
Linkage analysis was the predominant statistical genetic 
mapping approach used in the latter half of the twentieth 
century. More recently, the focus shifted to association 
studies of complex traits that analyse common variants, 
which have a modest effect. For such variants, association 
analyses are more powerful than linkage analyses, and 
genome-wide association studies (GWASs) using single-
nucleotide polymorphism (SNP) marker loci became the 
preferred association mapping tool. However, an emerg-
ing view is that rare variants, which are not well interro-
gated by GWASs, could be responsible for a substantial 
proportion of complex human disease1. Importantly, 
the increased availability of exome and whole-genome 
sequence data has brought linkage analysis once again 
to the forefront owing to the development of power-
ful methods to detect rare variants involved in disease 
aetiology using family-based data; such an approach has 
many advantages over simply using filter methods to 
identify causal variants. Several reviews2–5 and books6–8 
have been written on genetic linkage analysis, but none, 
to our knowledge, covers linkage analysis coupled with  
whole-genome sequencing (WGS).

Several recent studies have generated genome-
wide association data for families. For example, the 
T2D-GENES (Type 2 Diabetes Genetic Exploration by 
Next-generation sequencing in Ethnic Samples) con-
sortium has generated WGS data on 1,043 individuals 
from 20 Mexican families and reported analysis of risk 
variants for type 2 diabetes. However, for cost reasons, 
most studies currently only obtain WGS data for a small 
number of family members.

To date, most family-based WGS studies have 
therefore been analysed using filtering approaches, 

and only a few family members are prioritized for 
sequencing (FIG. 1). However, filtering approaches do 
not offer statistical evidence of a variant’s involvement 
in disease susceptibility, whereas linkage analysis does 
provide this statistical support. With the decreasing 
cost of sequencing, it will become more common-
place to have WGS data available for every informative 
pedigree member.

This Review provides the reader with a practical 
guide for performing linkage analysis to identify vari-
ants that are responsible for Mendelian9 trait aetiol-
ogy. After briefly mentioning the relative merits of  
linkage and association analysis, we discuss linkage algo-
rithms and their implementations in computer programs, 
with a special emphasis on the use of sequence data. 
We then outline a step-by-step approach to successful  
linkage analysis using WGS data.

Genome-wide linkage analysis
For all informative family members, genotypes can be 
generated using SNP arrays and analysed using genome-
wide linkage analysis. This approach is beneficial in that 
it evaluates DNA sample quality; elucidates whether 
specified familial relationships are correct; allows the 
detection of mis-specification of affection status and 
locus heterogeneity; aids the selection of an individual 
(or individuals) to undergo WGS; and facilitates the map-
ping of the disease locus to a region (or regions) of the 
genome, thus reducing the number of variants that need 
to be followed up. Linkage analysis can also provide sta-
tistical evidence of the involvement of a variant or gene 
in disease aetiology and can be performed either directly 
using WGS data or after filtering using data on variants 
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Genetic mapping 
The ordering of loci on a 
chromosome and the 
determination of the distances 
between two adjacent loci.  
For short distances, the 
recombination fraction can 
serve as a measure of genetic 
distance, with the unit of 
measurement being the 
centimorgan (cM); 1 cM = 1% 
recombination fraction.
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Abstract | For many years, linkage analysis was the primary tool used for the genetic 
mapping of Mendelian and complex traits with familial aggregation. Linkage analysis was 
largely supplanted by the wide adoption of genome-wide association studies (GWASs). 
However, with the recent increased use of whole-genome sequencing (WGS), linkage 
analysis is again emerging as an important and powerful analysis method for the 
identification of genes involved in disease aetiology, often in conjunction with WGS 
filtering approaches. Here, we review the principles of linkage analysis and provide 
practical guidelines for carrying out linkage studies using WGS data.
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Genetic linkage
A phenomenon whereby two 
alleles, one each at two 
different loci, are transmitted 
together from parents to 
offspring more often than 
expected by chance. It leads  
to a recombination fraction 
smaller than 0.5. 

Phenocopies
Individuals that exhibit the 
phenotype of a Mendelian  
trait but that are not carriers  
of a susceptible genotype. 
Phenocopies were thought to 
result from non-genetic factors, 
but genes at locations other 
than those under current 
consideration can also lead  
to (genetic) phenocopies.

Penetrance
The conditional probability of 
being affected given one of the 
genotypes at the disease locus, 
‘++’, ‘+d’ or ‘dd’, where ‘d’ is 
the disease allele and ‘+’ the 
non-disease (wild-type) allele. 
More generally, penetrance is 
the conditional probability of a 
phenotype given a genotype.

Recombination
Two alleles, one from each of 
two loci, can be inherited from 
one parent but originate from 
two different grandparents.  
If the two marker loci are on 
the same chromosome, a 
recombination is the result of 
an odd number of crossovers 
between the markers.

Crossing over
A cytogenetic phenomenon 
that occurs during the 
formation of human gametes 
(egg or sperm cells). The salient 
feature of crossing over is that 
it occurs semi-randomly along 
chromosomes, with at least 
one crossover occurring on 
each chromosome in meiosis.

Recombination fraction
(θ). The expected proportion  
of recombinant children 
divided by the total number  
of recombinant and 
non-recombinant children. For 
two loci in close proximity to 
each other, θ is small owing to 
the randomness of crossing 
over, but it increases to 0.5 for 
loci that are far apart.

that have been followed up by sequencing10 across entire 
families. However, it should be noted that although link-
age analysis provides statistical evidence that a variant is 
involved in disease aetiology, false positives can occur 
when the variant that is tested is only in linkage disequi-
librium with the causal variant. When filter approaches 
are used, pheno copies11,12 and reduced penetrance can 
inhibit the ability to elucidate the causal variant but, 
because parametric linkage analysis incorporates a 
penetrance model, even under these circumstances  
the causal variant can usually be mapped.

Association analysis versus linkage analysis
Pertinent reviews of family-based association analysis 
have previously been published13–15, and only high-
lights are therefore presented here. Genetic linkage 
and association between two loci are both related to 
recombination — in the former, recombination events 
are scored over a limited number of observed genera-
tions, whereas the latter relies on large numbers of 
unobserved recombination events in past generations. 
As generations go by after an initial disease mutation 
has occurred, recombination events (crossing over) 
with surrounding markers tend to occur closer and 
closer to the disease locus so that measurable asso-
ciation between disease and marker loci extends only 
over short distances of up to 100 kb16,17, corresponding 
approximately to a recombination fraction (represented 
by θ) of 0.001, given 1 Mb ≈ 1 cM. Most differences 
between association and linkage analysis are due to 
this difference in the number of generations.

Association analysis using common variants gen-
erally allows for finer mapping than linkage analy-
sis using SNP loci, but one potentially problematic 
aspect of association analysis is population stratifica-
tion, which can lead to an increased number of false-
positive results if not properly accounted for18. This is 
not a problem in linkage analysis because children’s 
genotypes depend on those of their parents and not 
on population genotype frequencies. However, if some 
parental genotype data are missing, using incorrect 
marker allele frequencies can increase type I and II 
errors. It has thus been tempting to combine posi-
tive aspects of linkage and association analysis, which 
may be achieved by using family-based rather than 
population-based control individuals. Consider an 
affected individual and his or her parents. At a given 
marker locus, the alleles inherited by the child may be 
contrasted with the alleles that are not inherited19,20, 
where the latter can be shown to be representative of 
the alleles in the population21. The most well-known 
use of such family-based controls is probably the 
transmission disequilibrium test (TDT)22. For this to 
apply to multiple offspring, the null hypothesis of the  
TDT must include absence of linkage (θ = 0.5), so  
the TDT is a test for linkage that is only powerful when 
there is both linkage and association21. The TDT has 
been extended (the rare variant-TDT (RV-TDT))23 for 
use with WGS data incorporating several rare vari-
ant association tests and has been implemented in the 
Family-Based Association Test Toolkit (FBAT) suite of 
programs24. Some rare variant association tests25 ana-
lyse variants in aggregate (usually across a genomic 
region such as a gene) instead of analysing individual 
rare variants. It has been shown that analysing rare 
variants in aggregate is much more powerful than the 
individual analysis of rare variants25,26.

Approaches for linkage analysis
LOD scores. Linkage analysis can be carried out between 
a putative disease locus and a single marker locus (two-
point linkage) or across a set of markers (multipoint 
analysis) consisting of a small number of markers or 

Figure 1 | Workflow for the whole-genome 
sequencing filtering approach in human family 
data. Usually, one, two or more affected individuals, or 
affected and unaffected individuals, in a family have 
their genomes or exomes sequenced. Variants that are 
not predicted to be nonsense, missense or splice-site 
variants are usually excluded from further analyses 
because it is unlikely that they are causal. When the 
mode of inheritance of a disease is known, this 
information can be used to aid the selection of variants. 
For example, for an autosomal dominant disease, the 
affected pedigree member’s sequence data should 
display a heterozygous causal variant. Sequence data on 
additional pedigree members can help to reduce the 
number of variants that could potentially be disease 
causing. A final filtering step is performed in which 
those variants that are present in the databases dbSNP, 
1000 Genomes, ExAC and Exome Variant Server are 
excluded. Additionally, bioinformatic tools, such as 
Polyphen-2 (REF. 102), and measures of conservation, for 
example, PhyloP103, are often used to predict whether a 
variant is deleterious and therefore likely to be disease 
causing. Even after filtering steps, there may be many 
variants that need to be followed up in the remaining 
family members to elucidate whether the variant (or 
variants) segregate with the disease phenotype. If the 
family is from a population that is not represented in 
databases, then ethnically matched controls need to  
be sequenced to evaluate the frequency of the variant 
(or variants).
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LOD score
Z(x) = log10[L(x)/L(∞)] is the 
logarithm of the likelihood 
ratio, with the numerator  
being calculated under the 
assumption of linkage and the 
denominator under no linkage. 
A LOD score of 3.3 or higher 
has been shown to correspond 
to a genome-wide significance 
level of 0.05.

even all markers on a given chromosome. For multipoint 
analysis, the LOD score, Z(x) = log10[L(x)/L(∞)], is com-
puted as the logarithm of the likelihood ratio, with 
the numerator specifying a position, x, of the putative 
disease locus on the marker map. For the denomina-
tor, one assumes the disease locus to be off the map 
— that is, infinitely far away from the markers (FIG. 2). 
The multipoint LOD score can furnish a curve over 
all markers on a chromosome (FIG. 3); the maximum of 
this curve, over all chromosomes, then represents the 
estimated position of the disease locus on the human 
gene map provided that the maximum LOD score is at 
least equal to 3.3 (REF. 101). Evidence for linkage can be 
obtained from a single pedigree or multiple pedigrees 
with LOD scores summed at the same θ or map position. 
When linkage analysis was previously performed with 

marker loci and the individual genes within a region had 
to be sequenced using, for example, Sanger sequencing, 
false-positive regions would not be followed up owing 
to reasons of time and cost, so it was important for a 
pedigree or a group of pedigrees to meet the genome-
wide significance level. There is less concern now with 
meeting this criterion because it is quick and relatively 
inexpensive to follow by WGS of associated regions. 
Smaller pedigrees with suggestive LOD scores can still 
be followed up with WGS, although there may be mul-
tiple linkage regions that could potentially harbour the 
causative variant. If a putative causal variant is identi-
fied in a small pedigree, it is imperative that additional 
families are identified that segregate either the same 
variant or another putatively causal variant within the 
same gene. If a variant is identified that segregates with a 
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Figure 2 | Linkage information for a first-cousin 
mating for an autosomal recessive trait and a 
phase-known autosomal dominant trait. The disease 
is fully penetrant without phenocopies and has a minor 
allele frequency of 0.0001. Circles represent females 
and squares males. Individuals represented by solid 
black symbols are affected, and individuals represented 
by white symbols are unaffected. Shown below each 
individual in generation IV are the possible underlying 
disease genotypes. a | An autosomal recessive trait 
pedigree in which the affected children are offspring  
of first-cousin parents is shown. Consanguinity is 
indicated by the double horizontal line. The affected 
individuals are homozygous for a variant that is either 
causal or in perfect linkage disequilibrium with the 
causal variant. The unaffected sibling is homozygous 
wild type. The arrows show each informative meiosis 
and the contribution to the LOD score. For this 
pedigree configuration, the rare variant must have 
entered the pedigree through one of the great-
grandparents. The meiosis events from the 
great-grandparents to their children do not contribute 
to the LOD score; however, the meiosis events from the 
affected children’s grandparents to their parents and 
from the parents to the first affected child each 
contribute 0.3 to the LOD score, yielding a total LOD 
score of 1.2. The second affected child only adds 0.6 to 
the LOD score for the family because only the meioses 
from her parents yield new linkage information. Each 
additional unaffected child only yields an additional 
LOD score of 0.125 because for unaffected children it is 
not possible to elucidate whether they are homozygous 
wild type or causal-variant carriers; each of these 
possibilities have a probability of 1/3 and 2/3, 
respectively. These two probabilities are incorporated 
into the calculation of the LOD score, and linkage 
information is therefore lost. b | A phase-known 
autosomal dominant pedigree with five children is 
shown. This pedigree with five offspring for which there 
are no recombination events will lead to a maximum 
LOD score of 1.5 at θ = 0, where Z(θ) = log

10
[(1 − θ)5/(½)5]. 

However, if no genotype information is available for  
the grandparents (shown in generation I), making the 
pedigree phase-unknown, the pedigree will yield a 
maximum LOD score of 1.2 at θ = 0, where 
Z(θ) = log

10
[((1 − θ)5 + θ5)/((½)5 + (½)5)]. 
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phenotype in a large pedigree and produces a LOD score 
>3.3, it is also desirable to have additional pedigrees that 
segregate the same variant or different variants within 
the same gene. Even with a significant LOD score, the 
finding could be a false positive or the variant that was 
identified may only be in linkage disequilibrium with 
the causal variant, which may not have been observed 
in the sequence data; for example, the variant might not 
have been captured or there might have been insufficient 
read depth. Additionally, performing functional studies 
can be important on two levels: to provide additional 
evidence for gene causality and to better understand the 
role of the gene in disease aetiology27.

A parent must be heterozygous at each of two loci 
to be ‘informative for linkage’; otherwise, there is insuf-
ficient information to distinguish recombinant from 
non-recombinant events in offspring. When grandpar-
ents are unavailable (that is, in ‘phase-unknown pedi-
grees’), there must be at least two children in the third 
generation for linkage to be potentially informative. In 
some instances, such as for autosomal recessive and 
X-linked recessive traits, grandparents do not help to 
set the phase because they are usually unaffected and 
disease allele carriers cannot be distinguished from non-
carriers. Pedigrees in which the grandparents provide 
phase information are known as ‘phase-known pedi-
grees’. In suitable situations, the number of recombinant 
events (k) and of non-recombinant events (n − k) can 

be counted directly. The estimate of the recombination 
fraction is then simply θ = k/n. Generally, however, the 
recombination fraction is estimated by the maximum 
likelihood (LOD score) method.

The recombination fraction tends to be different 
in males and females. It may also depend on age28, but 
human studies have provided varied results29–32.

Penetrance. For many traits, penetrance is incomplete. 
For example, in torsion dystonia, penetrance has been 
estimated as 29%33; that is, fewer than one-third of dis-
ease-gene carriers express the trait. Penetrance can be 
age and sex dependent. For example, in Huntington dis-
ease, penetrance is zero at birth and gradually increases 
to 100% later in life34,35. Multiple penetrance classes in 
linkage analysis can have functions similar to those of 
predictor variables in logistic regression for case–control  
association studies6,36. If the penetrance for a disease 
is unknown or not well established, an ‘affected-only’ 
analysis can be performed, in which individuals who are 
unaffected are given an unknown affection status.

We distinguish between two penetrances: g for 
genetic cases and f for phenocopies, with g > f. In many 
linkage studies, f is taken to be a small number, such 
as 0.01 or smaller. The penetrance ratio, g/f, is analo-
gous to the risk ratio in epidemiology37 and indicates 
how well the disease phenotype (or any phenotype, 
for that matter) can discriminate between underlying 
genotypes.

Initial SNP genotyping. Performing linkage analysis 
with a SNP genotyping array can be beneficial in the 
identification of concerns about the data set. SNP geno-
typing can elucidate potential problems with the quality 
of the DNA samples, detect whether samples have been 
swapped and indicate instances in which a relationship 
has not been correctly specified. Additionally, if the 
pedigree produces a much lower LOD score than that 
expected for the number of informative meioses, this 
might indicate problems with phenotypic information 
that need to be rectified before additional analysis can 
be performed, or it might indicate that locus hetero-
geneity is present in the pedigree. The resulting link-
age results and haplotype reconstruction can also aid 
in the selection of individuals for WGS: selection could 
be based on the smallest haplotype or on a haplotype 
that overlaps across affected individuals. Additionally, 
haplotype information can elucidate whether there are 
individuals within a pedigree who are phenocopies 
and therefore should not be selected for WGS. After 
performing WGS, fewer variants need to be followed 
up than when performing filtering alone because the 
causal variant is likely to be in the linked regions. For 
a family that can establish linkage, this strategy usually 
only yields 1–3 variants that have to be followed up in 
additional pedigree members and ethnically matched 
controls.

Linkage algorithms. With few exceptions38, the calcu-
lation of pedigree likelihoods is done recursively by 
starting with a portion of the data and then working 
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Figure 3 | LOD score curves for a phase-known 
autosomal dominant pedigree with ten children in 
the third generation. The LOD score curve is displayed 
for k recombination events (k = 0, 1 and 6) out of 10 
meioses. The disease phenotype segregating in this 
pedigree is fully penetrant and has no phenocopies. 
Phenotype and genotype information are available for all 
pedigree members. The marker locus that is analysed is 
fully informative. The maximum LOD scores are 3.0 at a 
recombination fraction of 0 (θ = 0), 1.6 at θ = 0.1 and 0 at 
θ = 0.5, respectively, for k = 0, 1 and 6. When multiple 
pedigrees are analysed, the resulting LOD scores can be 
summed across families at either the same θ value or the 
same map position.
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Mendelian inheritance 
model
The Mendelian laws of 
inheritance, when applied to 
variants, stipulate that an 
individual carries two copies 
(alleles) of a given nucleotide 
and passes one of them at 
random to each of their 
offspring. Disease may be the 
result of a single copy of the 
allele (dominant inheritance) or 
of two copies (recessive 
inheritance) in an individual.

through the rest of the data. Two main algorithms 
are in general use. The Elston–Stewart algorithm39–42 
recursion takes place over individuals in a pedigree 
so that computing effort is linear with pedigree size 
but increases exponentially with the number of loci 
considered simultaneously. Conversely, the Lander–
Green algorithm43 recursion takes place over loci 
so that computing effort increases linearly with the 
number of loci but exponentially with family size. For 
multipoint analysis, the marker map is generally lim-
ited to 6–8 markers in the Elston–Stewart algorithm, 
whereas thousands of markers on any chromosome 
can be accommodated by the Lander–Green algo-
rithm. However, the Lander–Green algorithm can only 
handle small- to medium-sized families, whereas the 
Elston–Stewart algorithm is applicable to very large 
pedigrees. Many programs have been developed that 
implement the Elston–Stewart algorithm (for example, 
LINKAGE44 and FASTLINK45) and the Lander–Green 
algorithm (for example, GeneHunter46 and MERLIN47). 
Although these programs were not developed for ana-
lysing WGS data, analysis of sequence data can eas-
ily be performed by converting Variant Cell Format 
(VCF) files into the linkage file format (also known 
as the PLINK48 file format). These conversions can 
readily be made with PLINK version 1.9, VCFtools49, 
Variant Association Tools (VAT)50 or SEQLinkage51. If 
the conversion is performed using either VCFtools or 
VAT, the user will have to create a file that contains 
parameter information. However, SEQLinkage will cre-
ate both the pedigree and parameter files for direct use 
in linkage analysis. Additionally, SEQLinkage can be 
used to directly perform linkage analysis using VCF 
files. However, the analysis of individual rare variants 
can be poorly powered when using SEQLinkage, so the 
software authors, motivated by rare-variant association 
tests, developed the collapsed haplotype pattern (CHP) 
method, which aggregates rare variants within regions 
(usually a gene) to create a ‘super locus’ (REF. 51). The 
CHP method is more powerful than analysing rare 
variants individually, particularly in the presence of 
allelic heterogeneity.

There is no exact algorithm that can realistically 
accommodate large families and large numbers of loci, 
but computer-based methods have been developed to 
approximate linkage likelihoods for these situations. 
They are generally based on Markov-chain Monte 
Carlo (MCMC) methods52 and can allow for multiple 
disease loci, large family pedigrees and large num-
bers of marker loci. Two examples of linkage analysis 
programs that use MCMC approaches are Loki53 and 
SimWalk2 (REF. 54).

Multipoint analysis is useful when analysing SNP 
genotyping arrays for which the genotypes for the 
causal variant are unavailable because analysing 
multiple markers is usually more informative than 
analysing an individual SNP marker locus. However, 
for sequence data, there is no advantage in perform-
ing multipoint analysis if genotype data are available 
for the causal variant because no additional linkage  
information will be obtained.

Parameter-free methods. So-called parameter-based 
(‘parametric’) methods require specification of an inher-
itance model for the trait locus, unlike allele sharing 
(parameter-free) methods, which do not require speci-
fication of a disease model. Parameter-free methods are 
sometimes referred to as ‘non-parametric’, but this term 
should be avoided because it means, in the statistics lit-
erature, that analysis is carried out on ranks rather than 
the original data, which is not the case for these meth-
ods. The simplest type of allele-sharing analysis is based 
on affected sibpairs (ASPs)55,56, but more-sophisticated 
approaches have been developed57,58. However, many of 
these methods do imply a specific Mendelian inheritance 
model. For example, analysis of identity-by-descent (IBD) 
sharing in affected siblings has been shown to be equiva-
lent to an analysis under a fully penetrant recessive mode 
of inheritance59. Newer parameter-free approaches make 
use of large pedigrees and both affected and unaffected 
individuals58. Allele-sharing linkage methods are based 
on the principle that if two relatives with a similar pheno-
type (for example, both affected) inherit the same marker 
allele from a common ancestor more often than expected 
by chance, then this indicates that a disease locus is 
linked with the marker locus. Various sharing statistics 
have been developed57, but the subject of parameter-free  
linkage analysis is beyond the scope of this Review.

Extended approaches. Methods have also been devel-
oped to allow for two trait loci56,60,61, often referred to 
as digenic inheritance62, but it is not entirely clear what 
LOD score threshold for significance should be applied 
to such bivariate analyses63, and their power gain over 
single-locus analyses has been questioned64.

For children who are affected with an autosomal 
recessive trait and whose parents are cousins or similarly 
close relations, marker loci linked with the trait locus 
tend to be homozygous65. These runs of homozygosity 
can be quickly detected for either SNP genotype array or 
WGS data using, for example, Homozygosity Mapper66. 
Linkage analysis can be used to obtain LOD scores for 
the variants within the region (or regions) of homo-
zygosity through multipoint analysis (for SNP genotyp-
ing array data) or two-point linkage (for WGS data). It 
should be noted that in the very rare circumstance that 
the disease trait in a consanguineous pedigree is due to 
compound hetero zygous variants67, homozygosity map-
ping will not lead to detection of the region harbour-
ing the causal variants, although linkage analysis results 
will not be influenced by the variants being compound  
heterozygotes instead of being homozygous.

Steps for a successful linkage study
Phenotyping. Two classes of phenotypes can be distin-
guished: qualitative and quantitative traits. Qualitative 
traits consist of a discrete number of classes, such as 
‘affected’ and ‘unaffected’, whereas quantitative traits 
occur with a continuous distribution. In this Review, we 
focus on qualitative (disease) traits.

For many traits there is little question as to who is 
affected and who is not. Even when disease definition 
might be ambiguious, there are usually medical rules to 
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determine disease status — for example, the conditions 
that need to be satisfied for someone to be diagnosed 
as schizophrenic. Whether these rules are genetically 
relevant is generally unclear, and researchers sometimes 
choose to rely on ‘endophenotypes’; that is, pheno types 
correlated with disease that might be closer to gene 
action than the overall disease definition. It can also be 
more powerful to analyse separate underlying quantita-
tive phenotypes instead of an overall clinical phenotype 
(for example, hypertension) that might be based on sev-
eral quantitative traits. For example, rather than apply-
ing the medical diagnosis of hypertension, researchers 
working with the Lyon hypertensive rat carried out link-
age analysis with each of three components of blood 
pressure (systolic, diastolic and pulse pressure, with 
pulse pressure being the difference between systolic and 
diastolic blood pressure); they found significant results 
for two different loci that each control a different blood 
pressure component68. Such clear results might have 
been difficult to obtain if hypertension was considered 
as a single phenotype.

Various approaches can be taken to accommodate 
multiple phenotypes involved in a disease. For example, 
two different lipid levels have been analysed jointly in 
a bivariate analysis relating to diabetes69. Most often, 
however, multiple phenotypes are suitably combined as 
a weighted sum70–73, which is then used as a single quan-
titative trait in linkage analysis, or tests on single pheno-
types are combined to show their joint effect74. It is best 
to avoid dichotomizing a quantitative trait because 
substantial linkage information can be lost. A number 
of programs, including FASTLINK and MERLIN, can 
perform quantitative trait linkage analysis.

Selecting family members for sequencing. If only a frac-
tion of all family members can be sequenced owing to 
reasons of cost, scientists are faced with the dilemma 
of which pedigree members to select for WGS. SNP 
genotyping data can aid selection, but such data are 
not always available. Some general guidelines are given 
below, but more advanced approaches rely on com-
puter simulation, which emulates a linkage study by 
generating marker data and analysing it with the same 
parameter that will be used in the linkage study. For 
example, SLINK could be used to generate marker data, 
and MSIM could be used to perform the analysis. A 
sophisticated statistical framework for prioritizing 
individuals for sequencing has recently been devel-
oped and implemented in a computer program called 
GIGI-Pick42 (TABLE 1).

Consider an autosomal recessive trait that is carried 
by two unaffected parents, who are cousins, and by their 
two children, who are affected with the trait. At least one 
of the affected offspring should be sequenced because, 
in this family, this child can yield a LOD score of 1.20 
when both the trait and the linked variant alleles are rare. 
If an additional individual is to be sequenced, should 
this be a parent or the other affected child? A parent 
with an unknown genotype is likely to be heterozygous 
for a rare variant, and the affected child will have one 
variant in common with the parent, so each additional 

affected child can produce an LOD score increment of 
0.60. Thus, it is less important to sequence the parents 
than to sequence the affected siblings in this situation. 
However, sequencing parents is necessary for identifying 
compound heterozygotes and de novo events.

For dominant traits, it is generally best to sequence 
distantly related individuals, a principle established some 
20 years ago75. The same rare allele occurring in two rela-
tives is likely to represent two copies of an ancestral allele 
rather than two alleles independently acquired by the 
two individuals, which translates into an LOD score that 
increases with increasing distance of relationship. For 
rare variants for a disease without phenocopies, even 
only two distantly related individuals can yield sufficient 
linkage information. For example, consider two second 
cousins affected with an autosomal dominant trait for 
which the causal variant has a minor allele frequency of 
0.0001; all other relatives are of unknown disease and 
marker status. The resulting LOD score is equal to 1.20, 
and more-distant relationships can yield even higher 
LOD scores.

For WGS studies, one or two unaffected individu-
als in a family should also be sequenced as controls, but 
in linkage analysis a negative LOD score is a sufficient 
indication that a given variant is not linked with the trait 
gene. For traits with reduced penetrance, unaffected 
pedigree members can be carriers of causal variants and 
therefore do not make ideal controls. Usually, there is no 
need to obtain variant frequencies in unaffected controls 
because this same information can readily be obtained 
from databases such as dbSNP76, Exome Variant Server77, 
ExAC and 1000 Genomes78. Variants that occur at higher 
frequencies in these databases — for example, >0.5% — 
are unlikely to be causal1. It should be noted that even 
fully penetrant disease variants may be present in vari-
ant databases for several reasons: these are not databases 
of disease-free individuals, and for autosomal recessive 
traits disease-free carriers may be included. 

SNPs from sequence data. After individuals in a fam-
ily have been sequenced, variants are extracted from 
the sequence data79. If a given variant is not observed 
in available databases, it can be assumed to be rare and 
given a low allele frequency: for example, 0.0001. When 
performing linkage analysis, it is necessary to have VCF 
files that contain genotype information for every fam-
ily member for which there is a variant site in at least 
one of the pedigree members. If this information is not 
available, it is impossible to distinguish between miss-
ing data and an individual who is a homozygous non-
carrier. Additionally, if a sufficient number of family 
members are being subjected to WGS, a family-aware 
variant caller80, such as that implemented in the Genome 
Analysis Toolkit (GATK)81, should be used to increase 
the accuracy of the variant calls.

Quality control. For WGS data, quality control can be 
performed as previously described50; however, these pro-
cedures will not completely eliminate genotyping errors 
from WGS data. In contrast to association studies82, 
in families genotyping errors have traditionally been 
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Table 1 | Computer implementations

Software Description and purpose URL Refs

easyLINKAGE Integrated suite that generates the necessary files and performs analysis using 
several programs, including GeneHunter

http://sourceforge.net/projects/
easylinkage/

92

Genome 
Analysis Toolkit 
(GATK)

Toolkit for call variants from WGS data https://www.broadinstitute.org/
gatk/

81

GeneHunter • Lander–Green algorithm
• Can be applied to small- to medium-sized families and large numbers of  

marker loci
• Features parametric and non-parametric multipoint linkage analysis for  

qualitative and quantitative traits

http://www.broadinstitute.org/ftp/
distribution/software/genehunter/

46

GIGI-Check • MCMC algorithm
• Detects Mendelian-consistent genotyping errors

https://faculty.washington.edu/
wijsman/progdists/gigi/software/
GIGI-Check/GIGI-Check.html 

86

GIGI-Pick Can be used to prioritize individuals for WGS https://faculty.washington.edu/
wijsman/progdists/gigi/software/
GIGI-Pick/GIGI-Pick.html 

42

LINKAGE and 
FASTLINK

• Elston–Stewart algorithm
• Can be applied to large families but only to a limited number of marker loci for 

multipoint, parametric two-point and parametric multipoint linkage analysis for 
qualitative and quantitative traits

• Can be used to detect Mendelian-consistent genotyping errors

http://www.jurgott.org/linkage/
LinkagePC.html; http://www.ncbi.
nlm.nih.gov/CBBresearch/Schaffer/
fastlink.html

44, 
93

Loki • MCMC algorithm
• Can be used to perform multipoint linkage and segregation analysis of  

quantitative traits on large pedigrees

http://www.stat.washington.edu/
thompson/Genepi/Loki.shtml

94

Mendel • Elston–Stewart and Lander–Green algorithms
• Can be applied to the analysis of qualitative or quantitative traits in pedigree- or 

population-based data
• Can combine multiple (rare) variants into superloci

http://www.genetics.ucla.edu/
software/mendel

95, 
96

MERLIN • Lander–Green algorithm
• Can be applied to small- to medium-sized pedigrees
• Handles closely spaced SNPs by combining them into superloci

http://www.sph.umich.edu/csg/
abecasis/Merlin/

47

MSIM • Elston–Stewart algorithm
• Can be used to analyse simulated pedigree data to evaluate power, maximum  

LOD scores and expected LOD scores
• Useful for simulation studies to evaluate the most-informative pedigree members  

to select for WGS

http://watson.hgen.pitt.edu/docs/
SLink.html

97

PedCheck Detects genotype incompatibilities in pedigree data http://watson.hgen.pitt.edu/
register/docs/pedcheck.html

98

PLINK • Whole-genome association tool set for genotype data
• Can be used to estimate IBD sharing between two individuals

http://pngu.mgh.harvard.
edu/~purcell/plink/

48

Pseudomarker • Family-based association testing (joint linkage and linkage analysis) for  
qualitative traits using cases and controls, trios, sibpairs, sibships and  
extended families

http://www.helsinki.fi/~tsjuntun/
pseudomarker/

99

SEQLinkage • Elston–Stewart algorithm
• Can be used for parametric linkage analysis of WGS data using the collapsed 

haplotype pattern method
• Generates linkage files from VCF files for use with any linkage program that 

performs parametric linkage analysis

http://bioinformatics.org/seqlink 51

SimWalk2 • MCMC algorithm
• Can handle large pedigrees and an intermediate number of marker loci for 

parametric and non-parametric multipoint linkage analysis of qualitative and 
quantitative traits

http://www.genetics.ucla.edu/
software/

54

SLINK and 
FastSLINK

• Simulates pedigree data that are conditional and unconditional on qualitative  
and quantitative phenotypes

• Limited in size of pedigree and number of marker loci
• MSIM can be used to analyse the simulated pedigrees

http://watson.hgen.pitt.edu/docs/
SLink.html

97

Superlink • Bayesian networks
• Can handle large, complex pedigrees with multiple inbreeding loops  

segregating dichotomous traits
• Performs two-point and multipoint (with a limited number of markers) linkage 

analysis

http://bioinfo.cs.technion.ac.il/
superlink/

100
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detected as Mendelian inconsistencies83–85. However, 
particularly in small families, and given the biallelic 
nature of most variants, all sequencing errors will not 
be detected as Mendelian inconsistencies, and the frac-
tion of such undetected errors can be high. MERLIN 
(double recombination events over short distances) 
and GIGI-Check (MCMC approach) are able to detect  
Mendelian-consistent errors86.

Mendelian inconsistencies may be due to sequenc-
ing error or pedigree inconsistency (adoption, non-
paternity87 or swapped samples). In the case of pedigree 
inconsistency, large numbers of variants are expected to 
exhibit inconsistencies. To identify a specific individual 
causing these errors, it is useful to estimate the propor-
tion of alleles shared IBD 0, 1 and 2 for pairs of indi-
viduals (implemented, for example, in the VAT or the 
PLINK programs). For example, for siblings, these pro-
portions are expected to be 0.25, 0.5 and 0.25, respec-
tively; if IBD proportions deviate from these values, 
then the two individuals are unlikely to be full siblings.

Computing LOD scores. To compute parameter-based 
LOD scores for linkage between a hypothesized disease 
locus and a given DNA variant, one needs to specify 
Mendelian model parameters such as allele frequen-
cies and penetrances. Some handy rules are as fol-
lows. For example, consider a recessive trait so that the 
(homozygous) susceptibility genotype has frequency p2, 
where p is the disease allele frequency under Hardy–
Weinberg equilibrium. Trait population frequency (K) 
is then predicted to be K = gp2 + f(1 − p2), where g and 
f are the respective penetrances for genetic cases and 
phenocopies. Fixing, for example, f = 0.01 and g = 0.90, 
allows the disease allele frequency to be determined as 
p = √[(K − f)/(g − f)]. In large families, penetrances may 
be estimated by maximum likelihood in suitable com-
puter programs, but this is rarely done. Rather, one may 
determine the fraction of obligate disease-gene carri-
ers who are unaffected, which should be approximately 
equal to 1 − g. For age-dependent penetrance, it is gener-
ally sufficient to find two time points, a1 and a2, where a1 
is the youngest age at which anyone has been diagnosed 
with the disease and a2 is the oldest age at which the 
disease has manifested. Then, in a coordinate system 
with age as the x axis and penetrance as the y axis, the 
age-of-onset curve is approximated by a straight line 
rising from a penetrance of 0 at a1 to the maximum  
penetrance at a2 (REF. 7).

Heterogeneity. Two types of heterogeneity may be dis-
tinguished: locus heterogeneity and allelic heterogeneity. 
Allelic heterogeneity refers to different alleles at the same 
locus (gene) conferring disease risk on different families 
or individuals, whereas in locus heterogeneity, different 
genes, possibly on different chromosomes, are disease 
causing. In linkage analysis, in contrast to association 
analysis performed with SNP marker loci, allelic hetero-
geneity does not generally represent a problem because 
linkage refers to a relationship between loci, not alleles. 
With WGS data, variants at different sites in the same 
gene may lead to disease; when such rare variants are 
being analysed using rare-variant association methods, 
allelic heterogeneity does not present a problem because 
rare variants within a gene region are analysed in aggre-
gate. When allelic heterogeneity is present within a 
causal gene and individual variants are analysed, there 
can be a great loss of power because different pedigrees 
will not be informative for the same variant for pedi-
grees in which disease aetiology is due to the same gene 
but not the same variant; therefore, when LOD scores 
are summed across pedigrees, most pedigrees will not be 
informative and the power to detect linkage will be low. 
However, this problem can be avoided by using the CHP 
method described above, which analyses rare variants 
within a gene region in aggregate.

When analysing SNP marker loci, locus hetero-
geneity generally leads to a mixture of families that 
do and do not exhibit linkage to a given variant. Thus,  
in addition to estimating the recombination fraction θ in 
families with linkage, at the same time one also estimates 
the proportion (α) of linked families. The likelihood is 
maximized over α and θ, and the resulting LOD scores 
are known as heterogeneity LOD scores (HLODs)88. 
When analysing rare variants, locus heterogeneity does 
not usually have a great impact because families that  
are not linked to the causal gene generally do not have an 
informative variant within the causal gene region; there-
fore, instead of producing negative LOD scores, they are 
uninformative for linkage.

Conclusion
Linkage analysis is again emerging as an extremely 
useful method in genomic analysis, particularly for the 
identification of rare variants associated with a com-
plex trait with high penetrance. Linkage analysis has 
many advantages over filtering approaches in terms of 
limiting the number of genes that have to be analysed; 

Table 1 (cont.) | Computer implementations

Software Description and purpose URL Refs

TLINKAGE • Elston–Stewart algorithm
• Can handle large pedigrees
• Performs parametric two-locus linkage analysis

http://www.jurgott.org/linkage/
tlinkage.htm

63

Variant 
Association 
Tools (VAT)

• Pipeline for quality control and analysis of WGS and genotype data
• Can be used to generate linkage files for VCF files and to estimate IBD sharing 

between a pair of individuals

http://varianttools.sourceforge.net/
VAT

50

VCFtools Program to manipulate VCF files http://vcftools.sourceforge.net/ 49

IBD, identity-by-descent; MCMC, Markov-chain Monte Carlo; SNP, single-nucleotide polymorphism; VCF, Variant Cell Format; WGS, whole-genome sequencing.

R E V I E W S

282 | MAY 2015 | VOLUME 16  www.nature.com/reviews/genetics

© 2015 Macmillan Publishers Limited. All rights reserved

https://faculty.washington.edu/wijsman/progdists/gigi/software/GIGI-Check/GIGI-Check.html
http://www.jurgott.org/linkage/tlinkage.htm
http://www.jurgott.org/linkage/tlinkage.htm
http://www.jurgott.org/linkage/tlinkage.htm
http://varianttools.sourceforge.net/VAT
http://varianttools.sourceforge.net/VAT
http://varianttools.sourceforge.net/VAT
http://varianttools.sourceforge.net/VAT
http://varianttools.sourceforge.net/VAT
http://vcftools.sourceforge.net/
http://vcftools.sourceforge.net/


1. McClellan, J. & King, M. C. Genetic heterogeneity in 
human disease. Cell 141, 210–217 (2010).

2. Lander, E. S. & Schork, N. J. Genetic dissection of 
complex traits. Science 265, 2037–2048 (1994).

3. Pulst, S. M. Genetic linkage analysis. Arch. Neurol. 56, 
667–672 (1999).

4. Altshuler, D., Daly, M. J. & Lander, E. S. Genetic 
mapping in human disease. Science 322, 881–888 
(2008).

5. Bailey-Wilson, J. E. & Wilson, A. F. Linkage analysis in 
the next-generation sequencing era. Hum. Hered. 72, 
228–236 (2011).

6. Terwilliger, J. D. & Ott, J. Handbook of Human Genetic 
Linkage (Johns Hopkins Univ. Press, 1994).

7. Ott, J. Analysis of Human Genetic Linkage (Johns 
Hopkins Univ. Press, 1999).

8. Lange, K. Mathematical and Statistical Methods for 
Genetic Analysis (Springer, 2002).

9. Mendel, G. J. Versuche über Pflanzen-Hybriden. Verh. 
Naturforsch. Ver. Brünn 4, 3–47 (in German) (1866).

10. Santos-Cortez, R. L. et al. Mutations in KARS, 
encoding lysyl-tRNA synthetase, cause autosomal-
recessive nonsyndromic hearing impairment DFNB89. 
Am. J. Hum. Genet. 93, 132–140 (2013).

11. Goldschmidt, R. Gen und Ausseneigenschaft 
(Untersuchungen an Drosophila) I. Z. Indukt Abstamm 
Vererbungsl 69, 38–69 (in German) (1935).

12. Goldschmidt, R. B. Phenocopies. Sci. Am. 181, 46–49 
(1949).

13. Laird, N. M. & Lange, C. Family-based designs in the 
age of large-scale gene-association studies. Nature 
Rev. Genet. 7, 385–394 (2006).

14. Laird, N. M. & Lange, C. Family-based methods for 
linkage and association analysis. Adv. Genet. 60, 
219–252 (2008).

15. Ott, J., Kamatani, Y. & Lathrop, M. Family-based 
designs for genome-wide association studies. Nature 
Rev. Genet. 12, 465–474 (2011).

16. Weiss, K. M. & Clark, A. G. Linkage disequilibrium and 
the mapping of complex human traits. Trends Genet. 
18, 19–24 (2002).

17. Ott, J. & Wang, J. Multiple phenotypes in genome-
wide genetic mapping studies. Protein Cell 2,  
519–522 (2011).

18. Sasieni, P. D. From genotypes to genes: doubling the 
sample size. Biometrics 53, 1253–1261 (1997).
A clear description of how population substructure 
leads to deviation from Hardy–Weinberg 
equilibrium and, consequently, to false-positive 
evidence of allelic association.

19. Falk, C. T. & Rubinstein, P. Haplotype relative risks: an 
easy reliable way to construct a proper control sample 
for risk calculations. Ann. Hum. Genet. 51, 227–233 
(1987).

20. Terwilliger, J. D. & Ott, J. A haplotype-based 
‘haplotype relative risk’ approach to detecting allelic 
associations. Hum. Hered. 42, 337–346 (1992).

21. Ott, J. Statistical properties of the haplotype relative 
risk. Genet. Epidemiol. 6, 127–130 (1989).

22. Spielman, R. S., McGinnis, R. E. & Ewens, W. J. 
Transmission test for linkage disequilibrium: the insulin 
gene region and insulin-dependent diabetes mellitus 
(IDDM). Am. J. Hum. Genet. 52, 506–516 (1993).
The derivation of the highly successful TDT as a 
test for linkage and association.

23. He, Z. et al. Rare-variant extensions of the transmission 
disequilibrium test: application to autism exome 
sequence data. Am. J. Hum. Genet. 94, 33–46 (2014).

24. De, G., Yip, W. K., Ionita-Laza, I. & Laird, N. Rare 
variant analysis for family-based design. PLoS ONE 8, 
e48495 (2013).

25. Li, B. & Leal, S. M. Methods for detecting associations 
with rare variants for common diseases: application to 
analysis of sequence data. Am. J. Hum. Genet. 83, 
311–321 (2008).
The first derivation of collapsing methods for rare 
variants, leading to what is now known as burden 
tests.

26. Lee, S., Abecasis, G. R., Boehnke, M. & Lin, X.  
Rare-variant association analysis: study designs  
and statistical tests. Am. J. Hum. Genet. 95, 5–23 
(2014).

27. MacArthur, D. G. et al. Guidelines for investigating 
causality of sequence variants in human disease. 
Nature 508, 469–476 (2014).

28. Haldane, J. B. S. & Crew, F. A. E. Change of linkage in 
poultry with age. Nature 115, 641 (1925).

29. Renwick, J. H. & Schulze, J. Male and female 
recombination fractions for the nail-patella:ABO 
linkage in man. Ann. Hum. Genet. 28, 37992 
(1965).

30. Elston, R. C., Lange, E. & Namboodiri, K. K.  
Age trends in human chiasma frequencies  
and recombination fractions. II. Method for analyzing 
recombination fractions and applications to the 
ABO:nail-patella linkage. Am. J. Hum. Genet. 28, 
69–76 (1976).

31. Tanzi, R. E. et al. A genetic linkage map of human 
chromosome 21: analysis of recombination as a 
function of sex and age. Am. J. Hum. Genet. 50,  
551–558 (1992).

32. Shi, Q. et al. Absence of age effect on meiotic 
recombination between human X and Y chromosomes. 
Am. J. Hum. Genet. 71, 254–261 (2002).

33. Kostic, V. S. et al. Intrafamilial phenotypic and genetic 
heterogeneity of dystonia. J. Neurol. Sci. 250, 92–96 
(2006).

34. Gusella, J. F. et al. A polymorphic DNA marker 
genetically linked to Huntington’s disease. Nature 
306, 234–238 (1983).

35. Lee, J. M. et al. CAG repeat expansion in Huntington 
disease determines age at onset in a fully dominant 
fashion. Neurology 78, 690–695 (2012).

36. Ott, J. & Falk, C. T. Epistatic association and  
linkage analysis in human families. Hum. Genet. 62, 
296–300 (1982).

37. Ott, J. in Genetic Approaches to Mental Disorders 
(eds Gershon, E. S. & Cloninger, C. R.) 63–75 
(American Psychiatric Press, 1994).

38. Renwick, J. H. & Schulze, J. A computer program for 
the processing of linkage data from large pedigrees. 
Excerpta Med. Int. Congr Ser. 32, E145 (1961).

39. Elston, R. C. & Stewart, J. A general model for the 
genetic analysis of pedigree data. Hum. Hered. 21, 
523–542 (1971).
A recursive method of likelihood calculation in  
large pedigrees, now known as the Elston–Stewart 
algorithm. It formed the basis for modern linkage 
analysis.

40. Elston, R. C., George, V. T. & Severtson, F.  
The Elston–Stewart algorithm for continuous 
genotypes and environmental factors. Hum. Hered. 
42, 16–27 (1992).

41. Ott, J. Estimation of the recombination fraction in 
human pedigrees: efficient computation of the 
likelihood for human linkage studies. Am. J. Hum. 
Genet. 26, 588–597 (1974).
The first generally available linkage program for 
large pedigrees, LIPED.

42. Cheung, C. Y., Marchani Blue, E. & Wijsman, E. M.  
A statistical framework to guide sequencing choices  
in pedigrees. Am. J. Hum. Genet. 94, 257–267 
(2014).

43. Lander, E. S. & Green, P. Construction of multilocus 
genetic linkage maps in humans. Proc. Natl Acad. Sci. 
USA 84, 2363–2367 (1987).

44. Lathrop, G. M., Lalouel, J. M., Julier, C. & Ott, J. 
Strategies for multilocus linkage analysis in humans. 
Proc. Natl Acad. Sci. USA 81, 3443–3446 (1984).

45. Cottingham, R. W. Jr., Idury, R. M. & Schaffer, A. A. 
Faster sequential genetic linkage computations.  
Am. J. Hum. Genet. 53, 252–263 (1993).

46. Kruglyak, L., Daly, M. J., Reeve-Daly, M. P. & 
Lander, E. S. Parametric and nonparametric linkage 
analysis: a unified multipoint approach. Am. J. Hum. 
Genet. 58, 1347–1363 (1996).

47. Abecasis, G. R., Cherny, S. S., Cookson, W. O. & 
Cardon, L. R. MERLIN — rapid analysis of dense 
genetic maps using sparse gene flow trees. Nature 
Genet. 30, 97–101 (2002).

48. Purcell, S. et al. PLINK: a tool set for whole-genome 
association and population-based linkage analyses. 
Am. J. Hum. Genet. 81, 559–575 (2007).

49. Danecek, P. et al. The variant call format and 
VCFtools. Bioinformatics 27, 2156–2158 (2011).

50. Wang, G. T., Peng, B. & Leal, S. M. Variant association 
tools for quality control and analysis of large-scale 
sequence and genotyping array data. Am. J. Hum. 
Genet. 94, 770–783 (2014).

51. Wang, G. T., Zhang, D., Li, B., Dai, H. & Leal, S. M. 
Collapsed haplotype pattern method for linkage 
analysis of next generation sequence data. Eur. J. 
Hum. Genet. (in the press). 

52. Thomas, D. C. & Cortessis, V. A. Gibbs sampling 
approach to linkage analysis. Hum. Hered. 42, 63–76 
(1992).

53. Heath, S. C. Markov chain Monte Carlo segregation 
and linkage analysis for oligogenic models.  
Am. J. Hum. Genet. 61, 748–760 (1997).

54. Sobel, E., Sengul, H. & Weeks, D. E. Multipoint 
estimation of identity-by-descent probabilities at 
arbitrary positions among marker loci on general 
pedigrees. Hum. Hered. 52, 121–131 (2001).

55. Penrose, L. S. The detection of autosomal linkage in 
data which consist of pairs of brothers and sisters of 
unspecified parentage. Ann. Eugen. 6, 133–138 (1935).

56. Knapp, M., Seuchter, S. A. & Baur, M. P. Two-locus 
disease models with two marker loci: the power  
of affected-sib-pair tests. Am. J. Hum. Genet. 55, 
1030–1041 (1994).

57. Whittemore, A. S. & Halpern, J. A class of tests for 
linkage using affected pedigree members. Biometrics 
50, 118–127 (1994).

58. Basu, S., Stephens, M., Pankow, J. S. & 
Thompson, E. A. A likelihood-based trait-model-free 
approach for linkage detection of binary trait. 
Biometrics 66, 205–213 (2010).

59. Knapp, M., Seuchter, S. A. & Baur, M. P. Linkage 
analysis in nuclear families. 2: relationship between 
affected sib-pair tests and lod score analysis. Hum. 
Hered. 44, 44–51 (1994).

60. Su, M. & Thompson, E. A. Computationally efficient 
multipoint linkage analysis on extended pedigrees for 
trait models with two contributing major loci. Genet. 
Epidemiol. 36, 602–611 (2012).

61. Dietter, J. et al. Efficient two-trait-locus linkage 
analysis through program optimization and 
parallelization: application to hypercholesterolemia. 
Eur. J. Hum. Genet. 12, 542–550 (2004).

62. Schaffer, A. A. Digenic inheritance in medical genetics. 
J. Med. Genet. 50, 641–652 (2013).

63. Schork, N. J., Boehnke, M., Terwilliger, J. D. & Ott, J. 
Two-trait-locus linkage analysis: a powerful strategy for 
mapping complex genetic traits. Am. J. Hum. Genet. 
53, 1127–1136 (1993).

64. Sham, P. C., MacLean, C. J. & Kendler, K. S. Two-locus 
versus one-locus LODs for complex traits. Am. J. Hum. 
Genet. 55, 855–858 (1994).

65. Smith, C. A. B. The detection of linkage in human 
genetics. J. R. Statist. Soc. Series B (Methodol.) 15, 
153–192 (1953).

66. Powell, J. E., Visscher, P. M. & Goddard, M. E. 
Reconciling the analysis of IBD and IBS in complex 
trait studies. Nature Rev. Genet. 11, 800–805 (2010).

67. Kamphans, T. et al. Filtering for compound 
heterozygous sequence variants in non-consanguineous 
pedigrees. PLoS ONE 8, e70151 (2013).

68. Dubay, C. et al. Genetic determinants of diastolic and 
pulse pressure map to different loci in Lyon 
hypertensive rats. Nature Genet. 3, 354–357 (1993).

69. Hasstedt, S. J., Hanis, C. L. & Elbein, S. C.  
Univariate and bivariate linkage analysis identifies 
pleiotropic loci underlying lipid levels and type 2 
diabetes risk. Ann. Hum. Genet. 74, 308–315 (2010).

namely, it takes account of phenocopies and reduced 
penetrance, which are often features of Mendelian traits, 
and in addition it provides statistical evidence of the 
involvement of a variant in disease aetiology. Many 
new disease susceptibility genes have been successfully 
identified using linkage analysis coupled with WGS, 

and this strategy has been successfully used to iden-
tify the association of rare variants to phenotypic traits 
such as hearing impairment10,89, familial goitres90 and 
familial hypertension91. In the future, with the reduc-
tion in cost of WGS, linkage analysis of WGS data will 
be widely used.

R E V I E W S

NATURE REVIEWS | GENETICS  VOLUME 16 | MAY 2015 | 283

© 2015 Macmillan Publishers Limited. All rights reserved



DATABASES
1000 Genomes: http://www.1000genomes.org/
dbSNP: http://www.ncbi.nlm.nih.gov/projects/SNP
ExAC: http://exac.broadinstitute.org/
Exome Variant Server: http://evs.gs.washington.edu/EVS/ 
Online Mendelian Inheritance in Man: http://omim.org/

FURTHER INFORMATION
easyLINKAGE: http://sourceforge.net/projects/easylinkage/
Family-Based Association Test Toolkit: http://www.hsph.
harvard.edu/fbat/default.html
Genome Analysis Toolkit: https://www.broadinstitute.org/gatk/
GeneHunter: http://www.broadinstitute.org/ftp/distribution/
software/genehunter/
GIGI-Check: https://faculty.washington.edu/wijsman/
progdists/gigi/software/GIGI-Check/GIGI-Check.html
GIGI-Pick: https://faculty.washington.edu/wijsman/progdists/
gigi/software/GIGI-Pick/GIGI-Pick.html
Handbook of Human Genetic Linkage: http://www.jurgott.
org/linkage/LinkageHandbook.pdf
Homozygosity Mapper: http://www.homozygositymapper.org/
LINKAGE: http://www.jurgott.org/linkage/LinkagePC.html
FASTLINK: http://www.ncbi.nlm.nih.gov/CBBresearch/
Schaffer/fastlink.html
Loki: http://www.stat.washington.edu/thompson/Genepi/
Loki.shtml
Mendel: http://www.genetics.ucla.edu/software/mendel
MERLIN: http://www.sph.umich.edu/csg/abecasis/Merlin/
MSIM: http://watson.hgen.pitt.edu/docs/SLink.html
PedCheck: http://watson.hgen.pitt.edu/register/docs/
pedcheck.html
PLINK: http://pngu.mgh.harvard.edu/~purcell/plink/
PolyPhen-2: http://genetics.bwh.harvard.edu/pph2/
PhyloP: http://ccg.vital-it.ch/mga/hg19/phylop/phylop.html
Pseudomarker: http://www.helsinki.fi/~tsjuntun/
pseudomarker/
RV-TDT: http://bioinformatics.org/rv-tdt/ 
SEQLinkage: http://bioinformatics.org/seqlink
SimWalk2: http://www.genetics.ucla.edu/software/
SLINK: http://watson.hgen.pitt.edu/docs/SLink.html
Superlink: http://bioinfo.cs.technion.ac.il/superlink/
TLINKAGE: http://www.jurgott.org/linkage/tlinkage.htm
Variant Association Tools: http://varianttools.sourceforge.
net/VAT
VCFtools: http://vcftools.sourceforge.net/

ALL LINKS ARE ACTIVE IN THE ONLINE PDF

70. Amos, C. I. et al. An approach to the multivariate 
analysis of high-density-lipoprotein cholesterol in a 
large kindred: the Bogalusa Heart Study. Genet. 
Epidemiol. 3, 255–267 (1986).

71. Allison, D. B. et al. Multiple phenotype modeling in 
gene-mapping studies of quantitative traits: power 
advantages. Am. J. Hum. Genet. 63, 1190–1201 
(1998).

72. Ott, J. & Rabinowitz, D. A principal-components 
approach based on heritability for combining 
phenotype information. Hum. Hered. 49, 106–111 
(1999).

73. Suo, C. et al. Analysis of multiple phenotypes in 
genome-wide genetic mapping studies. BMC 
Bioinformatics 14, 151 (2013).

74. Doyle, A. E. et al. Multivariate genomewide linkage 
scan of neurocognitive traits and ADHD symptoms: 
suggestive linkage to 3q13. Am. J. Med. Genet. 
B. Neuropsychiatr. Genet. 147B, 1399–1411 
(2008).

75. Houwen, R. H. et al. Genome screening by searching 
for shared segments: mapping a gene for benign 
recurrent intrahepatic cholestasis. Nature Genet. 8, 
380–386 (1994).

76. Smigielski, E. M., Sirotkin, K., Ward, M. & Sherry, S. T. 
dbSNP: a database of single nucleotide polymorphisms. 
Nucleic Acids Res. 28, 352–355 (2000).

77. Tennessen, J. A. et al. Evolution and functional impact 
of rare coding variation from deep sequencing of 
human exomes. Science 337, 64–69 (2012).

78. Genomes Project, C. et al. A map of human genome 
variation from population-scale sequencing. Nature 
467, 1061–1073 (2010).

79. Smith, K. R. et al. Reducing the exome search space 
for Mendelian diseases using genetic linkage analysis 
of exome genotypes. Genome Biol. 12, R85 (2011).

80. Li, B. et al. A likelihood-based framework for variant 
calling and de novo mutation detection in families. 
PLoS Genet. 8, e1002944 (2012).

81. McKenna, A. et al. The Genome Analysis Toolkit: a 
MapReduce framework for analyzing next-generation 
DNA sequencing data. Genome Res. 20, 1297–1303 
(2010).
A description of the widely used GATK tool for 
analysis of WGS data.

82. Bentley, D. et al. Genome-wide association study of 
14,000 cases of seven common diseases and 3,000 
shared controls. Nature 447, 661–678 (2007).

83. Brzustowicz, L. M. et al. Molecular and statistical 
approaches to the detection and correction of errors  
in genotype databases. Am. J. Hum. Genet. 53, 
1137–1145 (1993).

84. Ott, J. Detecting marker inconsistencies in human 
gene mapping. Hum. Hered. 43, 25–30 (1993).

85. Gordon, D., Leal, S. M., Heath, S. C. & Ott, J.  
An analytic solution to single nucleotide polymorphism 
error-detection rates in nuclear families: implications 
for study design. Pac. Symp. Biocomput. 2, 663–674 
(2000).

86. Cheung, C. Y., Thompson, E. A. & Wijsman, E. M. 
Detection of Mendelian consistent genotyping errors 
in pedigrees. Genet. Epidemiol. 38, 291–299 (2014).

87. Neale, M. C., Neale, B. M. & Sullivan, P. F. 
Nonpaternity in linkage studies of extremely 
discordant sib pairs. Am. J. Hum. Genet. 70,  
526–529 (2002).

88. Hodge, S. E., Vieland, V. J. & Greenberg, D. A.  
HLODs remain powerful tools for detection of linkage 
in the presence of genetic heterogeneity. Am. J. Hum. 
Genet. 70, 556–559 (2002).

89. Santos-Cortez, R. L. et al. Adenylate cyclase 1 
(ADCY1) mutations cause recessive hearing 
impairment in humans and defects in hair cell 
function and hearing in zebrafish. Hum. Mol. Genet. 
23, 3289–3298 (2014).

90. Yan, J. et al. Combined linkage analysis and exome 
sequencing identifies novel genes for familial goiter. 
J. Hum. Genet. 58, 366–377 (2013).

91. Louis-Dit-Picard, H. et al. KLHL3 mutations cause 
familial hyperkalemic hypertension by impairing ion 
transport in the distal nephron. Nature Genet. 44, 
456–460 (2012).

92. Hoffmann, K. & Lindner, T. H. easyLINKAGE-Plus — 
automated linkage analyses using large-scale SNP 
data. Bioinformatics 21, 3565–3567 (2005).

93. Lathrop, G. M., Lalouel, J. M., Julier, C. & Ott, J. 
Multilocus linkage analysis in humans: detection of 
linkage and estimation of recombination. Am. J. Hum. 
Genet. 37, 482–498 (1985).

94. Heath, S. C., Snow, G. L., Thompson, E. A.,  
Tseng, C. & Wijsman, E. M. MCMC segregation  
and linkage analysis. Genet. Epidemiol. 14,  
1011–1016 (1997).

95. Lange, K. et al. Mendel: the Swiss army knife of 
genetic analysis programs. Bioinformatics 29,  
1568–1570 (2013).

96. Lange, K., Weeks, D. & Boehnke, M. Programs for 
pedigree analysis: MENDEL, FISHER, and dGENE. 
Genet. Epidemiol. 5, 471–472 (1988).

97. Schaffer, A. A., Lemire, M., Ott, J., Lathrop, G. M. & 
Weeks, D. E. Coordinated conditional simulation  
with SLINK and SUP of many markers linked or 
associated to a trait in large pedigrees. Hum. Hered. 
71, 126–134 (2011).

98. O’Connell, J. R. & Weeks, D. E. PedCheck: a program 
for identification of genotype incompatibilities in 
linkage analysis. Am. J. Hum. Genet. 63, 259–266 
(1998).

99. Gertz, E. M. et al. PSEUDOMARKER 2.0: efficient 
computation of likelihoods using NOMAD. BMC 
Bioinformatics 15, 47 (2014).

100. Fishelson, M. & Geiger, D. Exact genetic linkage 
computations for general pedigrees. Bioinformatics 
18, S189–S198 (2002).

101. Lander, E. & Kruglyak, L. Genetic dissection  
of complex traits: guidelines for interpreting  
and reporting linkage results. Nature Genet. 11, 
241–247 (1995).
The derivation of the critical LOD score of 3.3 for a 
significance level of 0.05 in genome-scan linkage 
analysis.

102. Adzhubei, I., Jordan, D. M. & Sunyaev, S. R. in Current 
Protocols in Human Genetics (eds Haines, J. L. et al.) 
Ch. 7.20 (Wiley, 2013).

103. Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R. & 
Siepel, A. Detection of nonneutral substitution  
rates on mammalian phylogenies. Genome Res. 20, 
110–121 (2010).

Acknowledgements
This work was supported by the Natural Science Foundation 
of China grant 31470070 (to J.O.) and the US National 
Institutes of Health grants R01 DC003594, R01 DC011651 
and U54 HG006493 (to S.M.L.).

Competing interests statement
The authors declare no competing interests.

R E V I E W S

284 | MAY 2015 | VOLUME 16  www.nature.com/reviews/genetics

© 2015 Macmillan Publishers Limited. All rights reserved

http://www.1000genomes.org/
http://www.ncbi.nlm.nih.gov/projects/SNP
http://exac.broadinstitute.org/
http://evs.gs.washington.edu/EVS/
http://omim.org/
http://sourceforge.net/projects/easylinkage/
http://www.hsph.harvard.edu/fbat/default.html
http://www.hsph.harvard.edu/fbat/default.html
https://www.broadinstitute.org/gatk/
http://www.broadinstitute.org/ftp/distribution/software/genehunter/
http://www.broadinstitute.org/ftp/distribution/software/genehunter/
https://faculty.washington.edu/wijsman/progdists/gigi/software/GIGI-Check/GIGI-Check.html
https://faculty.washington.edu/wijsman/progdists/gigi/software/GIGI-Check/GIGI-Check.html
https://faculty.washington.edu/wijsman/progdists/gigi/software/GIGI-Pick/GIGI-Pick.html
https://faculty.washington.edu/wijsman/progdists/gigi/software/GIGI-Pick/GIGI-Pick.html
http://www.jurgott.org/linkage/LinkageHandbook.pdf
http://www.jurgott.org/linkage/LinkageHandbook.pdf
http://www.homozygositymapper.org/
http://www.jurgott.org/linkage/LinkagePC.html
http://www.ncbi.nlm.nih.gov/CBBresearch/Schaffer/fastlink.html
http://www.ncbi.nlm.nih.gov/CBBresearch/Schaffer/fastlink.html
http://www.stat.washington.edu/thompson/Genepi/Loki.shtml
http://www.stat.washington.edu/thompson/Genepi/Loki.shtml
http://www.genetics.ucla.edu/software/mendel
http://www.sph.umich.edu/csg/abecasis/Merlin/
http://watson.hgen.pitt.edu/docs/SLink.html
http://watson.hgen.pitt.edu/register/docs/pedcheck.html
http://watson.hgen.pitt.edu/register/docs/pedcheck.html
http://pngu.mgh.harvard.edu/~purcell/plink/
http://genetics.bwh.harvard.edu/pph2/
http://ccg.vital-it.ch/mga/hg19/phylop/phylop.html
http://www.helsinki.fi/~tsjuntun/pseudomarker/
http://www.helsinki.fi/~tsjuntun/pseudomarker/
http://bioinformatics.org/rv-tdt/
http://bioinformatics.org/seqlink
http://www.genetics.ucla.edu/software/
http://watson.hgen.pitt.edu/docs/SLink.html
http://bioinfo.cs.technion.ac.il/superlink/
http://www.jurgott.org/linkage/tlinkage.htm
http://varianttools.sourceforge.net/VAT
http://varianttools.sourceforge.net/VAT
http://vcftools.sourceforge.net/

	Abstract | For many years, linkage analysis was the primary tool used for the genetic mapping of Mendelian and complex traits with familial aggregation. Linkage analysis was largely supplanted by the wide adoption of genome-wide association studies (GWASs
	Genome-wide linkage analysis
	Figure 1 | Workflow for the whole-genome sequencing filtering approach in human family data. Usually, one, two or more affected individuals, or affected and unaffected individuals, in a family have their genomes or exomes sequenced. Variants that are not 
	Association analysis versus linkage analysis
	Approaches for linkage analysis
	Figure 2 | Linkage information for a first-cousin mating for an autosomal recessive trait and a phase-known autosomal dominant trait. The disease is fully penetrant without phenocopies and has a minor allele frequency of 0.0001. Circles represent females 
	Figure 3 | LOD score curves for a phase-known autosomal dominant pedigree with ten children in the third generation. The LOD score curve is displayed for k recombination events (k = 0, 1 and 6) out of 10 meioses. The disease phenotype segregating in this 
	Steps for a successful linkage study
	Table 1 | Computer implementations
	Table 1 (cont.) | Computer implementations
	Conclusion



