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For over 3.5 Gyr, the geochemical composition of our planet has 
been shaped by the evolution and diversification of bacteria1. 
Most prominently, the Great Oxygenation Event was caused by 

cyanobacteria roughly 2.35 Gyr ago and dramatically altered Earth’s 
surface environments and the subsequent evolution of life2. Despite 
the prominent role of bacteria in ancient and modern biospheres, 
little is known about the dynamics by which their diversity evolved 
over Earth’s history. For many eukaryotes, the fossil record provides 
estimates of past diversity3–5, revealing that extant global eukaryotic 
diversity only represents a small fraction of the total diversity that 
existed in the past. Analogous estimates for bacterial diversity are 
lacking, largely because their fossil record is extremely poor, and 
thus the clades that are known are those with extant representatives. 
Fortunately, past diversification dynamics also leave a footprint in 
molecular phylogenies of extant organisms6. Many approaches have 
been developed to infer past diversification dynamics from these 
patterns7–9. Despite these methodological advances, global bacte-
rial diversification dynamics remain largely unresolved and much 
less studied than eukaryotic diversification. Previous studies only 
examined diversification within a single bacterial genus10–12 or a 
single archaeal phylum13, or phylogenies covering only a small and 
biased portion of diversity (~12,000 cultured bacterial and archaeal 
species)14. Many of these studies do not report absolute speciation 
or extinction rates10,12,13. Importantly, no previous study properly 
accounted for the incomplete sampling of bacterial diversity repre-
sented in the phylogenies. Knowledge of the ‘sampling fraction’, in 
addition to any phylogenetic information, is critical for estimating 
speciation and extinction rates from phylogenies, even to an order 
of magnitude15. As the extant global bacterial diversity was so far 
largely unknown, previous studies either assumed that the number  
of catalogued species was exhaustive14 (an inaccurate assumption16), 
used local (rather than global) diversity estimates, such as for a 
small quantity of soil14, or estimated the unknown sampling fraction 

directly from the phylogeny without additional information (an 
impossible task15). Consequently, there exists no rigorous estimate 
of global bacterial speciation rates, extinction rates or total diver-
sity over time, and this uncertainty has clouded our interpretation 
of bacterial evolution over Earth’s history. It is commonly hypoth-
esized that bacterial extinction may not even occur at significant 
rates11,17–20, partly due to their large population sizes and wide dis-
persal ranges18,19, while others hypothesized that animal extinctions 
could cause substantial host-associated bacterial extinctions21.

To address these questions, we examined bacterial phylogenies 
comprising up to hundreds of thousands of clades, using mathe-
matical tools that we developed specifically for large phylogenies. 
To properly account for the fraction of undiscovered diversity in 
our methods, thus resolving a long-standing problem in bacterial 
phylogenetics, we independently estimated global bacterial diver-
sity using massive DNA sequencing data from 60 studies in diverse 
environments across the world. To evaluate the robustness of  
our results, we used numerical simulations and examined several 
phylogenies constructed using alternative methods. Importantly, 
some of our phylogenies were constructed from environmental 
sequences retrieved using culture-independent methods, providing 
a less biased (and thus more suitable22) representation of bacterial 
diversity compared with previous studies10,14. We used our methods, 
as well as the independently estimated global bacterial diversity, to 
reconstruct global bacterial speciation, extinction and diversifica-
tion (speciation minus extinction) rates over the past 1 Gyr.

We used two time-calibrated bacterial phylogenies (‘timetrees’) 
based on the 16S ribosomal RNA (rRNA) gene—a popular marker 
gene in microbial ecology and evolution (448,112 and 162,371 tips, 
respectively; see Supplementary Table 1 for an overview and the 
Methods for details). We also analysed cyanobacteria alone due to 
their great importance to Earth’s evolution, using four 16S rRNA-
based timetrees constructed with various methods (586, 6,308, 
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6,302 and 1,579 tips, respectively). In all cases, tips in the trees rep-
resent operational taxonomic units (OTUs); that is, clusters in the 
16S rRNA gene delineated at 99% similarity—a common microbial 
‘species’ measure23,24. We stress that bacterial OTUs only provide an 
approximate ‘species’ analogue to sexually reproducing organisms, 
and hence ‘speciation’ rates reported here should a priori only be 
interpreted as branching frequencies in 16S rRNA sequence space.

estimating diversification dynamics from large timetrees
Our methods were derived from standard stochastic models for 
cladogenesis, in which extant lineages can split or go extinct ran-
domly and independent of each other as time proceeds25. These 
models predict the total number of extant lineages (total diversity) 
at each time point, as well as the number of lineages represented 
in the final timetree comprising only extant and sampled taxa (lin-
eages through time (LTT))7. Our methods can account for the effect 
of incomplete taxon sampling, as well as for speciation and extinc-
tion rates that vary over time. In contrast to most existing methods, 
our methods consider timetrees in the continuum limit of infinitely 
many lineages, which yields novel ways to extract information from 
timetrees (Supplementary Information section 1.3). Notably, given 
some LTT curve, one can estimate a quantity that is related to the 
diversification rate at each time point, and which we refer to as the 
pulled diversification rate (PDR):
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where t is time, λ is the instantaneous speciation rate and μ is the 
instantaneous extinction rate. The PDR partly resembles the diversi-
fication rate (r =  λ −  μ), but is modified (pulled) by the term λ−1dλ/dt,  
which represents the relative rate of change of λ over time and is 
small when λ varies slowly. In contrast to the diversification rate, 
the PDR can be estimated ‘non-parametrically’ from the curvature 
and slope of the LTT curve at any point in time. This approach does 
not require fitting a specific parameterized model25, nor a priori 
assumptions on how λ and/or μ vary over time, nor assumptions 
about whether the PDR or diversification rate was positive or nega-
tive. More precisely, in the continuum limit, the PDR can be calcu-
lated using the LTT for any time t using the formula:
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where ν− = ∕Ñ Ñ∕∼ t t t( ) (1 ( ))d d  is the relative slope of the LTT and 
Ñ t( ) is the value of the LTT at time t. For finite trees, equation (2) is 
only an estimate.

Similar to the PDR, one can also estimate ‘pulled’ versions  
of other important variables, including the pulled extinction  
rate (PER),
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and the pulled total diversity (PTD),
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(estimation formulas provided in Supplementary Information  
section 1.3). Here, λo refers to the most recent speciation rate  
(that is, as observed near the tips of the tree) and N is the total diver-
sity at any given point in time. The PER and PTD are equal to the 
extinction rate μ and the total diversity N, respectively, when λ is 
constant (λ =  λo). If λ varies slowly λ λ μ∕ ≪− t( d d )1 , the recent μp 
still resembles the recent extinction rate, although the difference 

increases for older ages. Rapid variations in λ and/or μ will usually 
lead to substantial variations in μp and rp.

In contrast to conventional maximum-likelihood or Bayesian 
methods26,27 for estimating λ, μ, r and N, the pulled variables μp, 
rp and Np can be estimated from the LTT for each past time point 
without any assumptions about how λ and μ varied over time, and 
without fitting a specific parameterized model. Model fitting is the 
current de facto standard in phylogenetics-based reconstruction 
of diversification25,28, and is, in fact, included in the present study. 
However, it requires that a parameterized form be specified before-
hand for λ and μ; for example, accounting for rate shifts at discrete  
time points, leading to well-known trade-offs between model  
realism and temporal resolution on the one hand versus model  
simplicity and confidence in parameter estimation on the other 
hand. The caveat is that μp, rp and Np are composite variables, and  
in general, solely knowing μp, rp and Np does not unambiguously 
determine the constituents μ, λ, r and N. This limitation can be 
traced back to the fact that extinction partly erases a clade’s history29 
(further discussion in Supplementary Information section 5).

As we demonstrate here, pulled variables are a powerful tool for 
obtaining insight into past diversification dynamics and for testing  
model assumptions. Using timetrees simulated under realistic  
scenarios, we found that pulled variables can reveal past changes in 
diversification rates, such as those due to mass extinction events, 
oscillating speciation rates and short temporary spikes in the  
speciation rate, as well as diversity-dependent speciation and extinc-
tion rates (Fig. 1, Supplementary Figs. 1–6 and Supplementary 
Information section 2). In particular, our simulations revealed that 
changes in the speciation and/or extinction rate usually lead to 
similarly strong changes in μp and that, reciprocally, a constant μp 
over time is a strong indication that both λ and μ were constant or 
varied only slowly over time (details in Supplementary Information 
section 4). Our simulations also revealed that the magnitude of the 
PDR is usually comparable to the magnitude of the diversification 
rate, and in fact, in all of our simulations, the two closely resembled 
each other. Furthermore, we found that Np provides a quick way  
to roughly estimate past total diversities to order-of-magnitude 
accuracy (Fig. 1a–e), provided λ does not change drastically over 
time (that is, by orders of magnitude).

estimating extant global bacterial diversity
Estimating speciation and extinction rates and past total diversities 
from a timetree requires knowledge of the fraction of extant diver-
sity represented in the tree15. Substantial uncertainty currently exists 
regarding the extent of extant bacterial diversity, with estimates 
ranging from a few million OTUs30 to trillions of OTUs31. To better 
constrain extant bacterial diversity, we examined 165,422 bacterial 
OTUs recovered de novo from 16S rRNA sequences amplified from 
various environments, such as animal guts, the ocean, lakes and 
soils (60 distinct studies comprising 6,303 samples). De novo OTUs  
covered ~200 base pairs (bp) in the V4 region of the 16S rRNA gene—
a region commonly targeted in microbial taxonomic surveys32. We 
calculated the overlap of these de novo OTUs with SILVA—one of 
the largest 16S rRNA sequence databases33—to estimate the fraction 
of extant bacterial and cyanobacterial OTUs covered by SILVA, as 
well as the total number of extant OTUs. Our approach is analogous 
to traditional mark–recapture approaches for estimating popula-
tion sizes34, whereby the number of individuals found in a second 
survey (analogous to the number of OTUs in SILVA) is divided by 
the fraction of individuals marked in a first survey (analogous to 
our de novo dataset) that were recaptured by the second survey. We 
found that SILVA covers ~33% of de novo OTUs at 99% similarity. 
Based on the presence of 448,112 16S rRNA clusters in SILVA (that 
is, obtained by clustering SILVA’s full-length 16S rRNA sequences 
at 99% similarity), we estimate that there exist globally ~1.4 million 
bacterial full-length OTUs (overview in Supplementary Table 2).  
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This estimate is robust (in order of magnitude) to variation in the 
methodology, sequencing depth and datasets used (all estimates 
are within 1.4–1.9 million; Supplementary Information section 3),  
and is comparable in order of magnitude to recent estimates by 
Schloss et al.30. Furthermore, based on the number of partial-length 
clusters in SILVA (that is, obtained by clustering the V4 region 
only), we estimate that there exist globally ~451,000 bacterial  
partial-length (V4) OTUs.

estimating bacterial speciation and extinction rates
To estimate recent bacterial speciation and extinction rates, we fit-
ted parametric models to the LTT of the timetrees over a relatively 
short recent time interval (200 Myr). To gain further insight into 
past diversification dynamics and to scrutinize model assump-
tions, we also fitted models over a more extended time interval 
(1,000 Myr) and used non-parametric methods to estimate PDRs, 
PERs and PTDs. We found that simple models with constant spe-
ciation and extinction rates fitted bacterial and cyanobacterial LTTs 
well over the past 1 Gyr (mean relative deviation (MRD) below 5% 
in all cases; Fig. 2a,b and Supplementary Fig. 21a–d). This indicates 
that overall speciation and extinction rates were roughly constant 
over time. This conclusion is supported by our observation that  
fitted speciation and extinction rates change only moderately (by less  
than 35% in all cases; Supplementary Fig. 18) when models are fitted 
over the shorter time interval (200 Ma). Our conclusion is also con-
sistent with our estimates that PERs were almost constant over time 
and almost identical to the extinction rates fitted in the models (less 
than 10% difference at any time point; Fig. 2d–f and Supplementary 
Fig. 18). As mentioned previously, a constant PER in and of itself is 
indicative of constant or only slowly varying speciation and extinc-
tion rates, because a rapidly and strongly varying speciation and/
or extinction rate usually results in a varying PER (see simulations 
in Fig. 1 and discussion in Supplementary Information section 2).  
Based on the small variation observed in the PERs, speciation 
and extinction rates must have had relative rates of change below 

~0.005 Myr–1 (see explanation in Supplementary Information  
section 4). In comparison, estimated PERs for birds and vascu-
lar plants vary substantially over time (Fig. 2i and Supplementary  
Fig. 19c, using previously published timetrees35,36).

Our findings suggest that, during the past 1 Gyr, global bacterial 
speciation and extinction rates were not substantially affected during 
the mass extinction events seen in eukaryotic fossil records3–5. This 
conclusion does not support previous speculations that extinctions 
of plant- and animal-associated bacteria—resulting from extinction 
of their hosts—may contribute substantially to bacterial extinction 
rates21. The frequent existence of multiple ecotypes within single 
OTUs37,38 may have facilitated bacterial lineage persistence during  
environmental perturbations and eukaryotic mass extinctions.  
Even if bacteria experienced extinctions at local scales because of 
environmental perturbations39, these extinctions may have been 
largely buffered at global scales due to wide dispersal ranges40. Our 
findings also suggest that overall bacterial speciation and extinc-
tion rates were not dramatically altered by eukaryotic radiation 
events, such as the radiation of animals ~600 Myr ago (Ma) or the 
emergence of land plants ~465 Ma. It is possible that diversifica-
tion within individual bacterial clades may have been influenced 
by eukaryotic radiations and extinctions11,12, and that these cases 
are overshadowed when considering all bacteria together. We also 
cannot rule out slow effects on speciation and extinction rates (at 
time scales of billions of years), nor brief fluctuations (shorter than 
~1 Mya) with little effect on total diversity, both of which could be 
missed by our methods.

We emphasize that our results do not imply that speciation and 
extinction rates are homogeneous across clades (‘clock-like’). For 
example, Marin et al.14 found variable diversification rates across 
lineages of the Firmicutes bacterial phylum. Using simulations, we 
found that timetrees, in which speciation and extinction rates are 
evolving heritable traits and are thus not clock-like, can be fitted  
well by models with homogenous rates; in these cases, fitted  
speciation and extinction rates approximately correspond to the 
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Fig. 1 | Non-parametric methods capture complex diversification scenarios. a–e, LTT (grey continuous curves), total diversities (dashed curves) and 
non-parametrically estimated PTDs for trees simulated under various realistic scenarios, including a slow mass extinction event ~80 Ma (a), a fast mass 
extinction event ~90 Ma (b), a speciation spike ~90 Ma (c), a gradually increasing diversity-dependent speciation rate (d) and an oscillating speciation 
rate (e). f–j, PERs (solid curves) and PDRs (dashed curves), estimated non-parametrically from the LTT in a–e under the same scenarios. In all scenarios, 
PER and diversification rates reveal changes in extinction and/or speciation rates, and PTDs approximately resemble the true total diversities (known 
in this case, since trees were generated via simulations). In g, the estimated PER and PDR are damped due to our noise filter, which blurs short (~1 Ma) 
fluctuations, although the mass extinction event’s footprint is still clearly visible in the LTT and PTD (b). For more details and additional simulation 
examples, see Supplementary Information section 2 and Supplementary Figs. 1–6.

Nature ecoLogy & evoLutioN | VOL 2 | SEPTEMBER 2018 | 1458–1467 | www.nature.com/natecolevol1460

http://www.nature.com/natecolevol


ArticlesNature ecology & evolutioN

average speciation and extinction rates over all lineages (details in 
Supplementary Information section 4). This means that if bacterial 
speciation and extinction rates deviated from clock-like behaviour, 
our clock-like models would not necessarily be able to detect this 
deviation. Hence, despite our finding of roughly constant overall 
bacterial speciation and extinction rates over time, we cannot rule 
out potential differences between clades at any given time point. We 
also point out that our results only pertain to overall global bacterial  
diversification and do not distinguish between environments  
(for example, terrestrial versus marine).

Our fitted models suggest that recent overall extinction rates 
are 0.03–0.05 extinctions lineage–1 Myr–1 for bacteria and 0.02–0.06  
extinctions lineage–1 Myr–1 for cyanobacteria (Fig. 3b and Supple-
mentary Fig. 18b). These estimates are consistent with estimated 
recent PERs (Fig. 2d–f and Supplementary Figs. 21d–f and 22a).  
Our estimates are robust (to an order of magnitude) against variations  
in the dating of our timetrees (for example, 0.015–0.05 extinc-
tions lineage–1 Myr–1 for bacteria; Supplementary Fig. 23). For com-
parison, using the same methods, we also estimated global extinc tion 
rates for vascular plants (~0.35 extinctions lineage–1 Myr–1) and birds  
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Fig. 2 | Bacterial, cyanobacterial and bird diversification dynamics through time. a–c, LTT (grey solid curves) for bacteria (a), cyanobacteria (b) and birds 
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(~0.05 extinctions lineage–1 Myr–1), reproducing previous estimates  
for plants and animals (order of magnitude: ~0.1 extinctions  
lineage–1 Myr–1)41. We once more point out that bacterial OTUs  
are only approximately analogous to plant and animal species24,42; 
hence, comparisons between the two should be treated with caution.

We further found that bacterial speciation rates are only slightly 
above extinction rates—an observation commonly made for larger  
organisms29. Specifically, fitted bacterial diversification rates 
(~0.004–0.005 Myr−1) are much lower than fitted extinction and  
speciation rates (Fig. 3c). These values are consistent with similarly 
low estimated PDRs (~0.003–0.004 Myr−1; Fig. 2g and Supplementary 
Figs. 21i and 22b). Because bacterial extinction rates are so close to 
speciation rates, most bacterial lineages that ever existed are now 
extinct. Based on our fitted models, for each extant bacterial and 
cyanobacterial OTU there have been ~10–14 and ~5–24 extinctions 
over the past 1 Gyr, respectively. The conclusion that only a small 
fraction of bacterial lineages survived to the present resembles ana-
logous observations for plants and animals29. Our finding of substan-
tial bacterial extinction contrasts with reports that diversification 
within the Aeromonas bacterial genus is best explained without 
extinction11, although most analyses yielding zero extinction rates 
are arguably probably wrong29. Nevertheless, at this point, we cannot 
exclude the possibility that some younger clades (for example, genera) 
may exhibit much lower extinction rates than the bacterial average.

global bacterial diversity increases over time
According to all fitted models, bacterial and cyanobacterial diversi-
fication rates have been positive over the past 1 Gyr, suggesting an 
increase in the total diversity over time. Consistent with this, esti-
mated PDRs are also mostly positive over the past 1 Gyr (Fig. 2g,h 
and Supplementary Fig. 21g–i), and PTDs (Np) increase roughly 
exponentially over time (Fig. 2a–c and Supplementary Fig. 21a–c). 
In principle, a positive PDR and an exponentially increasing Np 
could be a mere result of a decreasing speciation rate over time (that 
is, λ >  λo in equation (14)), rather than reflecting a truly increas-
ing total diversity. This scenario seems unlikely because it would 
imply that λ (or the ratio λ/N, if N also varied) decreased substan-
tially and approximately exponentially over the past 1 Gyr, and that 
μ followed in a similar way (since λ −  μ ~ 0). It is hard to imagine 
a simple scenario that would lead to these specific trajectories in 
λ and μ (see discussion in Supplementary Information section 4). 
Instead, a simpler explanation for an exponentially increasing Np 
is that λ and μ were approximately constant and thus N increased 
fairly steadily over time. This interpretation is also supported by 
the fact that when plotted on a logarithmic axis over time, PTDs 

exhibit a similar slope to the total diversities predicted by the  
fitted constant-rate models. A continuous increase in bacterial diver-
sity has been observed previously in a smaller dataset14. Similarly, 
Gubry-Rangin et al.13 found a stably high diversification rate within 
the Thaumarchaeota archaeal phylum over the past 400–700 Myr. 
A continuous increase in bacterial diversity is also comparable to 
the continuous increase of diversity observed in many eukaryotic 
taxa during the past 200 Myr4. However, we emphasize that diversi-
fication rates reconstructed here a priori only reflect 16S branching 
dynamics and may not reflect ecological diversification43.

conclusions
Our analysis sheds light on bacterial diversification over geological 
time. We found evidence that global bacterial diversity has mostly 
increased over the past 1 Gyr, with roughly constant or only slowly 
changing overall speciation and extinction rates when averaged over 
all clades. This conclusion has implications for how life unfolded 
over Earth’s history, since bacteria are the most ancient and the most 
ubiquitous form of life on Earth44. We estimated that global bacterial 
extinction rates are only slightly below their speciation rates, and that 
only a small fraction of bacterial lineages that ever existed survived 
to the present. This has important implications for how we inter-
pret records of ancient life. Some authors have interpreted morpho-
logical similarities between microfossils and extant bacterial taxa as 
signs of ‘extreme evolutionary stasis’ and absence of speciation and 
extinction17,20, while others even consider cyanobacteria to be living 
fossils that do not go extinct19. Our finding that lineage turnover is 
an important aspect of bacterial evolution suggests that it is possible 
that ancient microfossils belonged to extinct lineages, regardless of 
whether morphology was conserved or convergent45, although these 
extinct lineages may be stem lineages of extant groups. In a similar 
fashion, it is possible that some ancient molecular biomarkers, such 
as fossil lipids46, were produced by lineages that have gone extinct.

Our work extends various empirical palaeontological ‘laws’ of 
macrobial evolution29 to bacteria—namely, that: extinction is an 
integral part of evolution; lineages are short-lived at geological 
time scales; the number of extinct species far exceeds the number 
of extant species; and speciation and extinction rates are typically 
similar in magnitude. Despite the high diversity of extant micro-
organisms, this diversity only represents a snapshot of the microbial 
diversity ever to have inhabited our planet.

Methods
Estimating the total number of extant OTUs. To estimate the total number of 
extant bacterial OTUs, we used two alternative approaches. In the first approach, 
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Fig. 3 | estimated recent speciation, extinction and diversification rates. a–c, Recent speciation rates (a), extinction rates (b) and diversification rates (c), 
estimated for various taxa and using various timetrees (one box per timetree). Estimates were obtained by fitting cladogenic models over a recent time 
interval of 200 Myr (for estimates over longer time intervals, see Supplementary Fig. 18). For each bacterial or cyanobacterial timetree, various alternative 
estimates of incomplete sampling fractions were used (Supplementary Tables 2–4); boxes span the results from all alternatives. Tree labels and boxes are 
coloured by taxon. Summaries of timetree sources and construction methods are indicated in brackets (see Methods for details).
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a large random set of partial-length OTUs (99% identity in the V4 region of the 
16S rRNA gene), recovered de novo from environmental samples, was compared 
with the SILVA SSU database (release 128)47, and the total number of extant 
OTUs was estimated based on the overlap between the de novo OTUs and 
SILVA. In the second approach, variable-length 16S rRNA sequences extracted 
from metagenome-assembled genomes (MAGs)48 were compared with SILVA, 
and again the total number of extant OTUs was estimated based on the overlap 
between the MAG 16S rRNA sequences and SILVA. In both cases, non-redundant 
(NR99) full-length 16S rRNA sequences in the SILVA database were first clustered 
at 99% identity using uclust version 1.2.22 (ref. 49) (options: –usersort –nucleo). 
Furthermore, to assess the potential phylogenetic bias of OTUs represented in 
SILVA, and how this bias affects the representation of older clades compared with 
random OTU sampling, we constructed and dated a phylogenetic tree of the de 
novo OTUs and counted the fraction of lineages in the tree over time that was 
represented in SILVA. Below, we describe these procedures in detail.

Generating de novo OTUs. We downloaded public raw Illumina reads of 16S rRNA 
gene amplicons (V4 region) from the European Nucleotide Archive (https://
www.ebi.ac.uk/ena) for 6,303 samples from 60 studies across the globe, including 
animal guts, marine sediments and water columns, soils, bioreactors, lakes, and 
phytotelmata (henceforth referred to as the ‘de novo dataset’; accession numbers 
provided in Supplementary File 1). We focused particular effort on the inclusion of 
soils (1,067 samples), which are thought to host a large fraction of Earth’s bacterial 
diversity32. Any paired-end reads were merged using flash version 1.2.11 (ref. 50) 
(options: -min-overlap= 20 -max-mismatch-density 0.25 -phred-offset= 33 -allow-
outies). Merged and single-end reads were trimmed and quality-filtered using 
vsearch version 2.4.3 (ref. 51), keeping only reads at least 200 bp long after trimming 
(options: -fastq_ascii 33 -fastq_minlen 200 -fastq_qmin 0 –fastq_maxee 1 -fastq_
truncee 1 -fastq_maxee_rate 0.005 -fastq_stripleft 7). Samples with more than 
200,000 quality-filtered reads were rarefied down to 200,000 reads to reduce the 
computation time, by randomly picking reads without replacement. Rarefied reads 
were chimera-filtered de novo, separately for each sample, using vsearch (options: 
--abskew 1.9 -mindiv 0.5 -minh 0.1), yielding 265,640,818 quality-filtered and 
chimera-filtered reads in total, with a mean length of 262 nucleotides. Pooled reads 
from all samples were error-filtered and clustered de novo at 99% similarity using 
cd-hit-otu version 0.0.1 (ref. 52), yielding 345,229 OTUs. OTUs were subsequently 
filtered anew for chimeras using vsearch (same options as before), yielding 216,707 
OTUs. Lastly, any OTUs found in fewer than 2 samples were omitted to further 
reduce spurious OTUs, leaving us with 185,620 OTUs for downstream analysis.

We note that the above quality filters were chosen to be quite stringent in 
order to minimize the recovery of spurious OTUs (for example, stemming from 
sequencing errors or chimeras); however, this conservatism potentially came at 
the cost of also removing real OTUs. Minimizing the recovery of spurious OTUs is 
important for both a correct estimation of global bacterial diversity and improving 
the quality of the phylogenetic tree generated from the OTUs (see below). We 
emphasize that falsely omitting real OTUs does not affect our estimation of global 
bacterial diversity, as long as the inclusion or omission of an OTU is independent 
of the OTU’s presence in SILVA. For similar reasons, while our omission of OTUs 
found in fewer than two samples may bias our census towards more cosmopolitan 
OTUs, it should not affect our estimation of global bacterial diversity. Indeed, 
when we also included OTUs found only in a single sample, our estimate of  
global bacterial diversity changed by less than 10%.

We point out that our mark–recapture-type approach may have underestimated 
global extant bacterial diversity if some bacterial OTUs are generally much 
more difficult to detect than others (for example, if they are only present in 
very specialized environments). In particular, extreme environments (such 
as hot springs) are under-represented in our de novo dataset, although these 
environments host relatively low diversity compared with other environments, 
such as soils. Future, more exhaustive sequencing studies, including a greater 
variety of environments, will undoubtedly improve estimates of extant bacterial 
diversity. An underestimation of extant bacterial diversity in the present study 
would mean that bacterial extinction rates are even higher than estimated here15. 
However, it would not affect our conclusions regarding the constancy of overall 
bacterial speciation and extinction rates over time, nor our conclusions regarding 
the continuous nearly exponential increase in bacterial diversity, unless the missed 
diversity was strongly phylogenetically biased and clustered within the tree—a 
scenario we view as unlikely.

Fraction of de novo OTUs represented in SILVA. De novo OTUs were taxonomically 
identified using a consensus approach based on the first 10 hits in SILVA at a 
similarity threshold of at least 70%. Specifically, OTUs were globally aligned to the 
SILVA non-redundant (NR99) SSU reference database using vsearch version 2.4.3 
(ref. 51) at a minimum similarity of 70% (options: --id 0.7 --strand both --iddef 
2 --maxaccepts 10 --uc_allhits), while keeping track of the taxonomies provided 
by SILVA for each hit. For any given OTU, if at least one hit had a similarity of 
100%, all hits with a similarity of 100% were considered candidates for forming a 
consensus taxonomy. Otherwise, if at least one hit had a similarity of s ≥  70%, all 
hits with a similarity of at least (s −  3%) were used as candidates for a consensus 
taxonomy. For any candidate set of hits, the consensus taxonomy was defined as 

the taxon at the lowest taxonomic level possible, containing all of the candidate hit 
taxonomies. If an OTU did not match any SILVA entry at or above 70% similarity, 
or did not form a consensus taxonomy even at the domain level, it was considered 
unidentified and was subsequently omitted. A total of 171,816 OTUs could be 
identified at some taxonomic level. OTUs identified as eukaryotes, chloroplasts and 
mitochondria were omitted from all subsequent analyses. Taxonomically identified 
OTUs were matched to the SILVA non-redundant (NR99) set using vsearch 
(options: --iddef 2 --strand both) at a similarity threshold of 99%. For any given 
focal taxon (for example, bacteria, archaea or cyanobacteria), we estimated the 
fraction (ρ) of extant OTUs represented in SILVA as the fraction of taxonomically 
identified de novo OTUs that could be aligned to the clustered SILVA database 
(clustered at 99% identity) at a similarity of ≥ 99%.

Total number of extant OTUs (based on overlap with SILVA). Since de novo OTUs 
only cover a fraction of the 16S rRNA gene (~200 bp from the V4 hypervariable 
region), correctly estimating the number of extant partial-length (V4) OTUs 
requires knowledge of the number of V4 OTUs already contained in SILVA. 
Therefore, we extracted and clustered the part of 16S rRNA sequences in SILVA 
corresponding to the region covered by de novo OTUs. Specifically, we aligned 
de novo OTUs to SILVA using the QIIME script parallel_align_seqs_pynast.py53, 
and using a reduced set of the SILVA alignments (clustered at 90% similarity) as a 
template. We then identified the first nucleotide position in the OTU alignments 
that had a gap fraction below 0.9, and extracted the part of the NR99 SILVA 
alignments starting at that nucleotide position and extending 200 bp in the 5′  →  3′  
direction (omitting gaps). Extracted partial SILVA sequences were then clustered 
at 99% identity using uclust version 1.2.22 (ref. 49), yielding 161,070 bacterial and 
archaeal partial-length clusters.

The global number of extant V4 OTUs in the focal taxon was estimated as 
NV4/ρ, where NV4 is the number of V4 clusters within the focal taxon in SILVA, 
and ρ is the previously estimated fraction of extant OTUs within the focal taxon 
represented in SILVA. To estimate the number of extant full-length OTUs, we 
multiplied the estimated number of extant V4 OTUs by the ratio NFL/NV4, where 
NFL is the number of full-length clusters within the focal taxon in SILVA. Estimated 
fractions of V4 OTUs represented in SILVA at 99% similarity, as well as total 
numbers of extant V4 OTUs and full-length OTUs are listed in Supplementary 
Table 2. We note that one important assumption of the above estimation method 
is that the presence or absence of an OTU in the de novo dataset is independent 
of its presence or absence in SILVA. This assumption is probably approximately 
met, since OTUs in the de novo dataset were recovered without the use of any 
reference database and the de novo dataset covers a wide range of environments. 
We emphasize that this assumption does not imply that SILVA is phylogenetically 
unbiased (that is, we do not assume that OTUs co-occur in SILVA regardless of 
their phylogenetic relatedness). In fact, we detected substantial phylogenetic bias 
in SILVA when comparing the observed representation of deeply branching clades 
with the expectation under random unbiased sampling (Supplementary Fig. 7). 
This bias can explain why, despite the overall high fraction of extant OTUs already 
represented in SILVA, recent studies have discovered new deeply branching clades 
(for example, phyla) not represented in SILVA16,48.

Fraction of MAG 16S rRNA sequences represented in SILVA. To further verify our 
estimates of global extant bacterial and cyanobacterial OTUs using a separate 
method not constrained by potential primer bias, we also used 16S rRNA 
sequences from MAGs. Specifically, we downloaded 16S rRNA sequences for 2,853 
MAGs48 from https://data.ace.uq.edu.au/public/misc_downloads/uba_genomes/ on 
25 October 2017. Any sequences shorter than 500 bp were omitted, leaving us with 
1,166 sequences for downstream analyses. Sequences were taxonomically identified 
and globally aligned to the clustered SILVA using the same approach as the de 
novo OTUs (see above). The global number of extant OTUs in each focal taxon 
was estimated as NFL/ρ, where NFL is the number of full-length clusters within the 
focal taxon in SILVA, and ρ is the fraction of MAG 16S rRNA sequences that could 
be aligned to the clustered SILVA at a similarity threshold of 99%. The results are 
shown in Supplementary Table 2. While this set of 16S rRNA sequences is much 
smaller than the de novo OTUs, and obtained from a much smaller set of samples, 
it can serve as a rough verification of the estimates obtained from de novo OTUs. 
For bacteria as well as cyanobacteria, estimates based on MAGs (Supplementary 
Table 3) are similar to estimates based on de novo OTUs (Supplementary  
Table 2). To assess the robustness of our estimated recent speciation, extinction  
and diversification rates (Fig. 3 and Supplementary Fig. 18), we performed our 
analyses based on the total number of extant OTUs estimated from de novo OTUs, 
as well as from MAGs (Supplementary Tables 2–4).

Total number of extant OTUs (based on overlap with the Earth Microbiome Project 
(EMP)). To obtain an additional independent estimate of the number of extant 
OTUs, we repeated our analysis by considering the overlap between our de novo 
OTUs and V4 OTUs recovered from a dataset published by the EMP32. Specifically, 
we downloaded raw reads generated by the EMP based on the run accession 
numbers provided on the EMP GitHub (https://github.com/biocore/emp/blob/
master/code/download-sequences/download_ebi_fasta.sh). Project number 
ERP010098 was omitted as the sequencing instrument was unspecified.  
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EMP reads were processed similarly to the de novo dataset described above, with the 
following differences: the minimum allowed read length (after quality filtering) was 
reduced to 100 bp to accommodate the much shorter EMP reads, and the number 
of quality-filtered reads per sample was limited to 20,000. This yielded 400,528 
chimera-filtered OTUs, representing 195,291,388 reads from 18,034 samples across 
44 studies. OTUs were taxonomically identified as before, and any OTUs identified 
as eukaryotes, chloroplasts or mitochondria were omitted. OTUs found in fewer 
than 2 samples were also omitted, leaving us with 343,743 taxonomically identified 
OTUs. To calculate the fraction of EMP OTUs represented by our de novo OTUs, we 
matched the EMP OTUs against the de novo OTUs using vsearch (options: --iddef 2 
--strand both) at a similarity threshold of 99%. The total number of extant V4 OTUs 
within a focal taxon was estimated as Ndn/ρ, where Ndn is the number of de novo 
OTUs within the focal taxon, and ρ is the fraction of EMP OTUs within the focal 
taxon that could be matched to a de novo OTU. The total number of extant full-
length OTUs was estimated as before; that is, by multiplying the estimated number 
of extant V4 OTUs by the ratio NFL/NV4, where NFL and NV4 are the number of full-
length and V4 clusters, respectively, within the focal taxon in SILVA.

Building a tree from de novo OTUs. Representative sequences of taxonomically 
identified bacterial and archaeal de novo OTUs, excluding chloroplasts and 
mitochondria, and with a length of at least 200 nucleotides, were aligned using 
the QIIME script parallel_align_seqs_pynast.py53, and using a reduced set of the 
SILVA alignments (clustered at 90% similarity) as a template. A total of 171,510 
OTUs could be successfully aligned. Alignments were reduced by first removing 
nucleotide positions with > 95% gaps, and then removing the top 5% most entropic 
nucleotide positions. Taxonomic identities at the domain, phylum, class and order 
level from the preceding step were used to create split constraints for FastTree54 
by constraining each taxon to be on a single side of a split. Taxa with fewer than 
two OTUs were omitted from the constraints. A total of 603 constraints were 
defined. Using the alignments and the taxonomically generated constraints, we 
constructed a phylogenetic tree with FastTree (options: -spr 4 -gamma -no2nd 
-constraintWeight 100000). The phylogenetic tree was re-rooted so that bacteria 
and archaea were split at the root. The resulting tree was then dated with PATHd8 
using the following dating anchors:

•	 GOE (secondary constraint). Most recent common ancestor (MRCA) of 
Oxyphotobacteria and Melainabacteria constrained by the Great Oxygenation 
Event55 and based on a molecular clock analysis by Shih et al.56 (table 3 therein).

•	 Ri. MRCA of Rickettsiales constrained to before the earliest known appearance 
of mitochondria57.

•	 CB. MRCA of Chlorobium and Bacteroidetes constrained to before the first 
known Chlorobium-specific biomarkers58.

•	 Chr. MRCA of Chromatiaceae constrained to before the first known purple 
sulfur bacterial biomarkers46,58.

•	 LUCA. MRCA of archaea and bacteria constrained to before the earliest 
known stromatolites and after the late heavy bombardment59,60.

The dating anchors are summarized in Supplementary Table 5.

Fraction of extant lineages represented in SILVA through time. To assess the 
phylogenetic bias of SILVA, we calculated the fraction of lineages in the de novo 
tree represented in SILVA over time (that is, the fraction of discovered lineages 
(FDL); Supplementary Fig. 7a). Specifically, we extracted the de novo subtree 
comprising only the OTUs matched to SILVA at 99% similarity (see previous 
paragraph), counted the remaining LTT and divided those by the LTT in the 
full de novo tree. Note that this fraction loosely corresponds to the probability 
that a lineage at any age would be represented in SILVA, provided that it has not 
gone extinct. To examine how the FDL differed in the case of the null model of 
random independent sampling of OTUs, we replaced the OTUs represented in 
SILVA with a new, equally sized set of randomly chosen OTUs and recalculated 
the FDL. The variability of the outcome was assessed by repeating this procedure 
100 times. To further examine, based both on SILVA and the null model, how 
the FDL through time depends on the fraction of OTUs discovered (sampling 
fraction), we subsampled SILVA down to various fractions (for example, 10 and 
1%) and repeated the previous analysis (Supplementary Fig. 7b,c). We found that 
the FDL through time deviated substantially from the null model, indicating 
phylogenetically correlated representation of OTUs in SILVA, with some clades 
being over-represented or under-represented compared with random OTU 
sampling. For strong subsampling of SILVA (≲ 1%; Supplementary Fig. 7c), this 
deviation diminished towards recent ages.

Comparison with the 97% similarity threshold. For comparison purposes, we 
repeated some of the above calculations for de novo OTUs clustered at 97% 
similarity. Specifically, we re-clustered de novo OTUs at a coarser similarity 
threshold of 97% using vsearch (options: --cluster_fast --usersort –id 0.97 
--iddef 2 --strand plus) and used the selected centroids as new representative 
sequences. Taxonomic identification was done as described above for de novo 
OTUs. Coverage by SILVA, as well as the total number of extant 97% OTUs, were 

estimated similarly to above, the difference being that SILVA was clustered at 97% 
similarity and coverage by SILVA was calculated at 97% similarity. A timetree 
comprising 31,231 de novo 97% OTUs was constructed as above. We do not 
discuss these results in the main text, but provide them in Supplementary Table 6.

Tree construction and dating. To verify the robustness of our results, we 
examined a multitude of bacterial and cyanobacterial timetrees, constructed using 
various alternative methods, described below. Trees were constructed using either 
full-length 16S rRNA alignments from the SILVA reference database (release 128; 
non-redundant set)33 or partial-length alignments of de novo clustered OTUs 
from public amplicon sequences from various environmental samples. Unless 
otherwise mentioned, tips in all 16S-based trees corresponded to OTUs clustered 
at 99% similarity. We note that bacterial OTUs were historically delineated using a 
similarity threshold of 97%. However, modern genomics revealed that taxa defined 
on this basis are usually underspeciated, and that a greater similarity threshold  
(≳ 99%) is required for distinguishing ecologically differentiated organisms23,24,42,61. 
In this study, we thus delineated OTUs at 99% similarity, but we also performed 
comparisons at 97% similarity (provided in Supplementary Figs. 8 and 9, and 
Supplementary Table 6). We stress that bacterial OTUs (even at the similarity 
threshold of 99%) only provide an approximate ‘species’ analogue, and any given 
OTU may still comprise multiple closely related strains with different genomic 
contents and ecological strategies38. Even formally named bacterial ‘species’ can 
display strong genomic and phenotypic strain diversity37. Hence, ‘speciation’ rates 
reported here probably represent a conservative estimate of the rate at which 
bacteria differentiate ecologically. Whether and how bacterial species can ever be 
reasonably defined remains an open question62; hence, the 16S rRNA gene remains 
a popular marker for cataloguing bacterial diversity and describing evolutionary 
relationships42 in a well-defined and reproducible manner.

Birds. The bird tree was constructed and dated by Jetz et al.36, and was downloaded 
from the project’s website (http://litoria.eeb.yale.edu/bird-tree/archives/Stage2)  
on 1 August 2017 (‘Hackett_backbone_stage2_tree_0001.tre’). We assumed  
a sampling fraction (ρ) of 1, since almost all bird species have probably already 
been discovered66.

Vascular plants. The vascular plants tree was constructed and dated by Zanne et 
al.35, and was downloaded from the Dryad Digital Repository (http://datadryad.
org/resource/doi:10.5061/dryad.63q27.2). We assumed a sampling fraction  
of 0.724, according to estimates by Mora et al.67 on the fraction of plant  
species discovered.

Bacteria (16S SILVA, FastTree, PATHd8). Non-redundant, full-length 16S 
rRNA gene alignments of 448,112 bacteria, 3 chloroplasts and one archaeon 
Methanococcales (for dating purposes), representing OTUs at 99% similarity, were 
extracted from SILVA. Alignments were reduced by first removing nucleotide 
positions with > 95% gaps, and then removing the top 5% most entropic nucleotide 
positions. SILVA taxonomies provided for OTUs were used to define topological 
constraints for FastTree at the domain, phylum, class or order level, by constraining 
each taxon to be a monophyletic group in the new tree. Taxa with fewer than two 
OTUs were not constrained. A total of 625 constraints were defined. Using the 
reduced alignments, with the SILVA guide tree as a starting tree and using the 
taxonomic constraints, a new tree was generated with FastTree (options: -spr 4 
-gamma -no2nd). The generated tree was re-rooted such that bacteria and archaea 
split at the root. The re-rooted tree was dated with PATHd8 using the anchors 
GOE, Chl, Ri, CB, Chr and LUCA, as listed in Supplementary Table 5. All archaea, 
chloroplasts and mitochondria were subsequently removed from the dated tree.  
An overview of the tree is shown in Supplementary Fig. 10.

Bacteria (16S SILVA, 97%, FastTree, PATHd8). This tree was created similarly to the 
previous bacterial tree (16S SILVA, FastTree, PATHd8), but with OTUs clustered at 
97% similarity. An overview of the tree is shown in Supplementary Fig. 11.

Bacteria (16Sde novo, FastTree, PATHd8). As described above, a dated phylogenetic 
tree comprising bacterial and archaeal partial-length OTUs (99% identity in the 
V4 region) was constructed from de novo clustered 16S rRNA gene amplicon 
sequences from a wide range of environments. From this ‘de novo’ tree, we 
extracted the subtree comprising those OTUs identified as bacterial. An overview 
of the tree is shown in Supplementary Fig. 12.

Bacteria (16S de novo, 97%, FastTree, PATHd8). This tree was created similarly to the 
previous bacterial tree (16S de novo, FastTree, PATHd8), but with OTUs clustered at 
97% similarity. An overview of the tree is shown in Supplementary Fig. 13.

Cyanobacteria (16S SILVA, FastTree, BEAST +  PATHd8). This tree was constructed 
with 16S rRNA sequences from SILVA, then dated using secondary constraints 
inferred from a previously dated multigene cyanobacterial tree56, as follows. Non-
redundant full-length 16S rRNA alignments of all non-chloroplast cyanobacteria 
and representative chloroplasts were extracted from SILVA. Alignments were pre-
processed and used to construct a tree with FastTree, in the same way as described 
above for the bacteria (16S SILVA, FastTree, PATHd8). The generated tree was  
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re-rooted such that the root separates the Melainabacteria from the rest of 
the tree56. Next, a previously published dated multigene tree, including 60 
cyanobacterial and 37 plastid taxa, was obtained from Shih et al.56 (run T65). The 
multigene tree is based on full-length 16S rRNA gene sequences and 10 additional 
marker genes, and was dated using BEAST. To link tips in our 16S rRNA-based 
tree to tips in the multigene tree, the original SILVA 16S rRNA alignments were 
de-aligned (all gap characters removed) and mapped to the 16S rRNA sequences 
of the strains in the multigene tree, via global alignment using vsearch (options: 
--id 1.0 --iddef 2 --strand both --maxhits 1 --maxaccepts 1). A total of 60 tips 
could be mapped. From this mapping, and based on the divergence times of 
nodes in the multigene tree, secondary dating constraints were generated for the 
16S rRNA tree using the congruency method by Eastman et al.68. This method 
was developed for generating very large timetrees based on a smaller previously 
dated ‘reference’ timetree (in our case, the multigene tree), by identifying nodes 
that are concordant in the target tree (in our case, the non-dated 16S rRNA-
based tree) and the reference tree. Using the congruency method, which was 
performed with the R package castor69, a total of 17 concordant node pairs were 
identified. The divergence times of concordant nodes were then used as fixed 
constraints for dating the 16S rRNA-based tree using PATHd8. All chloroplasts 
were subsequently removed from the dated tree. This yielded a dated tree 
for 6,308 non-chloroplast cyanobacteria. An overview of the tree is shown in 
Supplementary Fig. 14.

Cyanobacteria (16S SILVA, BEAST). Non-redundant 16S rRNA alignments of 
non-chloroplast cyanobacteria and representative chloroplasts were subsampled 
randomly down to 586 OTUs (including 30 chloroplasts), and a tree was 
constructed and dated using BEAST, as follows. A log-normal relaxed molecular 
clock model was implemented using BEAST with the GTR +  G substitution model 
on the 16S rRNA dataset. Chloroplast taxa from land plants were constrained to a 
normal distribution of 477 ±  70 Ma based on Smith et al.70. A uniform prior on the 
base of crown group cyanobacteria ranged from 1,909–2,450 Ma56. The younger 
boundary of the age constraint is based on the conservatively younger age reported 
by Shih et al.56, while the older boundary represents a geological constraint on 
the origins of oxygenic photosynthesis and cyanobacteria based on the Great 
Oxygenation Event. A uniform prior was used to enable flexibility by allowing 
the MCMC search to agnostically converge on a date that best fit the data. Two 
separate MCMC chains were generated for 50 million generations, sampling every 
10,000 generations, with the first 20 million generations discarded as burn-in.  
An overview of the tree is shown in Supplementary Fig. 15.

Cyanobacteria (16S SILVA, RAxML, BEAST +  PATHd8). Non-redundant full-
length 16S rRNA gene alignments of 6,302 cyanobacteria and 28 representative 
chloroplasts, representing OTUs at 99% similarity, were extracted from SILVA. 
Alignments were reduced by first removing nucleotide positions with > 95% 
gaps, and then removing the top 5% most entropic nucleotide positions. Using 
the reduced alignments, and using the SILVA guide tree as a starting tree, a new 
tree was generated with RAxML Stamatakis2014RAxML (options: -m GTRCAT 
-p 34612 -f d). The generated tree was re-rooted such that the root separates the 
Melainabacteria from the rest of the tree56. The re-rooted tree was dated using 
PATHd8, based on secondary constraints extracted from a previously published 
multigene timetree56, as described above (cyanobacteria, ‘16S SILVA, FastTree, 
BEAST +  PATHd8’). All chloroplasts were subsequently removed from the dated 
tree. An overview of the tree is shown in Supplementary Fig. 16.

Cyanobacteria (16S de novo, FastTree, PATHd8). This tree was extracted from 
the de novo tree (see Methods), similarly to the bacterial (16S de novo, FastTree, 
PATHd8) tree. An overview of the tree is shown in Supplementary Fig. 17.

Some bacterial trees were constructed and dated simultaneously using BEAST63, 
and some trees were first constructed using FastTree version 2.1.10 (ref. 54)  
or RAxML version 8.2.9 (ref. 64) and subsequently dated using PATHd8 version 
1.0 (ref. 65), depending on computational feasibility. Some trees were dated using 
primary dating anchors (summarized in Supplementary Table 5), while others 
were dated using secondary dating anchors extracted from timetrees previously 
constructed with BEAST. Note that, because PATHd8 (ref. 65) requires at least one 
anchor with a fixed age, for timetrees dated using PATHd8 and primary anchors, 
the GOE anchor (split between Oxyphotobacteria and Melainabacteria) was fixed 
to an age of 2.55 Ga56. Below, we describe the source or construction method for 
each timetree in detail. An overview of all considered timetrees is provided in 
Supplementary Table 1.

Sampling fractions of trees (ρ) were calculated by dividing the number of tips 
in each tree by the total number of extant full-length OTUs, extant partial-length 
(V4) OTUs or extant species (whichever was appropriate) in the corresponding 
taxon (as estimated in this study; overview in Supplementary Tables 2–4). 
Figure 2 and Supplementary Fig. 21 were generated using the estimates listed in 
Supplementary Table 2. The same approach for fitting speciation and extinction 
models, and estimating speciation and extinction rates (see Methods), was applied 
to all timetrees. The timetrees analysed in Fig. 2 are bacteria (16S de novo, FastTree, 
PATHd8), cyanobacteria (16S SILVA, BEAST) and vascular plants35. Analogous 
results are shown for additional timetrees in Supplementary Figs. 19 and 21. 

Estimated recent speciation, extinction and diversification rates are summarized 
in Fig. 3 and Supplementary Fig. 18. As seen in Fig. 3 and Supplementary Fig. 18, 
all bacterial and cyanobacterial timetrees yielded similar estimates for speciation, 
extinction and diversification rates. This reproducibility underlines the robustness 
of our estimates, despite potential inaccuracies in tree construction due to short 
sequence alignments (in the case of the de novo dataset) and due to heuristic 
algorithms (for example, FastTree) used for some of the trees for computational 
feasibility. This result may not be surprising given that our estimates are entirely 
based on the LTT curve, which is a high-level summary statistic and which, for 
larger trees, may be rather invariant to uncertainties in tree topology.

We mention that very few geological anchors are currently available for dating 
bacterial phylogenies and, in principle, 16S rRNA nucleotide substitution rates 
could vary strongly between clades71. This variation could therefore introduce 
errors when translating phylogenetic distances to temporal distances. However, 
such errors are generally expected to further increase the deviations of the resulting 
trees from the simple cladogenic models fitted here. Hence, our conclusion that 
constant speciation and extinction rates are adequate models for global-scale 
bacterial diversification dynamics over geological time, as discussed in the main 
text, is actually conservative.

Comparing tree topologies. To quantify the variation in tree topologies obtained 
using the different tree construction methods, and to compare that variation with 
previously published trees, we proceeded as follows. In all cases, trees were either 
pruned to only include bacteria (excluding chloroplasts and mitochondria) or 
cyanobacteria (excluding chloroplasts), as appropriate. A 16S rRNA gene-based 
and manually curated guide tree (release 128, non-redundant set) was downloaded 
from the SILVA database33, and a tree of amplicon sequences previously published 
by the EMP (release 1, ’deblurred; 150-bp sequences)32 was obtained from ftp://ftp.
microbio.me/emp/release1/otu_info/deblur/emp150.5000_1000_rxbl_placement_
pruned75.tog.tre. Each pair of trees (among our trees, the SILVA guide tree and the 
EMP tree) was compared after pruning trees to the set of tips shared by both trees, 
and using the Robinson–Foulds metric72. The Robinson–Foulds metric is widely 
used for comparing tree topologies, based on the number of tip clusters (sets of tips 
descending from internal nodes) that are unique to each tree. Robinson–Foulds 
distances were calculated using the R package castor version 1.3.3 (ref. 69) (option: 
normalized= TRUE). To match tips across trees, all tips were renamed to SILVA 
sequence accessions whenever possible. Tips in the EMP tree, as well as tips in 
our de novo trees, were mapped to SILVA via global alignment at a similarity 
threshold of 99.5% using vsearch (options: --iddef 2 --strand both --maxhits 1 
--maxaccepts 1)51; any unmapped tips were omitted from the comparisons. In cases 
where multiple tips matched the same SILVA entry, the nearest match was kept. 
The number of tips considered in each tree comparison, and calculated pairwise 
tree distances, are listed in Supplementary Table 7. To visualize relative distances 
between trees, we used multidimensional scaling ordination plots73, in which 
each tree is represented by a single point, and where the distance between any 
two points approximately corresponds to the original Robinson–Foulds distance 
(Supplementary Fig. 24). As can be seen in Supplementary Fig. 24, our trees fall 
within the typical range of variation of trees of this magnitude.

Sensitivity analysis with respect to dating. To assess the sensitivity of our rate 
estimates to uncertainties in tree dating, we analysed variants of our timetrees 
created by randomly varying dating constraints. Specifically, we created random 
variants of our bacterial and cyanobacterial PATHd8-dated timetrees for which  
we had originally used the primary dating anchors listed in Supplementary  
Table 5 (bacterial ‘16S SILVA, FastTree, PATHd8’, bacterial ‘16S de novo, FastTree, 
PATHd8’ and cyanobacterial ‘16S de novo, FastTree, PATHd8’). For each random 
variant, we chose ages randomly and independently within the original age 
intervals of the dating anchor according to a triangular distribution, whose 
mode was set to the anchor node’s calibrated age in the original timetree. These 
randomly drawn ages (one per anchor node) were then used as fixed dating 
constraints for dating the molecular phylogeny anew with PATHd8, thus obtaining 
a random variant. For each original timetree, we created ten random variants 
(see Supplementary Fig. 23 for example LTT calculated from these variants). For 
each timetree, we used its random variants to estimate speciation, extinction and 
diversification rates using the same methods as for the original tree. This yielded, 
for each timetree, a set of ten slightly different rate estimates (Supplementary  
Fig. 25), whose spread can be seen as a measure for estimation uncertainty due to 
errors in tree dating.

Fitting models and estimating speciation, extinction and diversification rates. 
Parameterized speciation and extinction models were fitted to the LTT of each 
considered timetree using the general approach described in Supplementary 
Information section 1.2. Models were fitted for three purposes: (1) to estimate 
recent speciation rates λ(τ =  0); (2) to assess whether a constant speciation and 
extinction rate provide an adequate description of the observed LTT within  
some sufficiently small age interval; and (3) to predict past total diversity, N(τ), 
using the fitted model within the considered age interval. Models were integrated 
backwards in time using the differential equation listed in Supplementary 
Information section 1.2 and with the initial condition ρ= Ñ ∕N(0) (0) , where ρ is the 
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previously estimated sampling fraction (fraction of extant OTUs or species included 
in the tree) and Ñ(0) is the number of tips in the tree. Model parameters were fitted 
by minimizing the MRD of the model’s predicted LTT Ñ( )m  from the real LTT:

∑
τ

τ τ=
Ñ

∣Ñ −Ñ ∣
=n

MRD 1 1
( )

( ) ( ) (5)
i

n

i
i

1
m

where τ1, … , τn are discrete ages at which the model’s predicted LTT is compared 
with the real LTT. This fitting objective, which is based on relative rather than 
absolute errors, was chosen so as to increase the importance of earlier time points 
in the tree, where the LTT can be orders of magnitude lower than at the tips. 
The τi were chosen on a regular grid, comprising 100–200 points (depending on 
the size of the tree) and spanning the minimum and maximum ages considered 
for the tree. We avoided the most recent part of the LTT, where incomplete and 
phylogenetically biased taxon sampling can lead to deviations from the assumption 
of uncorrelated speciations, extinctions and discoveries, and where the choice 
of the OTU similarity threshold strongly affects branching frequencies (and 
thus the slope of the LTT). The last few time points (up to 20 Myr; overview in 
Supplementary Table 1) were therefore ignored during model fitting, in accordance 
with common practice74. For bacteria, the omitted age interval corresponds to 
~1–2% divergence in the 16S rRNA gene75,76, and hence to one or two expected 
branching events in the timetrees. Age intervals considered for fitting are listed in 
Supplementary Table 1. We fitted each model by minimizing the MRD using the 
optimization function stats::nlminb in R. We repeated the optimization 1,000 times 
with random start values to avoid non-global local optima. This complete approach 
has been implemented in the R package castor69. All models assumed constant 
speciation and extinction rates, λ and μ, which were fitted as described above. All 
fitted bacterial and cyanobacterial models achieved very good agreement with the 
observed LTT (MRD below 5% in all cases; overview in Supplementary Table 1).

Furthermore, to validate model assumptions and gain additional insight into 
past diversification dynamics, we estimated PERs (μp), PDRs (rp) and PTDs (Np) 
using the non-parametric methods described in Supplementary Information 
section 1.3. Before any non-parametric estimation of pulled variables (which 
involves derivatives of the LTT), the LTT was noise-filtered (smoothened) using 
a quadratic Savitzky–Golay filter. A noise filter is essential before estimating 
derivatives from the LTT, because finite-difference derivative estimators tend to 
amplify high-frequency noise in time series. Estimated PTDs, PERs and PDRs 
were also smoothened using local polynomial regression fitting (LOESS) to reduce 
noise, using the R function msir::loess.sd (span 0.2, degree 2)77. Standard errors of 
the smoothened estimates were calculated from the confidence intervals provided 
by loess.sd. As discussed in the main text, we found that μp was almost constant 
over time for all prokaryotic trees examined (Fig. 2d–f), supporting the assumption 
of a roughly constant (or only slowly varying) λ and μ made in the models  
(see discussion in Supplementary Information section 4).

Here, we have restricted our analyses to the most recent 1 Gyr because, 
for older time points, the smaller number of lineages in the tree, and thus the 
greater stochasticity and deviation from the continuum limit, lead to increased 
uncertainties in the estimated diversification dynamics (Supplementary Fig. 23).  
While future larger phylogenies will allow more accurate reconstruction of 
diversification dynamics for even more ancient times, we generally advise against 
using our non-parametric methods near the origin of a tree or clade of interest.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Code availability. The R script for performing the diversification analyses on 
the timetrees, as well as the simulations discussed in Supplementary Information 
sections 2 and 4, is included as Supplementary File 3. The non-parametric 
methods introduced in the manuscript are implemented in the R package castor—a 
package for efficient phylogenetic analyses on very large trees69 available on The 
Comprehensive R Archive Network (CRAN).

Data availability. Amplicon sequencing data used to recover de novo OTUs 
are publicly available under the accession numbers listed in Supplementary File 
1. Accession numbers for sequencing data used from the EMP32 are listed in 
Supplementary File 2. R code used in this study is provided as Supplementary File 
3. Timetrees and undated phylogenetic trees constructed in this study are provided 
as Supplementary File 4. Taxonomic classifications of de novo OTUs are provided 
as Supplementary File 5.
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- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Amplicon sequencing data used to recover de novo OTUs are publicly available under the accession numbers listed in Supplementary File 1. Accession numbers for 
sequencing data used from the Earth Microbiome Project are listed in Supplementary File 2. R code used in this study is provided as Supplementary File 3. Timetrees 
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as well as undated phylogenetic trees constructed in this study are provided as Supplementary File 4. Taxonomic classifications of de novo OTUs are provided as 
Supplementary File 5.

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We reconstruct diversification dynamics of bacteria using publicly available 16S rRNA gene sequence data and novel phylogenetic 
methods.

Research sample All analyses were based on existing, publicly available DNA sequence data. Accession numbers are provided as Supplementary 
Material.

Sampling strategy Amplicon sequencing data, used to generate our de-novo trees, were chosen so as to represent as wide of an environmental range as 
possible, under the constraint that they must cover at least 200 bp of the 16S V4 region. For the SILVA trees, all OTUs available within 
the appropriate taxon were used. For the BEAST-computed trees, trees were sub-sampled randomly to enable computational 
feasibility. Any sub-sampling has been accounted for in our calculations.

Data collection No novel data was collected.

Timing and spatial scale No novel data was collected.

Data exclusions No relevant data was explicitly excluded.

Reproducibility All raw sequencing data used are available at public repositories under accession numbers provided as Supplemental material. SILVA 
16S sequences are publicly available at the SILVA project website (https://www.arb-silva.de). All trees created in this study, and 
computer code needed to analyze them, are provided as supplemental material. All other software used in our analyses are publicly 
available and cited in our Methods section.

Randomization This study does not include experimental groups.

Blinding This study does not include experimental groups.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
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