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This paper considers how cooperative solutions to games of sharing fish resources can be
supported by threat strategies. With highly mobile fish stocks, the number of agents
compatible with a cooperative self-enforcing solution is not very high for reasonable values of
the discount rate, but sensitive to changes in the discount rate and costs and to cost
heterogeneity. With migrating stocks, where growth and reproduction depend on how much
all agents leave behind after harvesting, the likelihood of a cooperative, self-enforcing
equilibrium is increased. With a dominant player and a competitive fringe the rents and
optimum stock level of the dominant player fall quickly as the share of the competitive fringe
increases. © 1997 Academic Press

1. INTRODUCTION

Exploitation of renewable resources such as fish stocks shared by a limited
number of agents involves strategic choices. Should the agents cooperate and
maximize their aggregate returns, or is cooperation a futile exercise undertaken by
the naive, who will be outsmarted by the realistic? There exists by now a volumi-
nous literature on this subject. Much of this literature was inspired by the
international disputes over fishing limits in the 1970s and the deliberations of the
third United Nations Conference on the Law of the Sea 1973-1982 which endorsed
the 200-mile exclusive economic zone. Two early papers in this genre are Munro
[11] and Levhari and Mirman [9]. Recently Fischer and Mirman [2, 3] have
extended the analysis to interacting species. Three of these papers compare Nash
equilibria and global optima while Munro is concerned with bargaining solutions in
cooperative games. All these papers deal with the case of two agents, which is true
of most of the literature on game theory and fisheries; few authors have considered
explicitly the importance of the number of agents for obtaining a cooperative
solution. An exception is Clark [1] who does not, however, consider the implica-
tions of threat strategies in repeated games. Hamdldinen et al. [6] do so, but again
limit themselves to the case of two agents.

The motivation to explore the importance of the number of agents is provided by
the fact that many important fish stocks enclosed by the 200-mile limit are shared
by two or more coastal states. What is the likelihood that they will cooperate in
setting the rate of exploitation of the stocks and how does it depend on the number
of states sharing a stock? A further motivation is provided by the straddling of
some fish stocks outside the 200-mile limit where they are accessible by fleets of
any nationality. What are the chances of cooperation under those circumstances, or
more to the point perhaps, how will the strategy of the coastal state(s) controlling
the main part of a stock be affected by this competition?
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This latter case is a topical one. In 1993 the UN convened a conference on the
exploitation of straddling and highly migratory fish stocks. The conference was
concluded in August 1995 with an agreement that authorizes regional organizations
to manage fisheries outside the 200-mile limit. All who fish in a given area will
have to abide by the rules agreed by the relevant organization. It is unclear,
however, what if anything limits the membership of such organizations; the
agreement says only that member nations must have a “real interest” in fishing in
the area. Neither is it clear how decisions will be taken, whether this will be by
majority vote, a qualified majority, or a consensus. Last but not least, it is unclear
what sanctions can and will be applied to those who do not cooperate.

In this paper we consider how critical the number of agents sharing a fish stock
is for realizing the cooperative (globally optimal) solution. The problem is formu-
lated as a repeated game of an infinite duration (a supergame). We begin by
considering a game of N identical agents. Then we look into the importance of
cost differences among agents. In both these formulations agents are assumed to
exploit a truly common stock; i.e., the density of the stock will be the same for all.
We then consider a somewhat different problem which may be more relevant for
countries sharing a fish stock. Each agent is assumed to exploit a certain portion of
the stock being accessible for exploitation only in that agent’s territory but
nevertheless linked to the remainder of the stock through a common growth
function. The cooperative solution is defined as the global optimum, while the
noncooperative solution is the one where each agent realizes his individual opti-
mum without taking into account the stock growth externality. Finally we look at a
case meant to reflect the straddling stock situation where a dominant agent
maximizes his profits, taking into account a fringe of exploiters who have access to
a portion of the stock outside his territory. The focus here is on the efficiency
losses vis-a-vis the global optimum.

2. THE BASIC MODEL

Assume that the growth of the fish stock is determined by how much is left
behind after harvesting; i.e., the stock at the beginning of period ¢ is a function
G(S,_,), where S,_, is the stock left behind after harvesting in period ¢ — 1 (the
size of the stock left behind will be referred to as the abandonment level). Ignoring
natural mortality of the stock while it is being fished, the amount caught in period ¢
will be G(S,_,) — S,. At a given price ( p) the revenue (R) obtained in period ¢ will
be

Rl=p[G(S,,l) _St]' (1)
Assume that the marginal cost of fish is inversely proportional to the size of the
stock at any point in time.! The total cost (C) in period ¢ will then be

C = fG(S”l)de=c[ln G(S,_1) —Ins,], (2)
s, X

! This cost function obtains if the cost per unit of fishing effort is constant and the catch per unit of
effort is proportionate to the size of the exploited stock. The latter obtains if the stock is always evenly
distributed over a given area. While popular and not unreasonable, this is obviously a special case. The
emphasis here is on obtaining numerical results, which makes it necessary to use a simple but not
unreasonable cost function. For a further discussion, see [7].
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where ¢ is a cost parameter. Since the quantity caught (Q) is Q = G — S, with G
being given at the beginning of each period, this function has the usual properties
Cqo= —Cs>0and Cyy = —Cgss > 0 (subscripts denote derivatives).

The present value () of fishing rent (R — C), for an infinite time horizon, is

s

V=2 8{plG(S-1) = S| —c[nG(S,_y) = InS]}. (3)

t=0

Maximizing V' with respect to S, gives the first order condition?
—(p —c/8%) + 8[p —c/G(S)]G'(S?) =0, (4)

where 8 = 1/(1 + r) is the discount factor, r being the discount rate, with G’
denoting the first derivative of G and S° the optimum value of S.

As an illustration in numerical calculations below we shall use the discrete
variant of the logistic growth function

G(S) =S[1+a(1l-S/K)], (5)

where a and K are parameters (intrinsic growth rate and carrying capacity,
respectively). This gives

G'(S) =1+ a(1l — 25/K). (6)

3. COOPERATIVE EQUILIBRIUM: IDENTICAL AGENTS

Suppose there are N identical agents who share a fish stock. Suppose further
that they plan to harvest the stock for an indefinite period of time. If they
cooperate in realizing the optimal solution (which is identical from everybody’s
perspective) each will get 1 /Nth of the total profits in each period. If one of them
deviates from the optimal solution he will get more, as long as the deviation has
not been discovered and punished. Assume that deviation would be detected after
one period and that the other agents then would retaliate by fishing down the stock
in each period until further depletion becomes unprofitable, i.e., until the marginal
cost of fish caught has risen to equal the price (cf. Eq. (2)). This is in fact the best
strategy they could follow, as long as the deviating agent depletes the stock to the
level where fishing becomes unprofitable (an alternative trigger strategy will be
commented upon below). In view of the above cost and revenue functions (Egs. (1)
and (2)), the abandonment level of the stock (§*) would then be

*=c/p. (7

% The same first order condition also obtains for a finite time horizon except for the last period
where the optimal abandonment level is S* = ¢/p when the stock beyond the horizon has no value. If
the initial stock is less than the optimal stock it will be necessary to leave it unfished for one or more
periods, until G(S,_) > S°.
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For an infinite time horizon, the present value of the cooperative strategy (°)
for a typical agent is

0 w° 1
VTN ®)
where
70 = p[G(S°) — 8°] — ¢[InG(S°) — In 5°] (9)

and S° is the abandonment level of the stock along the optimal (cooperative)
stationary path.

The present value of the payoff for an agent that deviates from the cooperative
solution and is then punished by all other agents playing noncooperatively forever
is

° LA
Vd=—+7rd+——, (10)
N N 1-56
where
74 =p(8§° = 5*%) — ¢(InS° — In 5*) (11)
and
m* = p[G(5*) = 5*] — c[InG(5*) — In 5*]. (12

In the first period, the defector gets the same profit as in the cooperative
solution, as all other participants play cooperatively, and in addition he gets the
profit of driving the stock down to the noncooperative abandonment level. In the
second and all later periods he will be punished by all other agents playing
noncooperatively and gets only the profit obtained in the noncooperative solution
(cf. Eq. (7).

If defection is not profitable, 1° > ¢, which implies

5 70— m*
N<1_ST. (13)

As § — 1 the right-hand side of (13) approaches infinity and defection will never
be profitable; the losses from being punished will always outweigh the temporary
gains of defecting. For a positive discount rate (8 < 1) the temporary gains of
defecting may outweigh the long term loss of playing noncooperatively rather than
cooperatively. How likely this is depends on N, the number of players. The gains
from defecting accrue to the defector while the losses from playing noncoopera-
tively rather than cooperatively are shared by all participants. The temptation of
defecting therefore becomes greater the more participants there are. Specifying the
parameters of the growth equation G(S) makes it possible to find the critical value
of N for alternative values of the discount factor. A selection of results is
presented in Fig. 1.

The values of the parameters a, ¢, and & in Fig. 1 are meant to reflect a realistic
range. The parameter a is the maximum relative rate of growth (cf. Eq. (6)). Figure
1 shows solutions for two alternative values of a, 20 and 50%. The ratio ¢ /S shows
the marginal cost of fish (cf. Eq. (2)). The maximum size of the stock is K (cf. Eq.
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Fic. 1. Relationship between the maximum number of players in a cooperative solution and the
minimum marginal cost of fish.

(5)), so ¢/K can be interpreted as the minimum marginal cost of fish, prevailing at
the beginning of exploitation of a pristine stock. Since K has been set equal to 1, ¢
shows the lowest marginal cost of fish as a fraction of the pristine stock. The values
of ¢ in Fig. 1 range from 0.1 to 0.9. A value of 1 would imply that fishing would
never be profitable while a value of 0 would imply no cost of fishing. Finally, the
three values of & in Fig. 1 imply discount rates of approximately 1, 5, and 11%.
Figure 1 indicates that N, the maximum number of participants in the fishery
compatible with a self-enforcing cooperative solution, will be highly sensitive to the
discount factor and the cost of fishing. As already mentioned, a higher discount
rate (lower value of §) makes the cooperative solution less likely. For ¢ = 0.1 and
a = 0.2 N isonly 2when & = 0.9, but rises to 3 and 15, respectively, as é increases
to 0.95 and 0.99. A higher marginal cost of fish makes it more likely that the
cooperative solution will prevail; the abandonment level of the stock in the
noncooperative solution will be higher and the gains from defection smaller. This is
readily seen from the figure; as c¢ increases from 0.1 to 0.9 N approximately
doubles. Finally, raising a from 0.2 to 0.5 approximately doubles N for any given c.
If we interpret N as the number of countries which share a resource and have
the necessary control over their fishing fleets, the results in Fig. 1 are not too
discouraging. Whenever stocks are fully contained within the 200-mile zone but
migrate between different national zones, the number of countries with access
rights is usually highly restricted. Quite often there are just two countries sharing a
stock, like Canada and the United States on George’s Bank, while several countries
share the stocks of the North Sea. A discount rate of the order of 5-10% appears
realistic and would accommodate a cooperative solution among a few countries.
For the case of stocks located outside the 200-mile zone the conclusion is much
more pessimistic. The number of potential exploiters of such stocks is high, as
witnessed by the fact that some boat owners use flags of convenience when fishing
on the high seas. Up to now this number has in fact been indefinite, as interna-
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tional law has not recognized any mechanism to limit access to fishing outside the
200-mile zone. It remains to be seen whether the agreement reached by the UN
conference on highly migratory and straddling fish stocks will change this.

The results in Fig. 1 in part corroborate a tendency which Mesterton-Gibbons
[10] has termed ‘“‘comedy of the commons,” namely that cooperation can arise
spontaneously and be self-enforcing if the commons are sufficiently unproductive.
In Fig. 1 we see that the number of participants that can be accommodated in a
self-enforcing cooperative solution increases with the cost of exploitation. How-
ever, the more productive stock (the one with an intrinsic growth rate of 0.5)
accommodates more participants in a self-enforcing cooperative solution than the
less productive stock, which would seem to contradict the comedy of the commons.
The reason why the more productive stock accommodates more participants in a
self-enforcing cooperative equilibrium is that the losses from playing noncoopera-
tively are greater, being associated with foregone potential growth, while the gains
from defecting are due to fishing down the stock in one period.

It is possible to give an alternative interpretation of the results in Fig. 1. These
results were derived on the assumption that the punishment of a defector would go
on forever. This is unnecessarily heavy handed. The defector might promise to
mend his ways, and all participants might be well advised to revert to the
cooperative solution. However, in order to be an effective deterrent the punish-
ment must go on for a sufficiently long time to make the cooperative strategy more
attractive for a potential defector. To accomplish this the N — 1 participants might
threaten to play the noncooperative strategy for a finite number of periods. We
may ask what is the minimum number of periods (T') in which the noncooperative
strategy must be played in order to deter a potential defector. Instead of (10),
define V4(T) as®

71_0 T 7T* 6T+1 77_0
VUT)=—+7%+ ) &8'— + —. (10"
N Z°N T1-6N
An effective punishment requires 1V° > 174(T), which implies
T In F 14
> T !
In & (14)
where
1-6 Nnd
F=1-———. (15)

As F — 0, the right-hand side of (14) approaches infinity. The value of N which
gives F = 0 is precisely the same as would make (13) an equality. Hence it is
possible to interpret the figures in Fig. 1 as the number of participants that will
make it possible to deter a defector by threatening to play the noncooperative
strategy for a finite number of periods.

% | am grateful to an anonymous referee for pointing this out. Punishment strategies that last for a
finite period are discussed in [12], Chapter 8.6.
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4. COOPERATIVE EQUILIBRIUM WHEN COSTS
DIFFER AMONG AGENTS

The analysis so far has been based on the assumption that all agents have
identical cost functions. However, what if some agents are more efficient than
others? Such agents might be tempted to “undercut” high cost agents and fish
down the stock to a level where the high cost agents are barred from entry.* The
incentive to do so will be strongest when there are many high cost agents and few
low cost agents. Here we shall look at an example with one low cost agent and
N — 1 high cost agents, with cost parameters ¢, and c,, respectively, but otherwise
identical cost functions.

The low cost agent will be able to fish down the stock to a lower abandonment
level than the high cost agents without incurring losses. In the noncooperative
solution two cases may arise. (i) The low cost agent depletes the stock to the level
¢,/p, but since the stock at the beginning of each period is G(c,/p), the high cost
agents can still do some profitable fishing if G(c,/p) > ¢,/p. (ii) The cost differ-
ence is so great that G(c,/p) < ¢, /p. In that case the low cost agent can undercut
the high cost agents and exclude them from the fishery altogether. It would not,
however, be profitable for the low cost agent to leave behind a smaller stock than
that which gives G(S*) = ¢, /p (i.e., exactly undercuts the high cost agents), unless
the optimum stock for the low cost agent alone is less than this.

Hence the abandonment level of the stock in a noncooperative equilibrium will
be

Ch

§* = max[%,G‘l(;”. (16)

The profit of the low cost agent in a noncooperative play may be split into two
parts. The first is the profit of fishing down the stock from G(S*) to ¢, /p. In this
phase (which may be nonexistent) the low cost agent gets only 1 /Nth of the catch.
In the second phase the low cost agent drives the stock further down to S* and has
all this catch to himself. The two parts of the profit of the low cost agent thus are

mF =p[G(S*) — ¢n/p] — ¢|[ING(S*) — In(c,/p)] (17a)
w5 =plen/p — 8*] — ¢[In(cn/p) — InS*]. (17b)

The gain from defection will be greater than before, because some and possibly
all of the catch in the noncooperative equilibrium does not have to be shared with
all agents but will be taken by the low cost agent alone. Equation (10) becomes

¥ )
Vd———+77d+[—+77*]— (10”)
and (13) becomes

N <

: 13"
omi + (1 — §)m! (13°)

* This is what happens in the closed loop solution derived by Clark [1].
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The question arises as to what would be the optimum stock level in the
cooperative solution, since the high cost agents and the low cost agent will not
agree on this. A global optimum would entail fishing by the low cost agent only,
with side payments to the high cost agents. If this is not possible, the agents might
agree on some mutually acceptable abandonment level of the stock that allows
both low cost and high cost agents to make a profit. Here it will be assumed that
the cooperative solution is determined with reference to the cost of the low cost
agent, as this will minimize the likelihood that the low cost agent will want to
defect. Note that this solution does not impose losses on the high cost agents as
long as pS° > ¢,

As before, we can calculate the number of participants accommodated by a
self-enforcing cooperative equilibrium (N). A sample of such results is shown in
Fig. 2 and compared to the case with cost homogeneity. The dashed curves in Fig. 2
show N when all agents have the same cost (same as in Fig. 1). The solid curves
show what happens when one agent has a lower cost parameter (¢) than the rest.
As the cost of one agent starts to fall below that of the rest N drops quickly,
particularly when the cost is high. Note that when the cost is high N is also high,
and the losses from ending up in a noncooperative solution are low compared to
the gains from defecting, since the losses are spread among all players. This is why
it takes only a slight difference in costs to produce a steep fall in N when N is high
initially.

The effect of cost heterogeneity is seen to be substantial; it does not take a great
difference in costs to reduce N to a number not much higher than two, irrespective
of the discount rate, cost level, or productivity of the fish stock. There may be
reason, therefore, for less optimism than expressed above for the likelihood of a
cooperative solution emerging among a limited number of countries sharing a fish
stock.
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5. COOPERATIVE EQUILIBRIUM WITH LIMITED MIGRATION OF
STOCKS ACROSS BOUNDARIES

In the above examples it was implicitly assumed that the agents fish simultane-
ously on the same stock or, what amounts to the same thing, that each agent fishes
in his own area but that the fish redistribute themselves instantaneously between
the areas so that the distribution is always the same in all areas. A more realistic
example could be where each agent fishes in his own area and the fish migrate only
slowly between areas or visit these areas sequentially with a seasonal pattern.® The
growth of the stock could still be dependent on the aggregate size of the stock,
because of a seasonal pattern of breeding migration or because the eggs and larvae
are distributed over the entire habitat of the stock irrespective of where they are
spawned.

Here we shall look at a stylized version of this. Let the stock be measured as
density, i.e., units of fish per unit area (tonnes per square km, for example). The
reason for taking this approach is that the marginal cost of fish depends on the
density of the stock and thus indirectly on the size of the stock, provided that the
area it occupies does not shrink in proportion to the depletion of the stock. To
make the comparison with previous cases easier we define the unit area as the
entire area that the stock occupies, assumed always to be of the same size. Assume
that the area is divided among N agents. In each period we start with a stock (G)
that is uniformly distributed over the area. The amount available for agent i will be
v;G, where vy, is agent i’s share of the area where the stock is located.® The fish
are assumed not to migrate between the agents’ subareas during each fishing
period, so each agent has full control over the abandonment level of the stock in
his area (y,;S,). After each fishing period the stock grows and redistributes itself
randomly over the entire area. This leads to the growth function

G(E%Si,z—1)v
where

The growth of the stock depends on what all agents leave behind (Zv;S,), and all
agents start fishing a stock of the same density at the beginning of each period
[G(E’Yisi,tfl)]'

The globally optimal solution will be the same as derived above (Eq. (4)). For
this solution to be realized, each agent would have to leave behind a stock
compatible with the global optimum, and he would get a share in the total profits
equal to his share of the area where the stock is located. If, on the other hand,
each agent optimizes for himself, the optimum stock to be left behind in period ¢

® The case of sequential fishing is dealt with in [8] and will not be considered here.

® The assumption of uniform distribution is unnecessarily strong. All that is required is that the stock
always redistribute itself in the same way after each fishing period. The share parameters y; will then
be constant.
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will be given by maximizing a modified version of (3):

V.=

1

el

8v{p[G(2¥S; 1) = Si,| —¢[ING(2yS; 1) —InS, ]} (19)

t

Note that the profit function is multiplied by y, because the stock is measured as
density, with the unit area being equal to the entire habitat of the stock.
The first order condition for maximum is

—[p = c/G(2ySP)| + %G (2y,8?) [ p — c/5°] = o. (20)

We shall now define “defection” as optimization of each agent for himself, i.e.,
choosing the abandonment level which is optimal according to Eg. (20). We denote
this by S* and reserve the notation S° for the globally optimal abandonment level.
We continue to assume that defection will be discovered after the period in which
it occurs. In the period after defection occurs, other agents adjust their harvesting
to attain the abandonment level ($*), so in this case the punishment strategy does
not begin to bite until two periods after defection begins. The stock returning at
the beginning of the period after defection will be G(S%_; + S*y,), where the
notation “—i"” means all agents except agent i, the defecting agent. The condition
for defection not being profitable is

0 52
1_8>7Tf+877§l+1_877*, (21)
where
w0 = yl{p[G(E*y]Sj S - ¢[InG(y,S7) — Ins?]) (22a)
7l = v{p[G(3%57) = 87| - [InG(3y,87) — n 5]}
+y{p(SP = SF) —¢(InS) — In §7)} (22b)

mi = v{p[G(ZSPv_, + Sfv) = ¥ = c[InG(38fy_, + SFy)An 8]} (220)
mr = v {p[G(S%,57) - S| - ¢[InG(Sy,57) — In 7]} (22d)

The expression on the left-hand side of (21) is the present value of playing
cooperatively while the expression on the right-hand side is the present value of
defecting. In the period when defection occurs the defector gets the extra benefit
of reducing the density of the stock in his area to the level S* (Eqg. (22b)). This
benefit is, of course, less than in previous cases where the defector could reduce
the overall density of the stock, due to its instantaneous migration. At the end of
this period the defector is found out and everyone depletes his stock to density S*
from then onward, but the stock emerging at the beginning of the period after
defection has not yet reached the long term equilibrium (Eq. (22¢)). The noncoop-
erative equilibrium is reached in the second period after defection (Eq. (22d)).

The maximum number of players that can be accommodated in a cooperative
equilibrium is defined implicitly by (21). Table | shows some solutions for the case
with identical agents (y; = 1/N). In general it is much more likely that a coopera-
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TABLE |

Maximum Number of Agents (N) Compatible with Sustaining the Global Optimum as a
Cooperative Self-Enforcing Equilibrium (a = 0.2)

c=01 ¢ = 0.05
Global optimum Individual optimum Global optimum Individual optimum
8 N S0 G°-S§° S* G*-§* N S0 G°-s° S* G*-§*
08 4 0212 0.0335 0.105 0.0187 2 0133 0.0231 0.057 0.0108
085 7 0.267 0.0391 0.102 0.0184 2 0195 0.0314 0.058 0.0109
09 o« 0.347 0.0453 0.100 0.0180 11 0.291 0.0413 0.051 0.0097

tive solution will emerge in this case than in the case with instantaneous redistribu-
tion of fish analyzed in Section 4. It was noted in Section 4 that N increases with c,
a, and 8. Here we get N = for ¢ = 0.1, § = 0.9, and a = 0.2. N falls quickly,
however, when ¢ or & are reduced below these values; reducing § to 0.85 (18%
rate of discount) or ¢ to 0.05 (lowest marginal cost of fish equal to 5% of the
pristine stock) reduces N to 7 and 11, respectively. Even with this highly restricted
migration, a cooperative solution is not guaranteed.’

Table | also shows figures that indicate the waste associated with agents
choosing the individually optimal rather than the globally optimal solution (note
that the pristine stock and its density are equal to 1). Superscript “‘0” refers to the
global optimum while *“*” refers to the individual optimum; if the number of
participants were to increase by one the equilibrium solution would go from the
global optimum to one very close to the individual optimum for the number of
agents shown in the table. The individually optimal stock level is in all cases very
much lower than the globally optimal level and in fact not much greater than the
abandonment level with free access (c¢). The amount harvested is equal to the
difference G — S. In the two cases shown in Table | the amount harvested in the
noncooperative solution (the individual optimum) is only a quarter to one-half of
the cooperative (globally optimal) harvest.

6. STRADDLING STOCKS

The final case we shall consider is one where a single agent has a high degree of
control over a stock which is partly accessible to an indefinite number of agents.
The case we have in mind is the one where a fish stock is largely contained within
the 200-mile zone but straddles into the high seas. There are many real world cases
of this kind, e.g., the groundfish stocks of the Grand Banks of Newfoundland, the
Alaska pollack which is shared between the United States and Russia and straddles
an area popularly known as the Donut Hole, and the Arcto-Norwegian cod which is
shared by Norway and Russia and straddles an area similarly known as the
Loophole.

" If the other players discover the defection immediately and start their punishment strategy in the
same period as the defection occurs, their stock abandonment level in the period of defection will be
the same as the defector’s. The first term on the right-hand side of (21) will be divided by N, the second
drops out and the last term will be multiplied by & instead of 2. Expression (21) becomes a variation
around an optimal path and is always negative. Hence defection will never be profitable and the
cooperative equilibrium will be compatible with any number of agents.
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We shall model this in a manner similar to the previous section. A certain
fraction of the stock is supposed to be located within the “‘dominant agent’s” area
and the remainder outside and accessible to an indefinite number of agents. We
ignore transboundary migration during the phase of exploitation; the dominant
agent can choose the abandonment level of the stock within his area, while the
remaining agents are assumed not to be interested in a cooperative solution, their
number being indefinite, and hence choose an abandonment level for the remain-
der of the stock equal to the break-even marginal cost of fish (p = ¢/S$*). The
transboundary externality is captured by letting the growth of the stock depend on
total abandonment in the two areas, like in Eq. (18) above.

The dominant agent is assumed to choose an optimal abandonment level for his
part of the stock, taking into account that the “fringe” agents choose the abandon-
ment level §* =c/p for “their” part of the stock. The optimal steady-state
abandonment level of the stock for the dominant agent will be given by a modified
version of Eq. (20). With « being the share of the stock controlled by the dominant
agent, and letting S and S* denote the abandonment level of the dominant agent
and the fringe agents, respectively, the objective function of the dominant agent
becomes

V= % sa{p[G(as,_, + (1 a)s*) - 5]
t=0

—c[InG(aS,_, + (1 — a)S*) —InS,]}, (19")
with the optimum abandonment level being given by

—(p—¢/8% + 8aG'(aS° + (1 — a)$*)[p — ¢/G(aS® + (1 — a)$*)| = 0.
(20")

A set of optimum solutions for the dominant agent are shown in Table Il. The
solution for « =1 is, of course, identical to the globally optimal solution. A
striking feature of the solutions shown in Table Il is how quickly the total present
value and the optimum abandonment level of the stock fall with the dominant
agent’s share of the total stock. A dominant agent who controls 95% of the stock
chooses an optimum stock level which is only 75% of the globally optimal level,
and the total present value of profits (fringe plus dominant agent) is only 67% of
the global optimum. This indicates that only a minor straddling of fish stocks into

TABLE 11

Optimum Stock Level, Growth, and Present Value (PV) of Profits for Different Stock Shares of
the Dominant Agent (a = 0.2, ¢ = 0.1,and § = 0.9)

S° (dominant PV dominant
a agent) G agent PV fringe Sum PV
1 0.347 0.392 0.330 0 0.330
0.95 0.260 0.291 0.179 0.042 0.221
0.9 0.198 0.219 0.097 0.040 0.138
0.8 0.144 0.158 0.039 0.025 0.064
0.5 0.111 0.125 0.010 0.013 0.023

0.1 0.102 0.118 0.001 0.01 0.015
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the high seas may result in substantial losses of efficiency. As the dominant agent’s
share of the stock is reduced further, the optimum abandonment level of the stock
falls rapidly and so does the present value of aggregate profits; when the dominant
agent controls one-half of the stock, the optimum abandonment level is only
slightly above the free access abandonment level (0.1), and the aggregate profits
are only about 5% of the global maximum.

Another interesting feature of the results in Table Il is that beyond a certain
point the fringe is not better off by having access to a larger part of the stock; the
fringe’s profit actually decreases slightly as its share of the stock increases from 5
to 10%. The reason is that the dominant agent maintains a large and productive
stock as long as he has a high degree of control and some of the benefits of a large
stock spills over to the fringe due to the growth externality.

7. CONCLUSION

The above analysis indicates that the number of agents that will cooperate in
setting the exploitation rate for a shared fish stock is quite limited, but probably
not much lower than the number of countries typically sharing a fish stock
contained within 200 miles, and quite possibly higher. Cost heterogeneity will
greatly limit this number, but in repeated games with an indefinite horizon low cost
agents will not necessarily outfish high cost agents as in Clark’s closed loop
differential game [1]. The number of agents compatible with a self-enforcing
cooperative solution is highly sensitive to the discount rate.

For stocks that are contained within separate national fishing zones but the
growth of which is interrelated, depending on the aggregate stock size, the number
of agents compatible with a self-enforcing cooperative equilibrium is much higher,
but becomes very sensitive to fishing costs and the discount rate as these fall below
a certain value. It is not at all unlikely that this critical number of agents will be
comparable with or higher than the number of countries sharing stocks that are
fully contained within 200 miles. Letting one of these zones represent the high seas
with an indefinite number of agents, with one agent acting as a “leader” in the
remaining zone, it appears, however, that even an ostensibly insignificant “fringe”
may lead to significant losses of efficiency.
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