 3.05 4.68 9.15 7.88 

2 2.61 12.44 19.21 3.87 

3 9.83 5.41 7.55 11.16 

4 7.41 9.66 1.07 3.93 

5 1.42 7.75 3.48 1.88 

6 8.86 11.81 6.95 7.32 
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7 12.35 9.00 8.41 3.16 

8 10.18 3.16 7.14 2.73 

9 3.49 5.70 9.12 8.37 

10 5.88 4.15 13.95 7.10 

Estimate population density for these trees and calculate a 95% confidence 
interval for your estimate. What assumptions must you make to do these 
estimates? 

5.6 Plan a study to estimate the density of grizzly bears in a national park. Consider mark-
recapture, quadrat-based, and plotless-type methods of estimating density, and list their 
potential advantages and disadvantages. 

5.7 Lemmings living on the tundra construct overwinter nests of grass at the ground surface for 
insulation under the snow. In spring these nests are highly visible and can be used to index 
overwinter population abundance (Duchesne et al. 2011). One possible census method for 
winter nests is line transects. But the tundra has very uneven topography, and it is nearly 
impossible to walk a straight line in a line transect. What implication does the fact that the 
transect line cannot be straight have for estimating the density of winter nests by the line 
transect method? 
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