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Summary

1. Efforts to understand the links between evolutionary and ecological dynamics hinge on our

ability to measure and understand how genes influence phenotypes, fitness and population dynam-

ics. Quantitative genetics provides a range of theoretical and empirical tools with which to achieve

this when the relatedness between individuals within a population is known.

2. A number of recent studies have used a type of mixed-effects model, known as the animal

model, to estimate the genetic component of phenotypic variation using data collected in the field.

Here, we provide a practical guide for ecologists interested in exploring the potential to apply this

quantitative genetic method in their research.

3. We begin by outlining, in simple terms, key concepts in quantitative genetics and how an animal

model estimates relevant quantitative genetic parameters, such as heritabilities or genetic correla-

tions.

4. We then provide three detailed example tutorials, for implementation in a variety of software

packages, for some basic applications of the animal model. We discuss several important statistical

issues relating to best practice when fitting different kinds of mixedmodels.

5. We conclude by briefly summarizing more complex applications of the animal model, and by

highlighting key pitfalls and dangers for the researcher wanting to begin using quantitative genetic

tools to address ecological and evolutionary questions.

Key-words: animal model, genetic correlation, heritability, mixed-effect model, natural selec-

tion, pedigree, quantitative genetics

Introduction

The role of natural selection and micro-evolution in the eco-

logical dynamics of naturally occurring populations has

become the focus of an increasing number of studies (Hair-

ston et al. 2005; Saccheri & Hanski 2006; Carroll et al. 2007;

Pelletier et al. 2007). However, we can say nothing about

evolutionary processes without a means of measuring and

understanding the way that genetics underpins variation in

demographic rates and fitness (Ellegren & Sheldon 2008;

Kruuk, Slate & Wilson 2008). Quantitative genetics, a disci-

pline with a long and distinguished history within evolution-

ary biology and animal breeding, provides a potentially

powerful means for estimating the genetic architecture and

predicting the evolutionary potential of phenotypic traits

(Falconer &Mackay 1996; Lynch &Walsh 1998). The recent

application of quantitative genetic methodology to long-term

field studies of vertebrate populations has yielded new insight

into the complexities of and constraints on evolutionary

dynamics under realistic ecological conditions (Kruuk 2004;

Ellegren & Sheldon 2008; Kruuk et al. 2008). These studies

have typically used a form of mixed-effects models known as

the ‘animal model’ to decompose phenotypic variance into

different genetic and environmental sources and to estimate

key parameters such as the heritability of a trait or the genetic

correlations between traits (e.g. Réale, Festa-Bianchet & Jor-

genson 1999; Kruuk et al. 2000; Milner et al. 2000; Kruuk,

Merila & Sheldon 2001; Garant et al. 2004; Wilson et al.

2005; Gienapp, Postma & Visser 2006). This approach, as

with any in the field of quantitative genetics, requires knowl-

edge of the relatedness of individuals in a population. Such

information, although challenging to come by in field popu-

lations, is increasingly available for studies of a range of taxa

(Pemberton 2008), fuelling a growing interest in the applica-

tion of quantitative genetics to studies of natural, rather than

laboratory or domestic, populations. Animal models are not*Correspondence author. E-mail: alastair.wilson@ed.ac.uk
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difficult to implement, given appropriate data, but correctly

specifying and interpreting them is a potentially fraught busi-

ness.

In this paper, we present a practical guide aimed at the

ecologist wishing to use the animal model for the first time.

Our aim is neither to provide a comprehensive treatment of

the theoretical and statistical models used in quantitative

genetics, nor to review the empirical results of their applica-

tion to ecological data sets. Rather our goal is to provide a

practical guide for ecologists interested in exploring the

potential to apply quantitative genetic methods to their

research. In what follows we briefly lay out some of the key

concepts involved.We describe the parameters that quantita-

tive genetic methods attempt to estimate, why these parame-

ters are of interest to ecologists, and how we can use

statistical models – particularly the animal model – to esti-

mate them. We also provide code (and example data sets) to

run models with several common software applications.

Whilst we have consequently tried to avoid technical termi-

nology and issues as far as possible, in a mathematical and

statistical subject like quantitative genetics technical details

do assume vital importance. We have therefore tried to high-

light some of the most likely pitfalls to be wary of, whilst

referring the reader to the original literature and, where

appropriate, more detailed reviews on specific topics. Thus

this paper is intended to serve as a useful starting point and a

way into the literature for the uninitiated. We do not wish

this paper to be treated as a replacement for or an excuse to

skip over the original quantitative genetics literature and we

would always advise against a ‘black box’ approach when

using complex statistical models to analyse data. However,

we recognize that for many empiricists, ourselves included,

grappling with the theory and mathematics underlying a

technique is much more rewarding given a clear sense of the

end goal. We very much hope this paper will provide a useful

clarification of both the ultimate goals and the key consider-

ations and pitfalls for any field ecologist interested in apply-

ing quantitative genetic analyses to their data.

The basics

The premise of classical quantitative genetics is that, given

knowledge about the relationships among individuals in a

population and data on phenotypic traits, we can make use-

ful inferences about the inheritance and evolutionary poten-

tial of those traits without explicit knowledge of the genetic

loci involved. If individuals that are closely related (and

therefore share lots of genes) are phenotypically more similar

to one another than individuals that are unrelated (and there-

fore share fewer genes), we can infer that genes make an

important contribution to phenotypic variance. For most

ecologically relevant traits with continuous or discrete distri-

bution quantitative geneticists assume that phenotypic differ-

ences observed among individuals are related to differences

in a large number of genes, each of them having a minor

effect (the so called infinitesimal model; Falconer & Mackay

1996; Lynch&Walsh 1998).

For a single trait, we can estimate the amount of pheno-

typic variance (VP) that is due to genetic differences among

individuals (VG) (Falconer & Mackay 1996). Genotypic dif-

ferences among individuals are composed of additive (VA),

dominance (VD) and interaction or epistatic (VI) genetic

sources of variance. However, VD and VI are extremely diffi-

cult to estimate in non-experimental settings and both animal

breeders and field ecologists have tended to focus on measur-

ing additive genetic variance by estimating the phenotypic

similarity of relatives (Falconer & Mackay 1996; Kruuk

2004). In the simplest case, this involves statistically parti-

tioning the phenotypic variance into two parts such that

VP = VA + VRwhereVR is the residual variance.VR is nor-

mally interpreted as arising from environmental effects which

entails the assumption that dominance and epistasis make

negligible contributions toVP.

The narrow-sense heritability of a trait (h2) is then defined

as the proportion of phenotypic variance explained by addi-

tive genetic variance (i.e. VA ⁄VP) and describes the degree of

resemblance between relatives. This idea of partitioning vari-

ance extends to multiple traits. Thus, for a pair of covarying

traits, we can ask how much of the phenotypic covariance

(COVP) is due to additive genetic effects (COVA). Genetic

covariance between traits is expected to arise through linkage

or pleiotropy (a single locus influencing multiple traits) and is

often expressed as a genetic correlation (rG).

The goal of any empirical study will be to estimate these

parameters to answer biological questions, and this can be

done using various statistical methods. Different approaches

differ with respect to their implicit assumptions and the type

of data required, but the common principle underlying all

methods is that of comparing phenotypic similarity among

individuals of known relationship to one another to quantify

the (additive) genetic basis of trait (co)variance. Probably the

most familiar technique is parent–offspring regression in

which, for example, a trait’s heritability can be estimated as

the slope of the regression of offspring phenotype on mid-

parent phenotype (Falconer & Mackay 1996). This method

has often been used in wild systems, particularly in studies of

passerine birds (e.g. Perrins & Jones 1974; Van Noordwijk,

van Balen & Scharloo 1981; Flux & Flux 1982; Gustafsson

1986). The application of anova-based analyses of full-sib

and half-sib families to field data has been relatively limited

(compared to experimental studies), due to a general require-

ment for controlled and balanced breeding designs (Falconer

&Mackay 1996; Lynch &Walsh 1998); its most frequent use

has been in analyses of juvenile traits in avian studies, some-

times combined with cross-fostering (e.g. van Noordwijk

1984; Smith &Wettermark 1995;Merila & Sheldon 2001).

The technique that has come to be known as the ‘animal

model’ has a long history of development and use within the

animal breeding and statistical genetics literature (Henderson

1953, 1976, 1984; Meyer 1985; Thompson 2008). Evolution-

ary ecologists were generally slower than animal breeders to

recognize the potential applications of this and related tech-

niques (but see Shaw 1987). However, over the last decade

this method has both superseded the alternatives for, and
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facilitated a great upsurge of interest in, estimating quantita-

tive genetic parameters in natural populations (for reviews

see Kruuk 2004; Kruuk et al. 2008; Postma & Charmantier

2007). Perhaps the primary reason for this is that the animal

model makes use of information from all types of relation-

ship within the complex, unbalanced pedigrees we expect to

find in natural populations. Additionally, it is flexible enough

to cope with variable but non-trivial amounts of missing data

(e.g. unknown paternities, unmeasured phenotypes),

although missing data will obviously reduce estimate preci-

sion and in some circumstances can cause bias. Furthermore,

while the primary goal may be to estimate genetic parame-

ters, any known or hypothesized non-genetic influences on

phenotype (e.g. effects of age, sex, cohort, territory) can also

be explored within an animal model. This is useful for two

reasons: first, if not modelled, these effects may bias estimates

of the genetic parameters; and secondly, understanding the

environmental influences on phenotype is an important part

of most ecological studies.

Howdoes the animalmodel work?

An animal model is a particular form of model in which an

individual’s ‘breeding value’ (or ‘genetic merit’) is included as

an explanatory variable for a phenotypic trait of interest. The

breeding value is simply the additive effect of an individual’s

genotype on the trait expressed relative to the population

mean phenotype. This means that, in the simplest case, we

might model a single trait (y) in an individual (i) as:

yi ¼ lþ ai þ ei (model 1)

where l is the population mean, ai is the breeding value (i.e.

effects of i’s genotype relative to l) and ei is a residual term.

This type of model will be intuitive to anyone familiar with

regression and linear models. However, there is a catch here

in that, as we do not actually know what each individual’s

breeding value is, we cannot fit the model to see whether this

term is significant and how much variance it explains. The

solution lies in specifying model 1 as a linear mixed effects

model – a type of model that contains both fixed and random

effects (Galwey 2006) – in which the breeding value is treated

as a random effect.

Ecologists often use random effects to account for sources

of non-independence among data points or to avoid pseudo-

replication (Milner, Elston & Albon 1999; Bolker et al. 2009;

van de Pol & Wright 2009). For instance, if a researcher is

testing the effect of a variable (x) on a trait (y) but some indi-

viduals in the population have been measured on multiple

occasions, they may chose to discard all but one record per

individual, or take an average, or fit identity as a random

effect to avoid getting an erroneous picture of the significance

of x on y. However, random terms also allow us to make

inferences about the distribution of effects in a wider popula-

tion. This is because including identity as a random effect

also yields an estimate of the among-individual variance for y

in the population. In this example, additional random effects

could be fitted if other sources of non-independence between

data points were suspected (e.g. habitat patch, year of birth,

mother), and for each additional random effect a corre-

sponding component of the total phenotypic variance would

be estimated. In other words, the use of mixed effects models

allows us to partition variance. An animal model then is sim-

ply a linear mixed effect model in which we treat the breeding

value as a random effect. The idea behind this is identical to

the rationale for any other mixed model – data points are

non-independent (because individuals measured share genes)

and we want to estimate the amount of variance explained by

a source of non-independence (genes) in the population. By

fitting breeding value as a random effect, we obtain an esti-

mate of the variance in breeding values which is defined as

the additive genetic variance VA. In addition, variation from

numerous other environmental and indirect genetic sources

can be estimated using a mixed model approach, often simul-

taneously if the right pedigree and phenotypic data is avail-

able. In Table 1, we list the main sources of variance that can

be estimated in a mixed model analysis, highlighting the key

considerations and sources of bias associated with each.

The interested reader should most definitely consult more

detailed treatments of the animal model (Lynch & Walsh

1998; Kruuk 2004) as well as the primary work leading to its

development (Henderson 1976; Meyer 1985; Shaw 1987).

Our deliberate avoidance of an algebraic presentation limits

the depth of the current description and hides the mathemati-

cal complexity, but the key point to grasp is that population

pedigree data gives us an expectation of the way breeding val-

ues should covary among individuals, and this in turn allows

us to solve for genetic parameters including VA and, in the

case of multivariate models, COVA. For any pair of individu-

als i and j, the expected additive genetic covariance between

them is equal to 2hijVA where hij – a parameter normally

called the coefficient of coancestry – is the probability that an

allele drawn at random from individual i is identical by des-

cent to one drawn at random from individual j. Doubling the

coefficient of coancestry yields the more familiar values of

‘relatedness’ (i.e. 0Æ5 for parent–offspring pairs and full-sib-

lings, 0Æ25 for half siblings, 0Æ125 for first cousins etc). The

higher the relatedness, and the more VA underlying the trait,

the greater the expected covariance between two individuals.

Among all the n individuals in a pedigree, the matrix of addi-

tive genetic covariance for a trait is given as AVA where A is

the additive genetic relationship matrix. This is an n · n

matrix that contains all the pairwise values of relatedness.

Figure 1 shows how a simple pedigree structure can be repre-

sented in the form of an A matrix. Note that the matrix is

symmetrical about the diagonal (since 2hij = 2hji) with val-

ues of 1 on the diagonal (i.e. 2hii = 1 as individuals are per-

fectly related to themselves), assuming no inbreeding. If an

individual is inbred, the diagonal elements for this individual

will be equal to 1 + F (the coefficient of inbreeding). Here

we show a pedigree containing only 14 individuals (Fig. 1a)

and it is clear that working out the corresponding A matrix

(Fig. 1b) for a sample of hundreds or thousands would be a

tedious and difficult task. Fortunately it is unnecessary for

the researcher to do so because all the information contained
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inA can be expressed, and fed to the software being used, in a

much simpler format, requiring only that the parents of each

individual be specified (Fig. 1c). Note that if no parentage

information is known for an individual, a situation necessar-

ily true for members of the first generation, the default

assumption is that that individual is unrelated to all others.

As with most linear models, we typically assume that the

residual terms (ei) are normally distributed with a mean of

zero and a variance to be estimated (VR). Of course depar-

tures from normality often occur and major violations of

this assumption should always be acknowledged and pref-

erably dealt with (e.g. by appropriate data transformations,

or use of generalized models discussed further below). We

also assume that residual terms are uncorrelated among indi-

viduals. In the simplest case of a model containing only the

fixed effect of trait mean and a random effect of breeding

Table 1. Table showing the key variance components that an evolutionary biologist might wish to estimate using an ‘animal model’

Component ⁄Name Data required May also include Notes

VI ⁄ Individual At least two records

per individual

VA,VPE,VM,VC,VD VI differs fromVPE because it includesVA. The ratio ofVI

oVP is referred to ‘repeatability’ andmodels

between-individual differences caused by unspecified

genetic and non-genetic factors

VA ⁄Additive genetic Pedigree information

(half-sib ⁄ full sib
structure)

VCE,VPE,VM,VC,VD See main text and supporting tutorials

VCE ⁄Common

environment

Pedigree

information +

mothers with

at least two

offspring

VPE,VM,VC,VD VCE generally corresponds to environmental effects

shared by themembers of a family (e.g. nest effects) that

affect each individual permanently

VPE ⁄Permanent

environment

Pedigree

information + at

least two records

per individual

VCE,VM,VC,VD and

maternal effects specific

to a particular

individual and not

considered inVM,VC

See main text and supporting tutorials

VM ⁄Maternal

environment

Pedigree information

(half-sib ⁄ full sib
structure)

+ mothers

with at least two

offspring

VPE if not specified An equivalent effect could be fitted for paternal effects

VM ⁄VC differs fromVCE in cases wheremothers produce

different clutches (otherwise the information of the two

matrices is redundant)

Information from cross-fostering experiments

can improve the partitioning ofVA,VM andVC

VC ⁄Maternal

genetic

Pedigree information

(half-sib ⁄ full sib
structure) over at

least three

generations

VA (if COVA,C different

from zero and not

specified)

An equivalent effect could be fitted for paternal effects.

VM ⁄VC differ fromVCE in cases wheremothers produce

different clutches (otherwise the information of the two

matrices is redundant)

Information from cross-fostering experiments can

improve the partitioning ofVA,VM andVC

Differs fromVMbecause it represents any environment

effects ofmaternal origin with a genetic basis (i.e. a

mother inherits some additive genetic effects affecting

her ability to raise her offspring)

In principle a model includingVA andVC can also allow

direct genetic (i.e.VA) andmaternal genetic effects (i.e.

VC) to covary (i.e. genes affecting directly the phenotype

of an individual also affect, or are linked, to genes

affecting its phenotype indirectly though the

performance of its mother)

VD ⁄Dominance Pedigree information

(half-sib ⁄ full
sib structure) over

several generations

+ matrix of

dominance

VPE if common

environmental effects

are correlated with

dominance effects

Estimating dominance variance in amixedmodel

framework requires large amounts of data, a near

complete pedigree and lots of phenotypic information on

full- and half-sibs

Variation in inbreeding coefficients within the population

is also required so that the dominance matrix is not

redundant with the additive genetic or the common

environment matrix

The data required for partitioning the phenotypic variance (VP) in each case is listed along with other sources of variance that may be

included ⁄ confounded with each estimated component if these other sources are not specified in themodel. Unspecified variance components

can appear in other components if: (i) they are nested in another variance component (i.e.VA andVPE are nested withinVI); (ii) redundancy

between the information of twomatrices can be a source of bias in variance partitioning (i.e.VA can be upward biased ifVPE is unspecified; see

text).

16 A. J.Wilson et al.

� 2009 TheAuthors. Journal compilation� 2009 British Ecological Society, Journal of Animal Ecology 79, 13–26



value (i.e. model 1 above), this means that any covariance

among observations must arise from sharing of genes as

determined by the pedigree structure. In reality of course

there are likely to be other sources of phenotypic similarity

among records. These may include intrinsic variables (e.g.

sex), and extrinsic variables (e.g. climate, population density,

prey abundance). If we know, or hypothesize, that such

effects are important then it might be sensible to expand this

model accordingly. For instance, if the trait was body size

and observations were made on individuals of varying ages in

a sexually dimorphic organism we might prefer a model

something like:

yi ¼ lþ sexi þ agei þ ai þ ei (model 2)

in which sex and age are included as additional fixed effects.

Model building or reduction can proceed according to nor-

mal practice, with the researcher often choosing to add or

remove explanatory terms based on effect size and ⁄or statisti-
cal significance.

If additional explanatory covariates or factors are not

associated with the pedigree structure then their inclusion

should not systematically change the estimate of VA. That is

to say violating the assumption of uncorrelated residuals

does not necessarily induce bias. However, a particular con-

cern is that relatives are often clustered in time and ⁄or space
so that they tend to share environmental effects more often

than unrelated individuals. For example, nest effects arising

from patch quality or parental provisioning will often be

shared among siblings within a clutch, while maternal effects

may also cause within-family similarity (Table 1; Kruuk &

Hadfield 2007; Wilson et al. 2005). These ‘common environ-

ment’ effects are confounded with the pedigree structure and,

if not controlled for, cause upward bias in estimates of

genetic parameters. On the contrary, failure to control for

some fixed effects (e.g. specific environmental conditions or

age) can cause upward bias in residual variance when related

individuals are measured in different environmental condi-

tions or at different ages (i.e. sampling bias). Consequently,

additional random and ⁄or fixed effects are often fitted specif-

ically to try and disentangle genetic from common environ-

ment effects (Kruuk & Hadfield 2007). We illustrate this in

the worked examples to follow.

Considerations before you start

There are two key steps to ensuring success that should be

undertaken prior to embarking on a quantitative genetic

analysis of field data. The first is to know what your biologi-

cal hypothesis is and to think carefully about how to formu-

late a statistical model to test it. The second is to recognize

that empirical quantitative genetics is data-hungry: statistical

power will always limit what is possible, but it will also limit

what is sensible.While seemingly obvious, the second point is

overlooked with surprising frequency and unfamiliarity with

quantitative genetics can sometimes lead to erroneous expec-

tations about what is or isn’t possible. More generally, clear
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Fig. 1. (a): An example pedigree with males as squares and females as circles, with illustrations of (b) a relatedness matrix, typically denoted ‘a’,

derived from this pedigree and (c) pedigree data structure as typically required by software packages corresponding to this pedigree.
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biological questions are needed to formulate a sensible mod-

elling strategy with which to test statistical hypotheses. For

instance, if clutch size is under selection but you want to

knowwhether it can evolve, then the question is what is h2 for

clutch size? If you suspect the evolution of larger clutches is

constrained by a life-history trade-off with egg size then you

should test for a strong negative genetic correlation between

these traits. Of course more sophisticated questions and

hypotheses are possible as well but the key is to know what

they are before you start modelling.

These considerations should be followed by a realistic

appraisal of the data. No advanced statistical techniques can

compensate for inadequate data (a point that should actually

reassure field ecologists everywhere) and obtaining accurate

and precise estimates of genetic parameters requires a lot of

data. Even the largest data sets compiled from ecological

studies are small by comparison to many available to animal

breeders, and the power of a quantitative genetic analysis

also depends crucially on the pedigree structure. In other

words, one can do very little with an enormous data set in

which few individuals are related, but fewer individuals in a

well-connected pedigree can be very informative. Obviously

the ideal situation will always be a large number of individu-

als in a well-connected pedigree!

From a pragmatic point of view howmuch data is enough,

and how do we know if a pedigree structure is suitable?

Unfortunately rules of thumb are hard to come by: a useful

estimate of heritability can certainly be obtained from a hun-

dred records or less in some circumstances, but not in all. If

hypotheses are to be tested using genetic correlations then an

order of magnitude more data will usually be required for a

similar level of statistical power. If the data are already in

hand then the simplest way forward is probably to run some

models to get an idea of the power (as indicated by standard

errors or confidence interval around your heritability esti-

mates). Given an estimate of h2 (±SE) of 0Æ5 ± 0Æ24 we

might be able to conclude that a trait is significantly heritable,

but we should also recognize that a 95% confidence interval

of 0Æ02 £ h2 £ 0Æ98 does not convey a lot more information

that the 100% confidence interval which is necessarily

0 £ h2 £ 1.

If a project is in the planning stages then simulations

offer a useful way to assess how much data will need to

be collected. Tools are available for this purpose (see for

example, Morrissey et al. 2007) although simulations will

always require assumptions to be made about the sort of

pedigree structures likely to be obtained. A point to reit-

erate is that sampling strategies should be designed with

the specific aim of making sure that pedigree information

can be obtained (whether through behavioural observa-

tion or molecular pedigree analysis) and that close rela-

tives are sampled, where possible across different

environmental conditions,. Achieving this aim will range

from the perfectly feasible (e.g. studying early growth

traits in nestling passerine birds) to the virtually impossi-

ble (e.g. studying adult traits in dispersive marine fishes)

depending on the system under study.

While we have emphasized the importance of data quan-

tity, there may also be issues of data quality. Certainly we

acknowledge that pedigree data from wild populations is

unlikely to be perfect and that errors in the pedigree will bias

quantitative genetic parameters. If extra-pair paternity (EPP)

or clutch parasitism occurs then relationships determined by

observation can be incorrect, while methods of molecular

pedigree analysis can never give perfect results unless there is

complete sampling with either no genotyping error or a very

large number of variable loci. There are at least two sources

of comfort though. First, the effects of pedigree error are, at

least for simple scenarios, predictable. Both the failure to rec-

ognize a true relationship and erroneously assigning a rela-

tionship between unrelated individuals will result in

downward bias of genetic variance and hence heritability.

Secondly, simulation studies suggest that the level of bias for

realistic levels of EPP or paternity assignment error will often

be low (Charmantier & Reale 2005). As a partial caveat to

these findings, bias may be less predictable for more complex

models (e.g. those including maternal effects) and could be in

either direction for genetic correlations (i.e. there will be

downward bias in the genetic covariance but also in the

genetic variances of each trait; Morrissey et al. 2007). Conse-

quently it should not be generally concluded that pedigree

error can be ignored, and tailored-simulations to explore the

impact on particular analyses are very useful. Software is

available for this purpose (Morrissey et al. 2007).

Available software

Having thought though the hypotheses to be tested and col-

lected the required data, the last requirement is to obtain suit-

able software. As outlined above, the animal model is simply

a special case of a linear mixed effects model, but unfortu-

nately not all generic statistical software packages are able to

fit the random effect structure associated with the pedigree

information. Nevertheless, there are a number of possible

options (Table 2) that differ in cost, capability, and method

of inference. All should be equally suitable for basic models

of the type discussed here, while some offer greater flexibility

to fit more complex models (e.g. incorporating spatial struc-

ture: ASReml) or offer particular advantages for non-Gauss-

ian distributions (e.g. MCMCglmm package in r). None are

‘point and click’ based programs so the investigator will

likely have to invest some time and effort learning the syntax.

This may well be factor in deciding which software to use: for

example, researchers already proficient in the use of R should

findASReml-R andMCMCglmm intuitive.

We present tutorials in four software packages: ASReml,

ASReml-R, WOMBAT, and MCMCglmm (see Files S1–S5,

Supporting Information; Table 2). MCMCglmm is the only

one of these packages that uses Bayesian inference; the others

listed employ restricted (or residual) maximum likelihood

(REML). The relative merits of frequentist and Bayesian

inference philosophies are a source of endless discussion and

argument which we will not enter into here. On a purely prac-

tical note REML is faster and more widely used, but it also
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has drawbacks. For instance, there are some difficulties and

uncertainties associated with both parameter estimation and

hypothesis testing for non-Gaussian traits (see later discus-

sion and Bolker et al. 2009 for a good introduction to Gener-

alized LinearMixedModels). Bayesian inference viaMCMC

offers a useful way around some of these difficulties (Soren-

sen & Gianola 2002; Ovaskainen, Cano & Merila 2008;

Hadfield et al. 2010; see also ‘MCMC methods for multi-

response generalised linear mixed models: the MCMCglmm

r package’ available from the author, J.D. Hadfield, Institute

of Evolutionary Biology, University of Edinburgh, UK) but

is slower (although not necessarily appreciably so for small

problems) and requires specification of prior distributions

for unknown parameters. In large informative data sets the

prior should have little impact on parameter estimates, but it

is important to check that results are robust to prior specifica-

tion.We do not advocate any one programpackage but in the

worked examples to followweprovide sample code to runani-

mal models using ASReml, ASReml-R,WOMBAT and the r

package ‘MCMCglmm’ (reflecting the programs with which

we are most familiar). These programs offer wide capabilities

for fitting mixed effect models and readers wishing to become

generally proficient in their use should consult the extensive

documentation that accompanies software distributions.

Getting stuck in

The best way to learn how to use the animal model is obvi-

ously to use it. To this end, we have provided some sample

data and tutorials to get people started (see Files S1–S5, Sup-

porting Information). These tutorials describe a series of

quantitative genetic analyses on a population of gryphons

(reflecting a compromise between the avian and mammalian

biases of the authors). As the gryphon is a mythical beast the

data provided were necessarily simulated. Phenotypes were

simulated over an arbitrary pedigree structure using the pro-

gram ‘Pedantics’ (Morrissey et al. 2007). The tutorial materi-

als are designed to be self-contained and have been provided

in four software-specific versions. Here, we give only a short

description of their contents but we also highlight the salient

points that should emerge from the tutorials. Thus, aside per-

haps from the brief data file description below, this section

will also be of relevance to readers who are not yet ready to

start the accompanying exercises.

PREPARATION OF DATA FILES

Although software applications may differ slightly in format-

ting requirements (e.g. limits on the number of data columns,

or characters in a field), they typically require data and pedi-

gree files to be provided in plain text format, delimited by

white space. In the examples provided, we use ‘NA’ to denote

missing data and the tutorial and its required data and pedi-

gree files is presented separately for each software package

(see File S1, Supporting Information for further details). The

pedigree file required for analysis comprises three columns of

data, each line corresponding to an individual’s own identity,

its father and its mother. We have used numerical codes for

the individuals but in general any alphanumeric code is nor-

mally acceptable (i.e. individual 23 could as easily be called

‘Bob’ or ‘G17a’, but avoid any special characters – although

note special coding requirements for WOMBAT detailed in

the relevant tutorial). The pedigree file is usually ordered such

that the line specifying the parents of an individual animal

appears before any line in which that individual is present as

a parent (Fig. 1c). This ordering is a requirement for most

software and in practice is often most simply achieved by

sorting the file according to generation or cohort starting

with the earliest (i.e. parents are always born before their off-

spring). Note that all individuals must have a record in the

pedigree file but only those with phenotypic data need be

present in the data file. The data file also has a first column of

ID while subsequent columns include phenotypic traits and

any additional variables that may be fit in the model.

Table 2. A list of some available software packages that can be used to run animal models, with details of whether the software is freely

available, the method of statistical inference implemented (REML: restricted maximum likelihood; MCMC: Markov Chain Monte Carlo) and

on-line sources of further information. This is not an exhaustive list andmerely reflects the software the authors are familiar with

Software

Free to

download ⁄
use? Inference Notes ⁄Website Documentation

ASReml No REML Owned and licensed by VSN International Ltd

http://www.vsni.co.uk/software/asreml/

http://www.vsni.co.uk/resources/doc/

asreml2/UserGuide.pdf

ASReml-R No REML Commercially available R interface for ASReml

http://www.vsni.co.uk/software/asreml/

http://www.vsni.co.uk/resources/doc/

asreml-R.pdf

DMU Yes REMLorMCMC http://www.dmu.agrsci.dk/ http://www.dmu.agrsci.dk/

dmuv6_guide-R4-6-7.pdf

MCMCglmm Yes MCMC Rpackage

http://cran.r-project.org/web/packages/

MCMCglmm/index.html

http://cran.r-project.org/web/packages/

MCMCglmm/MCMCglmm.pdf

WOMBAT Yes REML Replaces DFREML

http://agbu.une.edu.au/~kmeyer/wombat.html

http://agbu.une.edu.au/~kmeyer/

WOMBAT/WWW/manual.html

VCE Yes REMLorMCMC http://vce.tzv.fal.de/software ftp://ftp.tzv.fal.de/pub/latest_vce/

doc/vce6-manual-3Æ1-A4.pdf
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TUTORIAL 1 – ESTIMATING THE HERITABIL ITY OF BIRTH

WEIGHT

The first tutorial is designed to estimate the heritability of a

single trait (birth weight in gryphons). We start with a very

simple animal model containing effects of population mean

and breeding value only to estimate the additive genetic vari-

ance and the heritability of the trait. We then explore the con-

sequences of adding additional effects to the model. Two key

points emerge. First, if we follow the common practice of

defining VP as the sum of estimated variance components

(i.e. VA + VR) in the simple case then we generally expect

the heritability of a trait to increase with inclusion of more

fixed effects. This dependence of h2 on the model structure

(as well as the actual biology) may initially seem alarming but

is in fact perfectly sensible. This is because by defining VP in

this way, when we add a fixed effect (in this case sex) we chan-

ged the interpretation of h2 from the proportion of variance

explained by additive effects to the proportion of variance

left after accounting for sex that is explained by additive

effects. SeeWilson (2008) for more detailed discussion of this

issue.

The second point that emerges is a practical demon-

stration of the bias that can be induced by common envi-

ronment effects. Here, we simulated a non-genetic

maternal effect in the data such that offspring of the

same mother are more similar to one another than off-

spring from different mothers. Biologically this type of

effect could occur if mothers differ in the levels of

resource available to them during gestation (perhaps due

to spatial heterogeneity in the environment). When we

add an additional random effect of maternal identity, the

bias is reduced and estimates of VA (and hence h2) are

therefore lower. We also obtain an estimate of the vari-

ance caused by maternal effects (VM). Other examples of

potential biases when estimating VA related to unspecified

variance components can be seen in Table 1. Adding an

additional random effect that is not confounded with the

pedigree structure (here, year of birth) results in a further

partition of variance (VBY) but there is minimal change

in VA since, in our example, year of birth is not con-

founded with pedigree. See Kruuk & Hadfield (2007) for

further discussion on this issue.

TUTORIAL 2 – A BIVARIATE ANIMAL MODEL

The second tutorial extends the first situation to the

bivariate case where we are interested in the genetic

covariance (and correlation) between two traits (birth

weight and tarsus length at fledging) as well as the

genetic variance for each. For multivariate models, it is

generally useful to start thinking in terms of variance–

covariance matrices. So, for this two trait model, we

would consider the phenotypic matrix P as comprising

phenotypic variances in birth weight (VP1) and tarsus

length (VP2) and the phenotypic covariance between the

two traits (COVP1,P2). P is then initially decomposed into

the additive genetic matrix G and a residual (or environ-

mental) matrix R where, for two traits:

P ¼ Gþ R

VP1 COVP1;P2

COVP1;P2 VP2

� �
¼

VA1 COVA1;A2

COVA1;A2 VA2

� �

þ
VR1 COVR1;R2

COVR1;R2 VR2

� �

Or, in the more complex situation where maternal and year

of birth effects are included and where M and BY are the

matrices corresponding to those additional random effects:

P ¼ G+ M + BY + R

VP1 COVP1;P2

COVP1;P2 VP2

� �
¼

VA1 COVA1;A2

COVA1;A2 VA2

� �

þ
VM1 COVM1;M2

COVM1;M2 VM2

� �

þ
VBY1 COVBY1;BY2

COVBY1;BY2 VBY2

� �

þ
VR1 COVR1;R2

COVR1;R2 VR2

� �

So in multivariate analyses what we are really doing is fit-

ting models of these variance-covariance structures to gener-

ate estimates of the elements within each. It is possible to

impose certain constraints on one or more of the matrices in

order to test particular hypotheses. For instance to test the

significance of the genetic covariance we can compare the full

model to one in which G is fitted with the condition that

COVA = 0, i.e.:

G ¼ VA1 0
0 VA2

� �

Similarly, if we suspect there really are no maternal effects

on the second trait (tarsus length) then we might try a model

whereM is fitted as:

M ¼ VM1 0
0 0

� �

Of course the two trait example presented here can be

extended in principle to any number of traits. However, as

the dimension of each matrix increases, the number of

parameters to be estimated rises very quickly and you can

soon run into difficulties getting your models to converge.

The solution to this is to use simpler models, at least to start

with. For instance, if you having trouble getting a bivariate

model to converge then try modelling each trait in a univari-

ate model first. This will give you a good idea of the variance

components for each trait and these can be used as starting

values in the bivariate analysis. If you want to estimate a full

Gmatrix among a large number of traits then ultimately you

may find that you cannot fit a full model but rather you will

need to run a series of bivariate models to estimate each of

the pairwise genetic covariances.
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TUTORIAL 3 – A REPEATED MEASURES ANIMAL MODEL

In the first two tutorials, we use a data set in which the traits

of interest (birth weight and tarsus length at fledging) are

measured only once per offspring. However, in many cases

ecological studies generate multiple observations per individ-

ual. For example, in iteroparous organisms we may have

repeated measures of reproductive traits. Here, we use the

example of litter size, treating it as a female reproductive trait

for which we have repeatedmeasures.

With repeated measures on individuals a common starting

point in both ecology and quantitative genetics is to partition

the phenotypic variance into within- vs. between-individual

components and this can be done here by fitting individual

identity as a random effect without associating it with the

pedigree (VI in Table 1). The among-individual variance

expressed as a proportion of the trait is the repeatability. As

repeatability must equal heritability in the extreme case that

all differences among individuals are caused by additive

genetic effects, it is generally considered to set the upper limit

for h2 (Falconer &Mackay 1996), although there are actually

some situations in which this need not hold true (see Dohm

2002). More generally, we might expect fixed or ‘permanent’

differences between individuals to arise through environmen-

tal and ⁄or non-additive genetic effects as well (Table 1). As

an individual is perfectly related to itself and completely

shares its own environment, permanent environment effects

can be seen as a special – and very extreme – case of the com-

mon environment problem. Consequently, we must always

model this source of variance to protect against bias in VA

when we have repeated records. This is done by including an

individual’s identity twice in the animal model: first identity

is associated with a pedigree structure to partition VA; sec-

ondly, identity is fitted as a standard random effect to parti-

tion any additional non-genetic sources of fixed differences

among individuals. This latter partition of ‘permanent envi-

ronment’ variance VPE will, despite its name, also include

non-additive genetic effects (i.e. dominance variance) if pres-

ent (see Table 1).

Using the worked example of lay date in gryphons, we can

see that lessons from the first tutorial remain equally relevant.

Thus, for instance, parameters can be influenced by inclusion

of fixed effects. Here, we have simulated an age effect (a linear

increase in lay date with age) and so fitting age will reduceVR

and increase h2. However, similar changes to VPE can also

occur. For instance, if a trait is assayed in males and females

in a sexually dimorphic organism then fitting sex will reduce

the non-genetic between-individual variance (i.e. VPE) rather

than the within-individual environmental variance VR. A

final point to note is that to some extent inclusion of a perma-

nent environment effect can be seen as a catch-all for unex-

plained environmental effects. We may well hypothesize that

fixed differences among individuals arise from cohort, birth

year ormaternal effects and these explicit sources of common

environment can be included in a repeated measures model.

In the example provided birth year effects were simulated

that have a permanent effect on an individual’s phenotype

and when not explicitly modelled these effects contribute to

VPE for lay date. Inclusion of birth year results in an addi-

tional partition of VBY as before with a corresponding

decrease in the magnitude of VPE. If inclusion of additional

fixed and ⁄or random effects explains environmental sources

of among-individual variation, then VPE may become small

and could lack statistical significance. Under such circum-

stances it could be tempting to simplify the model by drop-

ping the permanent environment effect but this should not be

done. UnlessVPE truly is zero then its omission will upwardly

biasVA (seeKruuk&Hadfield (2007) for further discussion).

Fixed or random?

In the tutorials provided, we have obviously suggested which

models to fit. However, when building your own models, it is

necessary to decide not only what effects to include but also,

in some cases, how they should be treated. One particular

question that always arises for factors is whether they should

be treated as fixed or random effects. Formally, the distinc-

tion can be made on the grounds that a factor will normally

be treated as fixed if all levels are found in the data and the

goal is to determine the effect on the mean of each factor

level, whereas a factor will be treated as random if the levels

represented in the data are a sample from a larger population

about which the aim is to make some inference (Pinheiro &

Bates 2000; Galwey 2006). Often the appropriate treatment

of a particular effect is very obvious. For example, sex will

(usually) have only two levels present and we are interested in

knowing the effect of sex on the phenotypic mean. By con-

trast, the additive genetic effect will be treated as random

since we do not have every genotype represented in the data

and the goal is to use what we do have to make inferences

about the level of genetic variance in the wider population. In

addition to the additive effect we would typically model indi-

vidual, mother and common environment effects in this way.

However, some effects are less clear cut. For example

effects such as year of measurement or year of birth may

plausibly be treated as either fixed or random. The former

would generate an estimate of year specific effects on the

mean (while soaking up one degree of freedom for each year

represented in the data). Remaining variance, as partitioned

across say additive and residual components, should then be

interpreted as having been conditioned on the year effects. In

contrast, treating year as a random effect will only use one

degree of freedom and provide an estimate of howmuch vari-

ance is explained by year that could be extrapolated to a lar-

ger set (or population) of years than those actually present in

the data. In making a decision about how to proceed it is use-

ful to think about why the effect is being included and what

information you actually want to extract from the model.

Hypothesis testing

In addition to parameter estimation, we will usually want to

test the statistical significance of the one or more parameters

against an appropriate null hypothesis. We may have deter-
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mined that a trait’s heritability is 0Æ2 but want to know

whether this is significantly greater than zero. For a genetic

correlation, we might sometimes wish to test against a null

hypothesis of rG = 0; other times, a more sensible null

hypothesis might be that rG = 1 (discussed further below).

Appropriate tools of statistical hypothesis testing are not uni-

versally agreed upon for mixed models and the available

methods may differ across software applications. The reader

should therefore take the following as guidelines and hope-

fully useful suggestions, not as the definitive and unarguable

truth! Although primarily focused on generalized mixed

models, Bolker et al. (2009) provide a useful overview of

some of the issues surrounding hypothesis testing for mixed

models in general.

When fitting models using REML the standard errors

associated with the estimated variance components should

generally not be used for formal hypothesis testing, although

we commonly do use them as a rough guide during prelimin-

ary model exploration. Instead a likelihood ratio test (LRT)

can be constructed by comparing the log-likelihood of the

model to a reduced model from which the effect of interest

has been dropped. We normally define the test statistic as

equal to twice the difference in log-likelihoods between the

models, and assume that this is follows a chi-squared distri-

bution with degrees of freedom equal to the number of addi-

tional parameters estimated in the more complex model

(Pinheiro & Bates 2000). For the case of testing, the signifi-

cance of a single variance component in a univariate model

(e.g. VA) this means that there is one degree of freedom.

However, since this test is inherently two-tailed and variance

components are (normally) expected to be constrained to

positive parameter space, there is a good argument that this

approach is overly conservative (see e.g. Gilmore et al. 2006).

A widely used adjustment proposed by Stram & Lee (1994)

amounts in practice to halving the P-value obtained from the

conservative LRT. However, some authors have suggested

this can sometimes result in an anticonservative test (Pinheiro

& Bates 2000). Note also that this is not applicable when test-

ing a covariance which is not bounded by zero. We do not

take a strong position on this except to make the obvious

point that, once made, a decision should probably be stuck

with. It is certainly not acceptable to choose the form of test

that gives you themost convenient answer.

Restricted Maximum Likelihood methodology is

restricted in the sense that it only maximizes the likelihood

that does not depend on the fixed effects. Therefore, likeli-

hood comparisons are only valid under REML if models

have identical fixed effect structures (Pinheiro & Bates 2000).

Care must also be taken to ensure the same data set is being

analysed since, for instance missing data for random effects

(e.g. unknown mothers) could result in different patterns of

data exclusion across models. Testing of fixed effects is also

somewhat problematic as F-tests normally used in linear

models require knowledge of the denominator degrees of

freedom, which is hard to calculate for mixed models. Vari-

ous options have been proposed for testing the significance of

fixed effects in mixed models (Pinheiro & Bates 2000; Galwey

2006) and most software packages will provide some form of

test of fixed effects. However, packages differ in the detail

(e.g. method of determining the denominator degrees of free-

dom; Bolker et al. 2009) and users should therefore consult

the relevant documentation on exactly what tests are being

performed, how they are being constructed, and how they

should be interpreted.

With Bayesian inference things are actually somewhat sim-

pler. For example, usingMCMCone can examine the poster-

ior distribution for a parameter of interest (whether fixed or

random) and see whether the 95% credible interval spans

zero. One caveat to this is that prior specificationmay be such

that some parameters must be positive and, as their 95%

credible interval will never include zero, they will always be

‘significant’ based on this approach. For instance, this is the

situation for variance components estimated using the r

package ‘MCMCglmm’ and the use of an information theo-

retic approach based on the Deviance Information Criterion

is consequently suggested for model selection (see ‘MCMC

methods for multi-response generalised linear mixed models:

the MCMCglmm r package’ available from the author, J.D.

Hadfield, Institute of Evolutionary Biology, University of

Edinburgh, UK).

What else is possible?

The examples presented in the tutorials above provide an

introduction to the sorts of analyses that can be carried out

using the animal model. Of course there are many variants on

the basic model that can be specified depending on the ques-

tions being addressed. For example, by treating a phenotype

measured in two environments as two distinct traits (rather

than one trait with repeated measures) we can test for geno-

type-by-environment interaction (G · E). If the same geno-

type has different phenotypic expression in the two

environments then we would expect VA1 „ VA2 while rG
across environments would be less than +1 (McAdam &

Boutin 2003; Charmantier & Garant 2005). Similarly, we

might divide a trait into numerous age-specific traits in order

to explore the genetic processes underlying trade-offs

between early and late fitness, or to test hypotheses stemming

from evolutionary theory of ageing (e.g. Charmantier et al.

2006). A comparatively recent development within field stud-

ies of quantitative genetics is the use of so-called random

regression animal models in which an individual’s breeding

value is modelled as a function of a covariate. The covariate

may be an environmental variable in studies of plasticity and

G · E, or age in studies of ontogeny, growth and senescence

(Meyer & Kirkpatrick 2005; Nussey, Wilson & Brommer

2007;Wilson, Charmantier &Hadfield 2008). If a linear reac-

tion norm is used this technique is equivalent to a ‘random

slope’ model used to test for variation in plasticity (Nussey

et al. 2007) and controls for pseudo-replication in behaviour-

al studies (Schielzeth & Forstmeier 2009), but with separate

functions included for both the individual level genetic (i.e.

breeding value) and non-genetic (i.e. permanent environ-

ment) effects (Brommer, Rattiste &Wilson 2008).
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An area of particular interest to behavioural ecologists is

the analysis of sex-specific, or sex-limited traits, to explore

questions relating to mate choice and sexual selection

(Qvarnstrom, Brommer & Gustafsson 2006; Foerster et al.

2007). For instance, models of sexual selection on male sec-

ondary sexual traits typically rely on a genetic correlation

between the male trait and female preference while inter-sex

genetic correlations are also vital to our understanding of the

evolution of sexual dimorphism (Fairbairn & Roff 2006). An

interesting point is that genetic correlations can actually be

estimated between sex-limited traits despite the fact that no

individual ever expresses both phenotypes. This is because

while a male will not express a female trait (and vice versa) he

will have female relatives in the population who do. These

relatives can then provide information as to the male’s

genetic merit for the unexpressed phenotype. Nevertheless,

some caution is required when modelling sex-limited traits

since while the genetic covariance can be estimated the same

is not true for environmental covariance, and the total phe-

notypic correlation is obviously undefined.

Here, we have highlighted a few of the research topics in

evolutionary ecology for which animal models offer great

potential, but there are many others. For instance estimation

of maternal genetic effects could give important insights into

parent–offspring conflict (Wilson et al. 2005). Other types of

indirect genetic effect, which are defined as occurring when

the phenotype of a focal individual is influenced not only by

its own genotype but by the genotype of others (Moore, Bro-

die & Wolf 1997), can also be estimated. Indirect genetic

effects are expected to be important for behavioural traits like

dominance and aggression (Moore et al. 1997; Wilson et al.

2009) as well as having implications for social evolution

(Bijma & Wade 2008). Recently, Brommer et al. 2008

showed how this framework can also apply to reproductive

traits with laying date in common gulls influenced by the

male, as well as the female, genotype.

An exhaustive treatment of interesting scenarios that could

be explored is beyond the scope of this paper but we refer the

authors to Kruuk et al. 2008 for a broad review of applica-

tions to date.We have also produced a web-based resource at

(http://www.wildanimalmodels.org) which provides tutorials

including further code and example data sets to explore wider

andmore complex applications of the animal model.

OnBLUP

Most biological questions suitable for quantitative genetic

approaches can, and should, be translated into statistical

hypotheses relating to components of (co)variances and

parameters derived from these. However, in addition to these

population-level parameters, the animal model can also be

used to obtain estimates (or predictions) of the individual

breeding values. These are usually obtained from REML-

based analyses as best linear unbiased predictors (BLUP) of

the true breeding values, which have long served as a useful

tool in developing artificial selection schemes. More recently,

evolutionary ecologists have used BLUP of individual breed-

ing values to explore some very interesting hypotheses. For

example, by regressing fitness on the predicted breeding val-

ues studies have tested for selection acting on genotype and

compared its strength to selection on the phenotype (e.g.

Kruuk et al. 2001, 2002; Garant et al. 2004; Gienapp et al.

2006). Regressions of BLUP estimates of breeding values on

time (or birth year) have been used to test for micro-evolu-

tionary change in response to selection on traits (e.g. Merila,

Kruuk & Sheldon 2001a; Coltman et al. 2003; Réale et al.

2003; Wilson et al. 2007). BLUPs have also been used to

assess the genetic architecture and strength of selection on

individual reaction norms (e.g. Brommer et al. 2005; Nussey

et al. 2005).

Our omission of discussion of this topic until this point is

deliberate. This is due to the fact that it is now clear that we

cannot use BLUP to reliably test these hypotheses. Use of

BLUP in the ways alluded to above can result in massive bias

and extreme anti-conservatism. Problems arise not from an

inherent problem with BLUP but from a failure to fully

appreciate the statistical consequences of using predicted,

rather that true, breeding values, coupled with the use of logi-

cally inconsistent models to generate the BLUP (Postma

2006; Hadfield et al. 2010). We refer the reader to Hadfield

et al. (2010) for a full treatment of this. Here, we strongly

echo the take home message of that paper: unless robust

applications become apparent, the use of BLUP in evolution-

ary ecology should be discontinued. Fortunately, as dis-

cussed in Hadfield et al. (2010), there are also ways to explore

the interesting hypotheses without resorting to analysing

BLUP. For instance, the strength of selection on genotype

can be determined from the genetic covariance between a

trait and fitness and can therefore be directly estimated using

a bivariate animal model. For tests of micro-evolutionary

change, Bayesian approaches that properly account for mea-

surement error in predicted breeding values can be used

(Hadfield et al. 2010).

Other pitfalls and problems

Having highlighted the exciting possibilities opened up by

application of the animal model to data from ecological stud-

ies, it is important to acknowledge that there are also meth-

odological limitations and a number of pitfalls to avoid.

Perhaps the most likely trap to fall into is that of failing to

recognize or account for a likely source of bias. As we have

seen, it is often possible to protect against common environ-

ment effects by inclusion of additional terms in the model,

but this is not a bullet-proof strategy. The confounding vari-

able will not always have been recorded, but this does not

mean it isn’t there. Even where an effect can bemodelled, suc-

cess will depend on data structure. For instance, the ability to

statistically separate maternal from additive effects requires

that mothers have multiple offspring and will be greatly

improved by half-sib structure in the pedigree (Kruuk &

Hadfield 2007). This is because paternal half sibs will share

additive effects, while maternal half-sibs will share additive

andmaternal effects. Conversely, the separation will be made
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problematic by large amounts of unknown paternity. Disen-

tangling additive and common environment effects will also

be improved by experimental manipulations where these are

possible (e.g. cross-fostering in passerine studies) and so

sophisticated analytical models should never be seen as a sub-

stitute for rigorous study design (Kruuk&Hadfield 2007).

A more general issue is that inclusion of additional effects

in a model often leads to attendant declines in the precision

of variance component estimation. In itself this should not

necessarily be seen as a problem: large standard errors proba-

bly indicate that you are pushing the data too far so that esti-

mated model parameters should be treated with appropriate

caution. However, difficulties can arise if statistical signifi-

cance is used as the basis of model selection. For example,

imagine that a simple animal model yields a large and highly

significant estimate for a trait’s heritability. If we added a

potentially confounding common environment effect (e.g.

nest, territory or mother) but found that this second model

was not a significantly better fit we might feel justified in pre-

senting our heritability estimate from the first model. How-

ever, if the two effects are badly confounded then it could be

that neither was statistically significant in the second model.

How should one interpret such a situation in which themodel

selected could actually depend on the order of effects fitted?

Faced with a choice between potentially biased but statisti-

cally significant h2 estimate on the one hand and a more con-

servative but non-significant estimate on the other the

optimist (e.g. researcher) may be tempted by the former while

the cynic (e.g. reviewer) will almost certainly prefer the latter.

Probably a reasonable middle ground in this particular case

would be to present both models with appropriate caveats

for the interpretation for each. An appropriate conclusion

would be to say that there is a strong association between the

pedigree and the phenotype, and while this is consistent with

a high h2 we cannot exclude the confounding common envi-

ronment effect. Ultimately model selection will be deter-

mined not just by statistical significance, but also the

biological question, the available data, and the potential

sources of bias. Proper consideration of alternative models is

therefore vital to properly interpreting the results of any

study (Kruuk & Hadfield 2007). However, as noted at the

outset, statistical power will almost always limit the models

that can sensibly be tested and one could always posit a more

complex model that could have been attempted if only the

data were up to it. Highlighting power limitations and poten-

tially confounding effects is therefore an important part of

qualifying conclusions and should not necessarily be viewed

as an admission of failure in study design.

Problems with biological interpretation can sometimes

arise from a failure to interpret parameters in the context of

the model in which they were estimated. We have already

drawn attention to the way in which estimates of heritability

can depend on the inclusion of other effects in the model (see

above; Wilson 2008) and so must be interpreted with care.

However, translating from quantitative genetic model to eco-

logical interpretation offers the unwary reader plenty more

opportunities for misunderstanding. For example, as we have

illustrated in the tutorials, maternal effects are commonly

modelled by inclusion of the maternal identity as a random

effect. However, while this term is expected to account for

fixed or permanent among-mother heterogeneity (i.e. differ-

ences between litters with different mothers), ecologists are

frequently interested in maternal effects arising from mater-

nal age, status or body condition that will vary between litters

within a mother. Thus an absence of VM does not necessarily

mean that maternal effect in the wider sense do not occur,

but rather that maternal identity does not contribute to

among-litter differences (beyond the expected additive

genetic effect). Other types of maternal effect could equally

be looked at in an animal model framework, for example by

fitting as fixed effects on offspring phenotype, or in the case

of maternal condition by treating it as a second, potentially

covarying, trait in a bivariate model.

Finally, having estimated quantitative genetic parameters

it is perhaps not unreasonable that a researcher might wish

to combine these with field-based estimates of natural selec-

tion in order to generate predictions of phenotypic change.

Here, we would advocate caution. Although quantitative

genetics is a predictive subject, it is fair to say that to date its

predictions have had little success in natural systems (Meri-

la, Sheldon & Kruuk 2001b; Kruuk 2004; Charmantier &

Garant 2005; Kruuk et al. 2008). There are many reasons

why the mismatch between prediction and observation

occurs, all of which can be seen as violations of the simple

models usually used to predict change (see Merila et al.

2001b). For instance the breeder’s equation predicts that a

per generation response to selection can be estimated as the

product of a trait’s heritability and the selection differential

on it (the covariance between trait and fitness). However,

this model is only intended as a complete description of phe-

notypic change in a population when a single trait is under

selection, genetic drift is negligible, generations are discrete

and non-overlapping, and the environment is constant.

These conditions can certainly be approximated under

experimental conditions but are very unlikely to hold true in

any wild population, particularly when one recognizes that

what is really meant by ‘environment’ in this context is

everything other than the additive genetic effects on the focal

trait (e.g. extrinsic environmental variables but also popula-

tion size, demographic structure, resource abundance, pred-

ator and parasite levels). Consequently demonstrating that

predictions from the breeder’s equation do not match obser-

vations in natural populations is to some extent an attack on

a straw man. The biological interest lies not in demonstrat-

ing that the model is too simplistic, but rather in exploring

why.
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Additional practical resources

PRACTICAL GUIDE TO QUANTITATIVE GENETICS FOR

EVOLUTIONARY ECOLOGISTS

http://www.wildanimalmodels.org

Set of tutorials with sample data files highlighting evolu-

tionary ecological applications of the animal model. Code is

provided for use with ASReml, ASReml-R, WOMBAT and

the r package ‘MCMCglmm’.

ASREML COOKBOOK

http://uncronopio.org/ASReml/HomePage

Excellent site written and maintained by Luis Apiolaza

providing information and code to help new ASReml users

get started and progress tomore complex models.

MIXED MODELS FOR GENETIC ANALYSIS

http://www.vsni.co.uk/products/asreml/user/geneticanaly-

sis.pdf

Comprehensive notes written by Julius van der Werf

describing the use of mixed models for genetic analysis.

Emphasis is on applications for livestock breeding programs.

Includes some code for ASReml.
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sion of this article.

File S1. Notes on tutorials and software.

File S2. Tutorial for ASRemlWith required data files: ‘gryphon.ped’;

‘gryphon.dat’; ‘gryphonRM.dat’.

File S3. Tutorial for ASReml-R With required data files: ‘gryphon-

ped.txt’; ‘gryphon.txt’; ‘gryphonRM.txt’.

File S4. Tutorial for WOMBAT With required data files: ‘gry-

phon.ped’; ‘gryphon_uni.dat’; ‘gryphon_bi.dat’; ‘gryphonRM.dat’;

‘gryphonRM_pe.dat’.

File S5. Tutorial forMCMCglmmWith required data files: ‘gryphon-

ped.txt’; ‘gryphon.txt’; ‘gryphonRM.txt’.
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