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Abstract

The Public Goods Game is one of the most popular models for studying the origin and maintenance of cooperation. In its simplest form,
this evolutionary game has two regimes: defection goes to fixation if the multiplication factor r is smaller than the interaction group size N ,
whereas cooperation goes to fixation if the multiplication factor r is larger than the interaction group size N . Hauert et al. [Hauert, C., Holmes, M.,
Doebeli, M., 2006a. Evolutionary games and population dynamics: Maintenance of cooperation in public goods games. Proc. R. Soc. Lond. B 273,
2565–2570] have introduced the Ecological Public Goods Game by viewing the payoffs from the evolutionary game as birth rates in a population
dynamic model. This results in a feedback between ecological and evolutionary dynamics: if defectors are prevalent, birth rates are low and
population densities decline, which leads to smaller interaction groups for the Public Goods game, and hence to dominance of cooperators, with
a concomitant increase in birth rates and population densities. This feedback can lead to stable co-existence between cooperators and defectors.
Here we provide a detailed analysis of the dynamics of the Ecological Public Goods Game, showing that the model exhibits various types of
bifurcations, including supercritical Hopf bifurcations, which result in stable limit cycles, and hence in oscillatory co-existence of cooperators and
defectors. These results show that including population dynamics in evolutionary games can have important consequences for the evolutionary
dynamics of cooperation.
c© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The Public Goods Game (Kagel & Roth, 1995) is a classical
mathematical metaphor illustrating the problem of cooperation
and cheating (Colman, 1995; Dugatkin, 1997; Doebeli &
Hauert, 2005). In its simplest form, the game has two strategies:
cooperate (C) and defect (D). It is played in interaction groups
of size N , in which each cooperator contributes to the public
good at a cost c to itself. Each contribution increases the
common resource by rc, where r determines the efficiency
of investments and the attractiveness of the public good. If
there are k cooperators in the given interaction group, the total
amount of public goods produced is krc. This public good is
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distributed equally among the N members of the group. Thus,
in the given group, the defector’s payoff is

PD(k) = rkc
N

, (1)

whereas the cooperator’s payoff is

PC (k) = PD(k) − c. (2)

Two things immediately follow from these payoff expressions.
First, if r ≤ 1, then PC (N ) ≤ 0 = PD(0), hence cooperation
is always doomed. For the Public Goods game one therefore
always assumes r > 1. Second, in any given interaction group,
cooperators always do worse than defectors. To determine the
fate of cooperators and defectors on a population wide scale,
we thus need to take into account that the composition of
interaction groups is variable.
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In the following, we always assume that interaction groups
are formed randomly. Let x be the frequency of cooperators in
the population. For any given focal individual, the probability
that it finds itself in an interaction group in which k of the other
N − 1 members are cooperators is
(

N − 1
k

)
xk(1 − x)N−1−k . (3)

Thus, on average, the focal player encounters x(N − 1)

cooperators among its N−1 interaction partners — independent
of whether the focal individual is a cooperator or a defector.
As a consequence, all that matters for determining the outcome
of the evolutionary game is what the focal individual receives
from its own action. By definition, a defector receives a payoff
of zero from its own action, hence its expected payoff fD is

fD = r
N

x(N − 1), (4)

where the costs of cooperation are henceforth set to c = 1.
A cooperator receives a payoff of r/N − 1 from its own
contribution to the public good, hence the expected payoff of
a cooperator is

fC = r
N

x(N − 1) − 1 + r
N

. (5)

These expressions for fD and fC immediately show that with
random interactions, defectors win the evolutionary game (and
go to fixation) if and only if r < N , i.e., if the multiplication
factor is smaller than the size of interaction groups. If r > N ,
cooperators win and defectors go to extinction (Hauert et al.,
2006c). However, also note that even for r > N defectors
are better off than cooperators in every interaction group that
contains both types.

The basic idea in Hauert et al. (2006a) was that if the
public goods game is combined with ecological dynamics,
then changing population densities could lead to changes in
the effective size S ≤ N of the interaction groups. More
precisely, large population densities result in large effective
interaction groups (S > r ), and hence leads to situations in
which defection is favored evolutionarily. But the decline of
cooperators also reduces the returns from the public good,
which decreases game payoffs and hence lowers birth rates
and reduces population densities. On the other hand, low
population densities result in small effective interaction groups
(S < r ), and hence leads to situations in which cooperation is
favored evolutionarily. Thus the production of the public good
increases, which increases game payoffs and birth rates and
triggers an increase in the population density. This feedback
between ecological and evolutionary dynamics can lead to the
co-existence of cooperators and defectors at an ecologically
and evolutionarily stable equilibrium (Hauert et al., 2006a). In
particular, including ecological dynamics in evolutionary game
theory models could be a fundamental mechanism promoting
the evolutionary origin and maintenance of cooperation.

In principle, the aforementioned feedback between ecolog-
ical and evolutionary dynamics opens up the possibility of os-
cillatory dynamics, and in particular of cyclic co-existence of

cooperators and defectors (Hauert et al., 2006b). In the present
paper we complete the study of Hauert et al. (2006a) and pro-
vide a detailed analysis of all dynamical regimes, including a
proof of the existence of cyclic co-existence.

2. Model and results

Following Hauert et al. (2006a), we consider a large
well-mixed population in which individuals interact in
randomly formed interaction groups. We denote the density of
cooperators by x and the density of defectors by y, and we
incorporate population dynamics by adding a third dynamic
variable z for “vacant space”, assuming that x + y + z = 1.
Thus, x + y is the total population density, which can vary
between 0 and 1. Cooperators and defectors have per capita
birth rates that are determined by the game interactions and by
the amount of available vacant space. Specifically, the per capita
birth rate of cooperators is z( fC + b), and the per capita birth
rate of defectors is z( fD +b), where fC and fD are the average
payoffs from game interactions for cooperators and defectors,
as described below. The parameter b denotes a baseline birth
rate, which is assumed to be the same for cooperators and
defectors. If we assume in addition that both cooperators and
defectors have the same constant per capita death rate, we arrive
at the following dynamics for x , y and z:

ẋ = x(z( fC + b) − d) (6a)

ẏ = y(z( fD + b) − d) (6b)

ż = −ẋ − ẏ = (x + y)(d − zb) − z(x fC + y fD). (6c)

Note that Eq. (6c) is simply a consequence of the fact that
x + y + z = 1 at all times. Also note that choosing density-
independent death rates does not impose any restrictions on
the dynamics of the system. Mathematically, any density-
dependent death rate could be translated into a change in the
density-dependent birth rate combined with a constant death
rate. If the death rate d is variable such that the population
density remains constant (ż = 0) then Eq. (6) reduces to the
replicator dynamics (Hofbauer & Sigmund, 1998). Finally, we
note that in principle, the parameter b must be chosen such that
b + fC ≥ 0 and b + fD ≥ 0 are satisfied, lest the terms
z( fC + b) and z( fD + b) cannot be interpreted as per capita
birth rates. This can be achieved by ensuring that b + fC ≥ 0
in the limit y → 1 since this case results in the lowest payoffs
from the public good (see below). However, we point out that
our analysis shows that theoretically, the constraint on b is
unimportant, and no qualitatively new dynamic regimes occur
when the constraint is dropped.

To determine the payoffs fC and fD , we assume that
interaction groups are formed by interpreting the densities x ,
y and z as probabilities for drawing a particular strategy and
for failing to find a participant, respectively. Specifically, we
assume that interaction groups of nominal size N are formed
randomly such that the available N places are filled with
either cooperators or defectors, or are left empty, according
to the probabilities x , y and z. In particular, for z > 0 the
average effective group size is less than N . The chance that an
individual finds itself in a group of size S is given by:
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Fig. 1. Dynamics of homogeneous defector a and cooperator b populations interacting in ecological public goods games with N = 8, r = 4. The location of stable
(solid line) and unstable (dashed line) fixed points are shown for different death rates d and a baseline birthrate of b = 1 (the horizontal dotted line marks d = b).
a Defectors cannot survive on their own if d > b and the population goes to extinction. However, for d < b defectors persist at an equilibrium density 1 − d/b. b
Cooperators can handle much higher death rates due to the fitness benefits from cooperation. However, this requires sufficiently high population densities because
otherwise cooperative interactions are too rare. The threshold density is indicated by the unstable equilibrium at low densities. For b > d this threshold disappears
and cooperators persist irrespective of their initial density. Note that the equilibrium density of cooperators is always substantially higher than that of defectors
because of the higher fitness of cooperators.

(
N − 1
S − 1

)
(1 − z)S−1zN−S . (7)

If an individual finds itself in a group of size S, it faces k
cooperators and S −1− k defectors among its S −1 interaction
partners with probability

(
x

1 − z

)k (
y

1 − z

)S−1−k (
S − 1

k

)
. (8)

Based on the probabilities given in Eq. (8), one can calculate
the expected payoff for cooperators and defectors in interaction
groups of size S, which can then be used, together with the
probability distribution for S given by Eq. (7), to calculate the
average payoffs fC and fD:

fD = r
x

1 − z

(
1 − 1 − zN

N (1 − z)

)
(9a)

fC = fD − F(z), (9b)

where

F(z) = 1 + (r − 1)zN−1 − r
N

1 − zN

1 − z
. (10)

A detailed derivation of these expressions can be found
in Hauert et al. (2006a, 2002a).

Denoting by q = x/(x + y) the fraction of cooperators in
the population, Eq. (6) can be transformed into

q̇ = ẋ y − ẏx
(1 − z)2 = −zq(1 − q)F(z) (11a)

ż = −(1 − z)(z(b + q(r − 1)(1 − zN−1)) − d). (11b)

This is the dynamical system that we aim to characterize in this
paper.

2.1. Homogeneous populations

In the absence of cooperators (q = 0) the population
dynamics (11) reduce to

ż = −(1 − z)(zb − d) (12)

with the trivial equilibrium z∗
1 = 1 and potentially a second one

at z∗
2 = d/b. If the death rate d exceeds the baseline birthrate b,

z∗
1 is the only equilibrium and is stable, i.e. the population goes

to extinction. Thus, in this case, the survival of defectors hinges
on the presence of cooperators that can be exploited. However,
if b > d defectors can survive on their own at an equilibrium
density y∗ = 1 − z∗

2 (see Fig. 1(a)).
Conversely, in the absence of defectors (q = 1) the

population dynamics are given by:

ż = −(1 − z)(z(b + (r − 1)(1 − zN−1)) − d), (13)

which is dynamically more interesting. Again, the system has
a trivial equilibrium at z∗

1 = 1, but in addition there are up to
two non-trivial and analytically inaccessible equilibria z∗

2, z∗
3.

To prove that there exist at most two interior equilibria, consider
g(z) = ż/(1−z) with g(0) = d > 0, g(1) = d −b and g′′(z) =
(N − 1)N (r − 1)zN−2 > 0. It follows that if d < b exactly
one equilibrium exists, and if d > b at most two equilibria
exist. The maximum death rate dmax for which pure cooperator
populations persist is determined by the minimum of g(z) − d:
dmax = (N − 1)/N [(b + r − 1)/(N (r − 1))]1/(N−1)(b + r − 1).
Fig. 1(b) illustrates the three different scenarios: (i) for d >

dmax the fitness benefits from cooperative interactions cannot
compensate the death rate and cooperators go to extinction;
z∗

1 is the only equilibrium, and it is stable. (ii) For dmax >

d > b, the dynamics are bistable: cooperators can survive
for sufficiently high initial densities, but if initial cooperator
densities lie below a threshold, too few interactions take place,
so that the fitness benefits from cooperation are insufficient to
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Fig. 2. Bifurcations and dynamical regimes (separated by dashed lines) in heterogeneous populations of cooperators and defectors interacting in ecological public
goods games with N = 8, b = 1 and the multiplication factor r as the bifurcation parameter. The solid line indicates the location of the interior fixed point Q as
a function of r . a For b < d (b = 1, d = 1.2) increasing r produces the following dynamical scenarios (see text for details): (a) no Q, extinction; (b) Q unstable
node, extinction; (c) Q unstable focus, extinction. A Hopf bifurcation occurs between regimes (c) and (d). If it is supercritical, stable limit cycles appear as r
approaches rHopf and cooperators and defectors can co-exist in everlasting oscillations. (d) Q stable focus, co-existence. If the Hopf bifurcation is subcritical, the
basin of attraction of Q is bounded by an unstable limited cycle close to the bifurcation point (r > rHopf). (e) Q stable node, co-existence; (f) no Q, cooperation.
For unfavorable initial conditions, the population goes to extinction even for (d)–(f). b The dynamics are considerably less rich for b > d (b = 1, d = 0.8) but
extinction no longer occurs. The following scenarios are observed for increasing r : (a) no Q, defection; (b) Q stable, co-existence; (c) no Q, cooperation.

offset the death rate and the population disappears. In ecology
the positive correlation between population density and per
capita growth rate is known as the Allee effect (Stephens,
1999). In the presence of Allee effects, populations become
prone to extinction at low densities, typically due to difficulties
in finding mating partners. In the present model, the Allee effect
is due to difficulties in finding interaction partners for the public
goods game. (iii) Finally, for b > d the threshold density
capable of sustaining cooperation disappears and cooperators
always survive (z∗

1 = 0 is unstable). Note that the equilibrium
density of pure cooperator populations is always higher than
that of pure defector populations because of the fitness benefits
from cooperative interactions.

2.2. Heterogeneous populations

In heterogeneous populations an interior fixed point Q =
(q̂, ẑ) with 0 < q̂, ẑ < 1 may appear, at which cooperators
and defectors co-exist. The presence (or absence) of Q results
in a rich variety of dynamical scenarios, including Hopf
bifurcations accompanied by stable or unstable limit cycles. It
turns out that the multiplication factor r serves as a convenient
bifurcation parameter. For increasing r , the system undergoes
a series of bifurcations. The trajectory of Q together with the
different dynamical regimes are shown in Fig. 2. For b < d
starting with small r , the following sequence of bifurcations
and dynamical scenarios occurs (numerical thresholds of r are
given for N = 8, c = 1, b = 1, d = 1.2):

(a) r < rtrans1 ≈ 2.077: No interior fixed point exists. Along
q = 1, i.e. in the absence of defectors (cf. Fig. 1(b)), two
fixed points occur: an unstable node at lower densities and
a saddle node at higher densities, which is stable along
q = 1 but prone to invasion by defectors. The population
invariably goes to extinction.

(b) rtrans1 < r < rnf ≈ 2.166: Transcritical bifurcation — for
r = rtrans1 a transcritical bifurcation occurs through which
the interior fixed point Q enters the phase plane and is an
unstable node (for r < rtrans1 , the fixed point Q also exists
but q̂ > 1 holds). With the appearance of Q the unstable
node along q = 1 turns into a saddle node. The population
still goes to extinction.

(c) rnf < r < rHopf ≈ 2.366: for r = rnf the fixed point
Q changes from an unstable node into an unstable focus
— no changes along q = 1. The population keeps going
to extinction but when starting in the vicinity of Q the
densities of cooperators and defectors exhibit oscillations
of increasing amplitude. If the system undergoes a
supercritical Hopf bifurcation for r = rHopf then a stable
limit cycle appears as r approaches rHopf from below and
cooperators and defectors can stably co-exist in everlasting
oscillations. However, the basin of attraction of the stable
limit cycle remains limited and the population may not be
able to recover from unfavorable initial conditions. Thus,
when starting from low initial densities or high relative
abundance of defectors, the population goes to extinction.
The amplitude of the oscillations decreases for r → rHopf.

(d) rHopf < r < rfn ≈ 3.52: Hopf bifurcation — for r = rHopf
a Hopf bifurcation occurs and Q turns into a stable focus.
The population can survive with cooperators and defectors
co-existing. The system converges to Q with oscillations of
decreasing amplitude. If the Hopf bifurcation is subcritical
then co-existence occurs only when starting in the vicinity
of Q, i.e. in the interior of the unstable limit cycle. The
size of the limit cycle or the basin of attraction of Q
quickly increases with r . Unfavorable initial conditions
always drive the population to extinction.

(e) rfn < r < rtrans2 ≈ 6.530: for r = rfn the fixed point Q
changes from a stable focus into a stable node. Cooperators
and defectors co-exist but no longer show a tendency to
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oscillate in the vicinity of Q. As before, unfavorable initial
conditions result in extinction.

(f) r > rtrans2 : Transcritical bifurcation — the interior fixed
point Q leaves the phase plane and the saddle node at
higher densities along q = 1 turns into a stable node (for
r > rtrans2Q still exists but q̂ > 1 holds). Cooperation
becomes dominant and defectors disappear. However, even
now the population goes to extinction for unfavorable initial
conditions.

Depending on the parameter values N , b and d , not all six
dynamical scenarios described above may be observed. For
example, for larger d no Hopf bifurcation occurs, and if d
exceeds dmax the interior fixed point Q never appears, and the
fixed points along q = 1 disappear, so that the population
invariably goes to extinction.

If the birth rate exceeds the death rate (b > d), then the
dynamics of the system become less interesting with fewer
dynamical regimes but the system is never driven to extinction
(numerical thresholds of r are given for N = 8, b = 1, d =
0.8):

(a) r < rtrans1 ≈ 2.546: No interior fixed point exists. In the
absence of defectors (q = 1), a saddle point exists, which is
stable along q = 1 (cf. Fig. 1(b)) but prone to invasion by
defectors. Along q = 0 (no cooperators) a stable node exists
(cf. Fig. 1(a)). Consequently, cooperators go to extinction
and only defectors survive.

(b) rtrans1 < r < rtrans2 ≈ 7.098: Transcritical bifurcation
— the interior fixed point Q enters the phase plane and is
always stable. At the same time, the stable node along q = 0
(no cooperators) turns into a saddle node (remaining stable
along q = 0). Thus, cooperators and defectors co-exist in
a globally stable equilibrium. The equilibrium density of
cooperators increases with r .

(c) r > rtrans2 : Transcritical bifurcation — the interior fixed
point leaves the phase plane, which turns the saddle node
along q = 1 (no defectors) into a stable node. Cooperation
becomes the dominant strategy.

The most interesting dynamics occur in the vicinity of the Hopf
bifurcation (b < d) and a detailed analysis follows.

3. Analysis

A complete analysis of the dynamics in heterogeneous
populations is impossible in general. Already the coordinates of
the interior fixed point Q = (q̂, ẑ) are analytically inaccessible,
because F(ẑ) = 0 cannot be solved analytically for arbitrary
N . However, we can determine the uniqueness and stability of
Q (see Section 3.1) and in the special case with b = 0 the Hopf
bifurcation can be analyzed in detail (see Section 3.2).

Q is unique for r > 2, because F(z) = 0 admits only a
single root in [0, 1) (Hauert et al., 2002a) and because ż is linear
in q (see Eq. (11)). For r ≤ 2, F(z) has no root in [0, 1) and
Q does not exist. Note that ẑ is independent of b and d but q̂ is
not. Thus, even if r > 2, the fixed point Q may not exist because
q̂ )∈ (0, 1). The Jacobian matrix of our dynamical system (11)
at a fixed point Q = (q̂, ẑ) is given in Box I.

Note that det J > 0 always holds because F ′(ẑ) < 0 (Hauert
et al., 2002a).

3.1. Stability of Q

Let us first consider the simpler scenario with b > d and
prove the stability of Q. Q is stable if both eigenvalues λ± of
J have a negative real part: λ± =

(
tr J ±

√
(tr J)2 − det J

)
/2.

Since det J > 0 always holds, it is sufficient to show that tr J <

0. tr J has the same sign as g(z) = d(N zN−1−1)−bzN (N −1).
Solving g′(z) = 0 yields z = d/b and noting that g′′(d/b) < 0
holds, we know that g(z) has a maximum at z = d/b with
g(d/b) = d((d/b)N−1 − 1) such that maxz g(z) < 0 and thus
Q is always stable.

In the dynamically richer case with b < d we prove that
Q is stable for r > rHopf. First we note that ẑ is a decreasing
function of r . Consider the Taylor expansion of F(z) (see Eq.
(10)) around Q in terms of r = rQ + δr and z = ẑ + δz using
F(rQ, ẑ) = 0:

F(r, z) = ∂ F
∂r

δr + ∂ F
∂z

δz + h.o.t. (14)

Since F(r, ẑ) = 0 holds at any equilibrium, it follows that
∂ F/∂rδr = −∂ F/∂zδz, up to first order. The coefficients of δr
and δz are both negative at Q: ∂ F/∂r reduces to (ẑN−1−1)/r <

0 and ∂ F/∂z is simply F ′(ẑ) < 0 (see above). Hence, an
increase in r (δr > 0) results in a decrease in ẑ (δz < 0).

Second, we show that tr J > 0 holds for ẑ > ẑHopf. At the
Hopf bifurcation tr J = 0 holds and

d
dz

tr J
∣∣∣∣
z=ẑHopf

= − 1 − ẑHopf

1 − ẑN−1
Hopf

N (N − 1)ẑN−3
Hopf (bẑHopf − d) (15)

is positive whenever b < d . Thus, tr J is increasing in ẑ and de-
creasing in r such that for r > rHopf, tr J < 0 holds and Q is sta-
ble. Moreover, this proves that the Hopf bifurcation is unique.

3.2. Hopf bifurcation

For the existence of a Hopf bifurcation, it is necessary and
sufficient that the trace of the Jacobian J vanishes (tr J = 0)
and that det J > 0. In non-linear systems Hopf bifurcations
can be either supercritical or subcritical, i.e. give rise to stable
or unstable limit cycles in the vicinity of the Hopf bifurcation.
The two scenarios are distinguished based on the sign of the
Lyapunov coefficient l1 (Kuznetsov, 2004), which captures
effects of non-linear terms at the bifurcation point. Up to first
order, QHopf is neutrally stable. However, due to higher order
terms, QHopf can still be attracting (l1 < 0). In this case the
bifurcation is supercritical and a stable limit cycle appears when
Q becomes unstable (for r < rHopf). Conversely, if QHopf
is repelling (l1 > 0) then the bifurcation is subcritical and
an unstable limit cycle appears after Q becomes stable (for
r > rHopf).

In the special case b = 0 it is possible to explicitly derive
both coordinates of QHopf thus allowing for a more detailed
analysis. The tr J vanishes for ẑ ∈ (0, 1) only if 1−N ẑN−1 = 0
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J =




0 −(1 − q̂)q̂ ẑF ′(ẑ)

−(r − 1)(1 − ẑ)ẑ(1 − ẑN−1) − 1 − ẑ
ẑ(1 − ẑN−1)

(
d(1 − N ẑN−1) + bẑN (N − 1)

)




Box I.

Fig. 3. Hopf bifurcations and first Lyapunov coefficient l1 as a function of the group size N and the death rate d for different birth rates b. For sufficiently large d,
Hopf bifurcations no longer occur. This threshold corresponds to the condition that the interior fixed point Q exists, i.e. q̂ < 1. a In the special case with b = 0 the

Hopf bifurcation can be analyzed in detail (see text) and occurs at r = rHopf = N (N
1

N−1 −1). For N < N∗ ≈ 8.493 the bifurcation is supercritical and stable limit
cycles are observed for r slightly smaller than rHopf. Similarly, for N > N∗ the bifurcation is subcritical as reflected in unstable limit cycles for r slightly above
rHopf. b Setting b = b0 = 1 − r/N denotes the minimal b that ensures compatibility with the interpretation of Eq. (6) in terms of per capita birth and death rates.
For very small d no Hopf bifurcations occur because d < b holds (cf. Fig. 2(b)). The region of supercritical Hopf bifurcations and stable limit cycles is considerably
smaller and for N ≥ 7 all bifurcations are subcritical. c Setting b = 1 corresponds to the minimal birthrate that is compatible with all group sizes N . In that case,
stable limit cycles no longer occur. Instead, the Hopf bifurcation is always subcritical and accompanied by unstable limit cycles.

and thus yields ẑ = N− 1
N−1 . Using F(ẑ) = 0 we obtain

rHopf = N (N
1

N−1 − 1) and finally inserting ẑ and rHopf into
Eq. (11) returns the other coordinate of QHopf:

q̂ = d N
N

N−1

(N − 1)(N
N

N−1 − N − 1)
. (16)

The Jacobian J at the bifurcation point can be written as

J =




0 −(1 − q̂)q̂

N − 1
N

rHopf(1 − ẑ) − 1
1 − ẑ

− (1 − ẑ)d
q̂

0



 (17)

with eigenvalues λ± = ±iω and

ω =
√

− d
N

(N − 1)(1 − q̂)(rHopf(1 − ẑ) − 1) > 0.

Following Kuznetsov (2004), we obtain the first Lyapunov
coefficient l1 as:

l1 = −d2(1 − q̂)(N − 1)2(rHopf − 1)(1 − ẑ)2

4q̂ N 2 ẑ2ω5

×(−q̂(N − 1)(rHopf − 1)(1 − rHopf(1 − ẑ))ẑ2

+ d N (2 − (N − 3)ẑ + N ẑ2 − 2rHopf(1 − ẑ2))). (18)

The detailed derivation of l1 is available in the online
supplement.

For all Q in the interior (0 < q̂, ẑ < 1), the first factor of l1 is
always negative and the sign of l1 depends only on the second
term. Upon inserting q̂, ẑ and rHopf, it becomes clear that the
sign of l1 is exclusively determined by N , more precisely by
the sign of the following expression:

N − 2(1 + N
1

N−1 ) + N
N

N−1

(
2N

1
N−1 − 3

)
. (19)

This expression has a single real root with N∗ = 8.493, such
that supercritical Hopf bifurcations (l1 < 0) occur for N < N∗

and subcritical bifurcations (l1 > 0) for N > N∗ as shown
in Fig. 3(a). At B = (rHopf, N∗) we have strong evidence that
the system undergoes a Bautin bifurcation (or generalized Hopf
bifurcation) (Kuznetsov, 2004; Guckenheimer & Kuznetsov,
2007) because at rHopf the eigenvalues λ± are purely imaginary,
the first Lyapunov coefficient l1 vanishes at N∗ and finally,
numerical analysis yields a non-vanishing second Lyapunov
coefficient, l2 < 0. Thus, nothing changes in the supercritical
case (N < N∗) but in the subcritical case (N > N∗)
an interesting sequence of dynamical scenarios occurs in the
vicinity of B as we increase r : For r < rHopf, the co-existence
equilibrium Q is unstable, surrounded by a stable limit cycle.
As r → rHopf, the amplitude of the limit cycle decreases and at
rHopf the stability of Q changes. For r > rHopf, Q is surrounded
by a pair of limit cycles, an unstable inner cycle and a stable
outer cycle. For increasing r , the two limit cycles collide and
disappear in a saddle-node bifurcation of periodic orbits, which
leaves just the stable Q behind. These interesting dynamical
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features have already been observed in Hauert et al. (2006b)
but only now we can attribute them to an underlying Bautin
bifurcation. The dynamics can be further explored using the
VirtualLabs (Hauert, 2007).

3.3. Numerical extensions (b > 0)

The first Lyapunov coefficient l1 is analytically inaccessible
for b > 0. But, as mentioned before, setting b = 0 violates
the interpretation of z( fC + b) and z( fD + b) in Eq. (6) in
terms of per capita birth rates, because z(b + fC ) can become
negative for small q and large z. Thus, it is important to know
how increasing b affects the dynamics. Our numerical analysis
indicates that b = 0 produces the richest dynamics and that
the dynamics becomes simpler for larger b. For example, the
region of supercritical bifurcations decreases and eventually
disappears for increasing baseline birth rates b. To ensure that
birth rates are positive for all q and z, the baseline birth rate
b has to exceed b0 = − min fC = 1 − r/N . The numerical
results for b = b0 are shown in Fig. 3(b). Setting b = 1 ensures
compatibility (z( fC + b) ≥ 0) for all parameter values r, N
because min fC = −1 for N → ∞. In this case, numerical
investigations suggest that l1 > 0 always holds and supercritical
Hopf bifurcations no longer occur (see Fig. 3(c)).

We also note that the Bautin bifurcation, which yields
multiple stable and unstable limit cycles (see Section 3.2), does
not seem to occur for larger b. Again the dynamics appear to
become simpler and, in particular, for b > b0 no scenarios with
multiple limit cycles have been found.

4. Conclusions

The Public Goods game is commonly used for studying
the evolution and maintenance of cooperation. In its simplest
form, this evolutionary game has two regimes: defection goes
to fixation if the multiplication factor r is smaller than the
interaction group size N , whereas cooperation goes to fixation
if the multiplication factor r is larger than the interaction group
size N . Our premise was to start with a scenario in which
r < N , where N is the “nominal” interaction group size,
and then to assume that the effective interaction group size S
can vary by incorporating population dynamics into the Public
Goods game. This is done in such a way that a prevalence of
defectors in the population leads to low birth rates and hence to
a decline in the population size. This in turn generates smaller
effective interaction group sizes S, for which r > S holds,
and hence leads to situations in which cooperation dominates.
A prevalence of cooperation then leads to higher birth rates,
and hence to an increase in the population size. In this
way, incorporating population dynamics based on the payoffs
received from game interactions creates a feedback loop
through which cooperation can be maintained in the population.

In this paper we presented a detailed analysis of the
Ecological Public Goods Game (Hauert et al., 2006a,b). We
confirm that under suitable conditions, a stable equilibrium Q
is found at which cooperators and defectors co-exist. At Q, the
payoffs of cooperators and defectors are equal (F(ẑ) = 0),

which implies that the effective interaction group size S must
satisfy r = S (cf. Eqs. (4) and (5)). We show here that
this equilibrium appears and disappears through transcritical
bifurcations, and that the model can exhibit subcritical or
supercritical Hopf bifurcations. The latter case is particularly
interesting because it results in a stable limit cycle, and hence
in oscillatory co-existence of cooperators and defectors. Cyclic
co-existence of different strategies in evolutionary games is
well known from the Rock–Paper–Scissors Game, or from
voluntary Public Goods games (Hauert et al., 2002b) but in the
absence of population structures this has not been reported for
games with only cooperators and defectors. Thus, the existence
of stable limit cycles in the Ecological Public Goods Game
appears to be a significant finding, which shows that including
population dynamics in evolutionary games can have important
consequences for the evolutionary dynamics of cooperation.
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