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Abstract
1. The land-sharing versus land-sparing debate recently stagnated, lacking an in-

tegrating perspective in agricultural landscapes as well as consideration of eco-
system services. Here, we argue that land-sharing (i.e. wildlife-friendly farming 
systems) and land-sparing (i.e. separation of high-yielding agriculture and natural 
habitats) are not mutually exclusive, as both are needed to balance management 
needs for the multifunctionality of agricultural landscapes.

2. Land-sharing promotes ecosystem services in agricultural settings, thereby allow-
ing for environmentally friendly production. Land set aside in protected areas by 
land-sparing is crucial for conservation of those species that are incompatible with 
agriculture.

3. Importantly, as species move throughout the landscape and exploit different 
habitats, increased connectivity between environmentally friendly managed and 
protected areas is needed to (a) promote spillover of ecosystem service providers 
from land-sharing/-sparing measures to agricultural production and rescue ser-
vice-providing species from extinction in hostile areas, (b) to facilitate immigra-
tion and counteract possible extinctions in spared habitats and (c) to conserve 
response diversity of species communities for ensuring resilience of ecosystem 
services in changing environments.

4. In conclusion, the successful management of multifunctional landscapes requires 
the combination of context-specific land-sharing and land-sparing measures 
within spatially well-connected landscape mosaics, resulting in land-sharing/-
sparing connectivity landscapes.
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1  | INTRODUC TION

In times of FAO claims for higher crop production to feed the 
world and the current UN ‘Decade of Biodiversity’, agriculture 
increasingly collides with biodiversity conservation. In an often 
polarized debate, researchers and conservationists have been 
arguing for several years whether land-sharing (low-yield, envi-
ronmentally friendly agriculture on a larger footprint of land) or 
land-sparing (high-yield, conventionally intensified agriculture 
on a smaller footprint of land) will reconcile agricultural produc-
tion with biodiversity conservation (Bennett, 2017; Fischer et al., 
2014; Green, Cornell, Scharlemann, & Balmford, 2005; Kremen, 
2015; Phalan, Onial, Balmford, & Green, 2011) (Figure 1). With 
the debate primarily centring around agricultural production and 
biodiversity conservation, surprisingly little effort has been made 
to integrate the ecosystem services concept into the land-shar-
ing/-sparing framework (Bennett, 2017). This lack of integration 
also pertains to ecosystem services that stem from biodiversity 
associated with agriculture, such as crop pollination or biological 
pest control. Given that vast amounts of agricultural production 
directly depend on the provisioning of such services (e.g. Klein et 
al., 2007, Costanza et al., 2014), we see a need to integrate ecosys-
tem services into the land-sharing/-sparing discussion.

Land-sharing primarily favours those species that are adapted to 
agriculture or that use the agricultural matrix for foraging and repro-
duction (Phalan, Onial, et al., 2011). We contend that many of these 
species are instrumental for provisioning ecosystem services to agri-
culture. In particular, land-sharing is an effective strategy to promote 
pollination and biological pest control (Senapathi et al., 2015).

In contrast, land-sparing segregates biodiversity conserva-
tion from production, which can limit service provision from 
spared biodiversity to agriculture by disrupting species spillover, 
that is, cross-habitat fluxes of organisms coupling different hab-
itats and enhancing ecosystem functioning in the habitat where 
the organism moves to (Blitzer et al., 2012; Tscharntke, Rand, & 
Bianchi, 2005). Nevertheless, land-sparing is the only way for in 
situ conservation of those species that require undisturbed nat-
ural habitats and are thus incompatible with agriculture within a 
land-sharing context.

Most species nowadays occur in fragmented habitats, either nat-
urally or because of human alteration of landscapes (Fahrig, 2003). 
Their persistence depends on the formation of metapopulations 
(a set of local populations of a single species linked by dispersal; 
Gilpin & Hanski, 1991) and/or metacommunities (local commu-
nities linked by dispersal of multiple interacting species; Leibold 
et al., 2004; Wilson, 1992). To facilitate species dispersal and the 
persistence of spatially connected subpopulations, high connectiv-
ity between habitat patches is pivotal (Hastings & Botsford, 2006; 
White & Smith, 2018). Consequently, connectivity is also critical for 
the success of land-sharing and land-sparing measures: even large 
areas of spared land may fail to sustain viable populations in the 
long-term if immigration from the surrounding landscape is lacking 
(Halley, Monokrousos, Mazaris, Newmark, & Vokou, 2016). Sharing 

measures can create a more-biodiversity-friendly agricultural matrix 
that can increase the survival rates of crossing species. Moreover, 
areas under sharing measures can rescue service-providing species 
from connected areas with high fluctuations in temporal resource 
availability (Kremen, 2015; Mitchell, Bennett, & Gonzalez, 2013) and 
promote spillover of ecosystem services to intensively cultivated 
land (Blitzer et al., 2012).

Here, we follow previous calls to include both land-sharing and 
land-sparing measures to balance management needs for the multi-
functionality of agricultural landscapes (Kremen, 2015; Tscharntke 
et al., 2012). We highlight the complementarity of both approaches 
by demonstrating that land-sharing is effective to promote ecosys-
tem services in agricultural landscapes, while land-sparing is es-
sential for the conservation of species that are incompatible with 
agricultural production. Moreover, we find that depending on the 
ecological and management context, the opposite is also frequently 
true. Land-sharing is crucial for the conservation of many nowadays 
endangered farmland species, and land-sparing ensures species 
communities with high response diversity (the range of reactions 
to environmental changes among those species contributing to the 
same ecosystem function or service; Elmqvist et al., 2003) that can 
stabilize the provisioning of ecosystem services in ever-changing 
landscapes. We conclude that both approaches need to be com-
bined and integrated into a landscape connectivity matrix that opti-
mizes the spatial linkages between natural habitats and production 
areas to facilitate movement of species. This is because high con-
nectivity between land-sharing/-sparing measures and production 
areas is crucial to (a) promote the spillover of ecosystem services 
from land-sharing/-sparing measures to agricultural production and 
rescue service-providing species from hostile areas, (b) to facilitate 
immigration and counteract possible extinctions in spared habitats 
and (c) to conserve response diversity of species communities for 
ensuring resilience of ecosystem services in changing environments.

2  | L AND ‐SHARING FOR PROVISIONING 
ECOSYSTEM SERVICES

The land-sharing strategy focuses on landscapes dominated by ag-
riculture, as agricultural production is linked to agrobiodiversity. 
Agrobiodiversity includes ‘planned biodiversity’ (e.g. the cultivated 
crop species or planted trees for shade management) and ‘associ-
ated biodiversity’ (e.g. species using crop resources or living in the 
agricultural matrix adjacent to production areas; Leakey, 2014; 
Tscharntke et al., 2011). Many species provide ecosystem services 
that are crucial for agricultural production and cannot be neglected 
in agricultural management (Cardinale et al., 2012; Myers, 1996; 
Zhang, Ricketts, Kremen, Carney, & Swinton, 2007).

Two of the most important services from associated biodiver-
sity for agricultural production are crop pollination and biologi-
cal pest control (e.g. Tscharntke, Klein, Kruess, Steffan-Dewenter, 
& Thies, 2005, 2012). Animal pollination increases yields of 75% 
of the world's economically most important global crops (Klein et 
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al., 2007). Moreover, animal-pollinated crops contribute to diverse 
and healthy human diets as they contain essential micronutrients 
(Chaplin-Kramer et al., 2014; Eilers, Kremen, Greenleaf, Garber, & 
Klein, 2011). Despite the wide-spread use of managed pollinators, 
such as honeybees (Apis mellifera) (Aizen & Harder, 2009), pollina-
tion largely depends on wild pollinator species that rely on resources 
outside of production areas, such as wildflowers in the surrounding 
landscape matrix (Garibaldi et al., 2011, 2013; Kremen, Williams, & 
Thorp, 2002). Hence, land-sparing strategies that combine inten-
sive agricultural production with the spatial segregation of habitats 
from crop-production areas can threaten local provisioning of eco-
system services to agriculture and thereby even reduce crop yields. 
(Chaplin-Kramer et al., 2014; Rusch et al., 2016; Tscharntke et al., 
2012). In contrast, land-sharing approaches can conserve and re-
store functionally diverse pollinator communities, stabilizing pollina-
tion services within agricultural production areas (Hass et al., 2018).

Biological control of crop pests is a critical ecosystem service in 
industrial and small-scale farming. An estimated 30%–40% of global 
crop yields are lost to pest before harvest; crop losses are generally 
most severe in tropical regions where they can reach up to 100% 
(Oerke, 2006). The rise of chemical-intensive agriculture since the 
1950s and the genetic engineering of insect-resistance crops since 
the 1990s has failed to significantly reduce crop losses due to pests 
(Oerke, 2006; Pimentel et al., 1992) but promoted pesticide resis-
tance and dependencies of farmers on chemical and biotech com-
panies (Jacobsen, Sørensen, Pedersen, & Weiner, 2013). Despite 
adverse effects on the environment, compromising natural biocon-
trol (Settle et al., 1996; Tscharntke et al., 2016) and human health, 
pesticide use is expected to triple by 2050 (Tilman et al., 2001). An 
alternative environmentally friendly strategy to prevent build-up 
of pest populations to economically damaging levels is to promote 

their natural enemies. Enhancing natural biological control in agri-
cultural systems is of high economic, ecological and social interest 
(Bianchi, Booij, & Tscharntke, 2006; Naranjo, Ellsworth, & Frisvold, 
2015; Oerke, 2006) and can be achieved through increasing spatio-
temporal habitat heterogeneity within production systems (Sann et 
al., 2018).

A land-sharing approach in which biodiversity conservation is 
integrated into wildlife-friendly agricultural production optimizes 
the provisioning of pollination and biocontrol services to crop pro-
duction (Pywell et al., 2015). Although not all pollinator or natural 
enemy species may be conserved, land-sharing landscapes can main-
tain high numbers of generalist species on which ecosystem services 
depend (Clough et al., 2011; Pywell et al., 2012; Senapathi et al., 
2015). Land-sharing may be particularly efficient if the associated 
measures span multiple scales from small-scale infield solutions (e.g. 
intercropping or beetle banks) to large-scale structurally diverse ag-
ricultural matrices. Managing for pollinators or natural enemies is 
often easily achieved: for example, riparian buffers, weedy borders 
and beetle banks within fields can usually be implemented at little 
or no cost to farmers (Kremen & Chaplin-Kramer, 2007; Kremen & 
Miles, 2012). Hedgerows and non-cropped areas—often on mar-
ginal land of low productive value—provide habitat and resources 
for pollinators and natural enemies at times when resources from 
agricultural areas are limited (Kremen & Chaplin-Kramer, 2007). 
Implementing flower strips adjacent to production areas benefits 
biodiversity and enhances provisioning of ecosystem services to ag-
riculture (Blaauw & Isaacs, 2014; Grass et al., 2016). For example, 
flower strips tailored to improving biological control in winter wheat 
can reduce crop damage by cereal leaf beetles by 40% and increase 
wheat yields at field borders up to 10% (Tschumi et al., 2016). These 
and other management actions at multiple spatial scales can be 

F I G U R E  1   Examples of land-sharing 
and land-sparing in tropical and temperate 
regions: (a) coffee agroforestry in 
Nicaragua, (b) calcareous grassland in 
Germany, (c) rice agriculture next to 
forest reserve in Indonesia, and (d) forest 
fragment surrounded by intensively 
managed agricultural crops in Germany

(a) (b)

(c) (d)
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mixed to promote the desired services from associated biodiversity 
(Kremen, 2005). Importantly, even small increases in pollinator or 
natural enemy diversity can already benefit agricultural production. 
For example, 80% of the global pollination services to crops are car-
ried out by only 2% of the species from regional species pools (Kleijn 
et al., 2015). These are typically common species, not of conserva-
tion concern, that thrive in a land-sharing context (Kleijn et al., 2015; 
Senapathi et al., 2015). Similarly, farmland can harbour high diversity 
of predatory species, but only few provide major contributions to 
biological control (Clough, Kruess, & Tscharntke, 2007; Flohre et al., 
2011).

Land-sharing can also enhance the temporal stability of ag-
ricultural production. Yields of coffee and cocoa grown in shaded 
agroforestry systems are more stable over time than those of con-
ventionally sun-grown crops that suffer from long-term ‘boom and 
bust’ cycles in which initial high yields are followed by unmanage-
able pest and pathogen outbreaks (Tscharntke et al., 2011). Similarly, 
successful biocontrol of crop pests needs both soil- and vegetation-
dwelling enemies (Dainese, Schneider, Krauss, & Steffan-Dewenter, 
2017; Rusch et al., 2016; Thies et al., 2011). Land-sharing prac-
tices are often prioritized when long-term sustainability is desired 
(Geertsema et al., 2016), in contrast to conventional intensification 
of agriculture that seeks short-term solutions to achieve highest 
crop production levels. For example, initial yield increases from con-
ventional pesticides may come at the expense of newly emerging 
pests, adverse effects on non-target organisms and the evolution of 
pesticide resistance (Kremen, Iles, & Bacon, 2012; Palumbi, 2001).

Many traditional agricultural landscapes harbour rich biodiver-
sity that has evolved over the past millennia but has faced unprec-
edented recent declines (Gaston, 2010). For example, European 
landscapes have been shaped by agriculture for centuries, resulting 
in strong feedback and interactions between farmland biodiversity 
and agricultural practices. However, agricultural intensification in 
the 20th century has resulted in widespread abandonment of tra-
ditional, extensive farming practices, followed by considerable 
biodiversity declines. Today, Europe's endangered farmland biota 
includes formerly widespread high-diversity groups such as arable 
non-crop plants and associated arthropods, non-fodder plants of dry 
grasslands, farmland birds, small mammals and charismatic species 
that are highly valued by the general public and conservationists, 
for example, hamsters, storks or hares (Herzog & Schüepp, 2013). 
The loss of biodiversity is particularly visible for farmland plants: of 
the 582 plant species adapted to arable habitats across 29 European 
countries, an average of 31% per country are nowadays considered 
rare or threatened (Storkey, Meyer, Still, & Leuschner, 2012).

A land-sparing perspective that only focuses on conserving non-
farmed areas for biodiversity (e.g. unmanaged or natural land) is at 
odds with the fact that in landscapes with a long agricultural tradi-
tion, constant management and use of traditional agroecosystems 
are needed for conservation (Loos & von Wehrden, 2018; Poschlod 
& WallisDeVries, 2002). Conservation in most European countries 
focuses on these extensively managed systems, which can also pro-
vide ecosystem services to neighbouring fields such as pollination 

and biological control through spillover processes (Castle, Grass, 
& Westphal, 2019; Holzschuh, Dormann, Tscharntke, & Steffan-
Dewenter, 2011; Holzschuh, Steffan-dewenter, & Tscharntke, 2009; 
Woodcock et al., 2016). Moreover, extensively managed systems 
such as calcareous grasslands can harbour some of the highest bio-
diversity levels per unit area, and also provide crucial refuges for 
plants and invertebrates of highest conservation concern (Kormann 
et al., 2015; Poschlod & WallisDeVries, 2002). However, their main-
tenance requires constant extensive usage (e.g. by mowing or graz-
ing with livestock) to avoid succession of woody vegetation, which 
can only be realized in a land-sharing context.

3  | L AND ‐SPARING FOR BIODIVERSIT Y 
CONSERVATION

While land-sharing is needed to preserve farmland species and gen-
eralists, there are many species that cannot persist in intensively 
managed areas and simplified landscapes (Gámez-Virués et al., 
2015). Agricultural expansion still commonly happens at the expense 
of natural ecosystems that support unique biodiversity. In many 
tropical landscapes, pristine habitats are threatened by expansion 
of agricultural land that supports only few generalist or non-native 
species of low conservation concern (Laurance, Sayer, & Cassman, 
2014). It is therefore no surprise that a large body of the literature 
in favour of land-sparing for biodiversity conservation focuses on 
tropical landscapes (Edwards, Gilroy, Thomas, Uribe, & Haugaasen, 
2015; Phalan, Onial, et al., 2011). Even if land-sharing conserves high 
species richness, species’ populations often decline when compared 
to natural habitats (Phalan, Onial, et al., 2011). Studies that address 
biodiversity changes for a wide number of taxa at the population 
level are still few, but the number of ‘losers’ from adopting a land-
sharing strategy can outweigh the number of ‘winning’ species, thus 
favouring a land-sparing strategy to reconcile biodiversity conserva-
tion with agricultural production (Phalan, Onial, et al., 2011). In gen-
eral, primary habitats are irreplaceable for biodiversity (Gibson et al., 
2011). Large and continuous habitat blocks that minimize negative 
effects of habitat fragmentation are usually most preferable, par-
ticularly for conservation of species that avoid habitat edges (Pfeifer, 
Lefebvre, Peres, & Etc, 2017) or that are associated with native habi-
tats (e.g. insectivorous birds of the forest understorey; Maas et al., 
2009).

There is no doubt that local, regional and international policies 
need to protect the pristine areas that still exist despite increas-
ing pressure from human land use. Such undisturbed natural land 
supports high biodiversity and high levels of endangered species 
that need protection to mitigate current erosion of global bio-
diversity ( Phalan, Onial, et al., 2011). Even the majority of pred-
atory and pollinating species, which may be ecosystem service 
providers, depend on resources outside agricultural areas (Bianchi, 
Schellhorn, & Cunningham, 2013; Mandelik, Winfree, Neeson, & 
Kremen, 2012). However, many tropical protected areas fail to 
meet conservation targets because of weak law enforcement, 
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illegal activities within their boundaries (e.g. logging) and a mul-
titude of pressures from surrounding anthropogenic activities 
(Laurance et al., 2012). Economic globalization implies that ag-
ricultural intensification through land-sparing causes expansion 
of agricultural land, because protected land is merely replaced 
by imports from land use elsewhere (Lambin & Meyfroidt, 2011). 
Higher yield and profitability of intensified land use can attract 
migrants and consequently increase deforestation rates, contrary 
to the assumption that yield increases take pressure off protected 
land (Angelsen, 2010; Tscharntke et al., 2012). Good governance 
of protected areas and efficient management of productive land 
are therefore pivotal for land-sparing to be successful (Kremen, 
2015; Lambin & Meyfroidt, 2011), which however, also needs 
careful consideration of the social and political context. In partic-
ular, land-sparing touches on the debate regarding conservation, 
human rights and poverty reduction. Excluding traditional inhab-
itants or land-users from protected areas may be ethically ob-
jectionable, can contribute to the destruction of cultural identity 
(e.g. nomadic herders) and might negatively impact the ecosystem 
in questions (e.g. through lack of management) (Naughton-Treves, 
Holland, & Brandon, 2005).

As discussed above, land-sharing can be an appropriate strat-
egy for landscapes with a long tradition of extensive agriculture. 
However, landscapes that lack such tradition or historically sepa-
rated conservation from agricultural areas might require a land-spar-
ing strategy. The United States of America and Australia mainly rely 
on a land-sparing strategy in that their conservation measures focus 
on big National Parks and other protected areas, whereas agricultural 
land is predominantly devoted to production and yield maximization. 
In particular, invasive weeds play an important role in agriculture and 
(semi-)natural habitats can be a major source of pests. The non-na-
tive weeds in (semi-)natural habitats can host natural enemies, but 
they often host far more pests, whereas native plants mainly support 
natural enemies but rarely host pests of crops (Parry et al., 2015; 
Schellhorn, Glatz, & Wood, 2010; Tscharntke et al., 2016). In the 
Midwest United States, the dominant winter hosts of Asian soybean 
aphid Aphis glycines are European buckthorn Rhamnus cathartica and 
glossy buckthorn Rhamnus frangula, non-native shrubs that have 
invaded the woodlands of the Great Lakes states (Heimpel et al., 
2010). Under these circumstances, farmers may remove remnants 
of (semi-)natural habitats adjacent to production areas and therefore 
will favour a land-sparing strategy (Tscharntke et al., 2016).

Land-sparing is also important to maintain response diversity 
of communities that sustains ecosystem functioning and services 
in future landscapes. Response diversity emerges from the diver-
sity of different responses of species within a community to en-
vironmental change and is most important under heterogeneous 
conditions in space and time (Elmqvist et al., 2003; Tylianakis et 
al., 2008). In times of global change, current species performances 
may not predict those in future conditions; hence, response di-
versity, especially in large protected areas, may become critical 
for future ecosystem functioning. For example, climate change 
may lead to phenological mismatches among pollinators and crop 

flowering, necessitating a high response diversity in the ther-
mal niches of crop pollinators (Fründ, Dormann, Holzschuh, & 
Tscharntke, 2013a; Kühsel & Blüthgen, 2015) and a diversity of 
responses to hibernation under increasing winter temperatures 
(Fründ, Zieger, & Tscharntke, 2013b). Likewise, spatial mismatches 
occur when the configuration of productive land does not overlap 
with the foraging ranges and habitat preferences or resources of 
pollinators (Ricketts et al., 2008) or natural enemies of crop pests 
(Tscharntke et al., 2016). Hence, apart from its contribution to 
biodiversity conservation, response diversity from land-sparing 
also enhances the resilience of ecosystem services in dynamic ag-
ricultural landscapes. This can be furthermore complemented by 
land-sharing measures, as suggested by the higher response di-
versity of ecosystem service-providing arthropods in diversified 
agriculture compared to conventional farming (Lichtenberg et al., 
2017) and the conferring effects of high response diversity of bird 
communities on the resilience of their functions in low-intensity 
agricultural land in tropical countryside (Karp, Ziv, Zook, Ehrlich, 
& Daily, 2011).

4  | INTEGR ATING L AND ‐SHARING AND 
L AND ‐SPARING STR ATEGIES INTO A 
L ANDSC APE CONNEC TIVIT Y MATRIX

Land-sharing and land-sparing measures cover wide ranges of man-
agement intensity, biodiversity value and spatial scale (Figure 2a). 
For all measures to be effective, they need to be strongly integrated 
into the agricultural landscape (Kremen, 2015; Mitchell et al., 2013). 
Thereby, high connectivity of the matrix is required to facilitate fre-
quent dispersal and (re)colonization of habitat patches by species 
(Gilpin & Hanski, 1991; Leibold et al., 2004; Perfecto & Vandermeer, 
2010) (Figure 2b). In today's human-modified landscapes, species 
need to be able to track changes in environmental conditions to avoid 
deterministic extinctions (e.g. because of habitat loss) and to colonize 
novel suitable patches (Thomas, 1994). In tropical land-sparing land-
scapes, this can be achieved by countryside elements, such as small 
forest patches on steep terrain, buffer vegetation along property 
boundaries or rivers and single trees (Hass et al., 2018; Kormann et al., 
2016; Medina, Harvey, Sánchez Merlo, Vílchez, & Hernández, 2007; 
Mendenhall, Shields-Estrada, Krishnaswami, & Daily, 2016). Likewise, 
live fences of planted trees provide important habitat and resources 
for wildlife in Central American cattle rangelands and improve con-
nectivity across these often intensively managed landscapes (Harvey 
et al., 2005). Stepping stones and corridors for species dispersal fur-
thermore connect agricultural land to large blocks of spared natural 
habitat (Batáry et al., 2017; Holzschuh et al., 2009; Kormann et al., 
2016; Medina et al., 2007; Şekercioğlu et al., 2015). Thereby, in-
creased landscape connectivity also enhances the provision of eco-
system services such as pollination or pest control (Castle et al., 2019; 
Kormann et al., 2016; Mitchell et al., 2013; Şekercioğlu et al., 2015).

In contrast to an integrated approach, neglecting land-sharing 
practices to solely focus on sparing land for species conservation 
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will fail to stop the ongoing losses of biodiversity. Populations in 
isolated nature reserves that are embedded in a homogeneous 
agricultural matrix, hostile to many species (Gámez-Virués et al., 
2015), are mainly exposed to extinction forces only (Perfecto & 
Vandermeer, 2010; Tscharntke & Brandl, 2004). Hence, species in 
blocks of spared natural habitat may suffer from extinction lags 
if influx of individuals or gene flow are limited (Habel & Schmitt, 
2018; Manning, Fischer, & Lindenmayer, 2006). As a result, even 
the largest protected areas lose species over the long term if they 
are situated in landscapes with very poor connectivity (Halley et 
al., 2016). Vice versa, land-sharing without complementary land-
sparing measures can be equally ineffective: in the Colombian 
Chocó-Andes, the persistence of bird and dung beetle communi-
ties in low-intensity pastoral agriculture strongly depends on con-
nectivity to surrounding forests, necessitating both the promotion 
of wildlife-friendly habitats and the protection of natural habitats 
for biodiversity conservation (Gilroy, Edwards, Medina Uribe, 
Haugaasen, & Edwards, 2014). Similarly, Kremen and Merenlander 
(2018) highlight the value of silvopasture as a wildlife-friendly 
land-sharing approach to cattle production that increases land-
scape connectivity in former monoculture agricultural lands inter-
spersed with forest fragments. These studies add to the increasing 
evidence in favour of combining both land-sharing and land-spar-
ing approaches for successfully reconciling biodiversity conser-
vation with agricultural production (Klein, Steffan-Dewenter, & 
Tscharntke, 2003; Kremen, 2015; Kremen & Merenlender, 2018).

A comprehensive landscape management strategy requires a struc-
turally diverse agricultural matrix that connects spared and shared 
habitats, allowing for metacommunity dynamics (Mitchell et al., 2013; 

Vandermeer & Perfecto, 2007). In some landscapes that are already 
devoid of such a connectivity matrix, this can require re-designing 
landscapes towards greater complexity (Kremen & Merenlender, 2018; 
Landis, 2017). In South East Asia, increasing political and socioeconomic 
pressure for more biodiversity-friendly production of biofuels has led 
to calls for re-designing oil palm landscapes, including land-sharing 
and land-sparing measures embedded within a connectivity matrix to 
reconcile biodiversity conservation with agricultural production (Koh, 
Levang, & Ghazoul, 2009). Scientists need to become actively involved 
in these debates, in particular by framing the scientific evidence to the 
questions and decisions of policymakers (e.g. distilling scientific results 
for answering key questions of landscape design such as minimum hab-
itat area requirements of viable populations; Lucey et al., 2016).

We envisage that land-sharing/-sparing landscapes with high 
spatial connectivity (Figure 2) allow combining biodiversity conser-
vation with multifunctional ecosystems. From an ecological point of 
view, landscape design may be guided by studies on landscape-wide 
biodiversity monitoring, spillover of species and associated ecosys-
tem services between habitats and landscape elements (Kormann 
et al., 2016; Scherber, Beduschi, & Tscharntke, 2018; Tschumi et al., 
2016; Woodcock et al., 2016). On regional scales, graph theory pro-
vides an analytical framework for identifying areas of low and high 
landscape connectivity as well as those habitats or landscape ele-
ments that facilitate metacommunity dynamics and thus population 
persistence (Urban & Keitt, 2001). Novel approaches that include 
temporal dynamics in species movements to understand spatiotem-
poral variation in landscape connectivity and habitat use, allow for 
more accurate estimations of isolation and extinction probabilities 
of populations (Martensen, Saura, & Fortin, 2017).

F I G U R E  2   Land-sharing/-sparing connectivity landscapes. (a) Land-sharing and land-sparing measures cover multiple spatial scales and 
fall along a sharing–sparing continuum. Their combination in land-sharing/-sparing connectivity landscapes promotes both biodiversity 
conservation and the provisioning of ecosystem services. (b) High connectivity across the agricultural landscape matrix is needed for land-
sharing and land-sparing to be successful. The connectivity matrix ensures (1) spillover from (spared) natural habitats to agroecosystems 
as well as (2) spillover from (shared) crop boundaries to agroecosystems. In addition, (3) landscape connectivity facilitates immigration and 
species dispersal, counteracting possible extinctions in spared habitats and providing response diversity in changing environments
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For their successful implementation, considering the spatial 
scale of land-sharing/-sparing measures is crucial (Fischer et al., 
2014). However, landscape design should not be hampered by the 
view that land-sparing always equals large blocks of habitats and 
land-sharing only refers to small-scale measures within agriculture. 
In fact, land-sparing and land-sharing measures vary strongly in 
their spatial extent and thus scale of implementation. Some au-
thors argue that even smaller and less natural habitat patches can 
be considered land-sparing strategies when their creation requires 
taking land out of production (Ekroos et al., 2016). This may already 
be the case for small-scale measures that are typically not con-
sidered as land-sparing, such as the implementation of wildflower 
plantings on edges of crop fields. From this point of view, land-shar-
ing would only apply to infield management (e.g. organic farming 
practices that conserve arable plants), whereas any land taken out 
of agricultural production for biodiversity conservation would be 
considered land-sparing (Batáry, Dicks, Kleijn, & Sutherland, 2015). 
Obviously, such matters of definition also depend on the target 
organism(s); likewise, small-scale measures for land-sparing only 
apply for species with very limited foraging ranges and strong hab-
itat associations (Phalan, Balmford, Green, & Scharlemann, 2011). 
Often, there is no single correct spatial scale to segregate biodiver-
sity conservation from agricultural production. Instead, targeted 
approaches for biodiversity, production and ecosystem services 
in multifunctional landscapes may require a ‘multiple-scale land-
sparing’ (Ekroos et al., 2016; Lindgren, Lindborg, & Cousins, 2018). 
Furthermore, species that are sensitive to any human interference 
and in favour of large undisturbed natural remnants would com-
pletely disappear under a strategy focusing mainly on small natural 
patches in a hostile environment. This would compromise the orig-
inal idea of land-sparing for the majority of rare and endangered 
species. In conclusion, there is a need to protect both small and 
large natural fragments across landscapes in an intermediate hab-
itat fragmentation strategy to maximise conservation outcomes 
(Rösch, Tscharntke, Scherber, & Batáry, 2015; Wintle et al., 2019).

Finally, a diverse landscape that combines land-sharing and land-
sparing within a heterogeneous connectivity matrix also strength-
ens other ecosystem services that are traditionally outside the main 
focus of landscape management. However, landscapes are multi-
faceted and not restricted to simple production and biodiversity 
functions (Bennett, 2017; Geertsema et al., 2016). People are often 
emotionally linked to their home region and wish to experience cul-
tural ecosystem services from the landscapes in their surroundings 
(Díaz et al., 2018; Plieninger, Dijks, Oteros-Rozas, & Bieling, 2013). 
Diversified landscapes have the potential to strengthen the bond 
between the local environment and its inhabitants.

5  | CONCLUSIONS

The land-sharing versus land-sparing debate has stimulated engaging 
discussions and innovative research. However, the debate has stag-
nated recently, and it has become obvious that the binary nature of 

the framework does not suffice to capture the real-world complex-
ity of conservation and production in today's agricultural landscapes. 
Moreover, the integration of ecosystem services into the land-shar-
ing/land-sparing discussion has been mostly neglected so far.

Here, we argue that land-sharing and land-sparing are not mutu-
ally exclusive. Land-sharing is an effective strategy to promote eco-
system services that are essential to agricultural production, such 
as pollination or biological pest control. Land-sparing is needed to 
conserve species incompatible with agriculture, such as endemic or 
rare taxa as well as natural ecosystems. The benefits of land-shar-
ing/-sparing will be scale-dependent, and require the integration 
of small and large habitat patches into a diverse landscape matrix 
that increases spatial connectivity, thereby reducing the extinction 
probability of service-providing as well as rare species, and ensuring 
response diversity in dynamic landscapes.

Designing landscapes that encompass targeted, context-specific 
land-sharing/-sparing measures within a landscape connectivity ma-
trix will provide habitat for biodiversity conservation and ecosystem 
services. The design of these landscapes needs to be an inclusive 
approach, involving scientists and stakeholders from policy and so-
ciety. Taking the ecological- and also social- and political context-de-
pendency into account makes for far more complicated situations 
than a simple ‘either-or’ approach. Notwithstanding, targeted and 
regionally specific solutions are the only way to address complex 
questions such as reconciling biodiversity conservation with agricul-
tural production in future multifunctional landscapes.
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