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Summary

1.

 

The biases and shortcomings of stepwise multiple regression are well established
within the statistical literature. However, an examination of  papers published in 2004
by three leading ecological and behavioural journals suggested that the use of  this
technique remains widespread: of 65 papers in which a multiple regression approach
was used, 57% of studies used a stepwise procedure.

 

2.

 

The principal drawbacks of stepwise multiple regression include bias in parameter
estimation, inconsistencies among model selection algorithms, an inherent (but often
overlooked) problem of  multiple hypothesis testing, and an inappropriate focus or
reliance on a single best model. We discuss each of these issues with examples.

 

3.

 

We use a worked example of data on yellowhammer distribution collected over 4 years
to highlight the pitfalls of stepwise regression. We show that stepwise regression allows
models containing significant predictors to be obtained from each year’s data. In spite of
the significance of the selected models, they vary substantially between years and suggest
patterns that are at odds with those determined by analysing the full, 4-year data set.

 

4.

 

An information theoretic (IT) analysis of the yellowhammer data set illustrates why
the varying outcomes of stepwise analyses arise. In particular, the IT approach identifies
large numbers of competing models that could describe the data equally well, showing
that no one model should be relied upon for inference.
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Introduction

 

In the face of  complexity, ecologists often strive to
identify models that capture the essence of a system,
explaining the observed distribution and perhaps
ultimately permitting prediction. A first step toward
this aim is to collect data on the response of interest,
together with data on factors that it is believed might
influence that response. Frequently data are observa-
tional (i.e. the variance in the data set has not been
generated by experimental manipulation) leading to
difficulties in determining which causal factor or

factors best explain the observed responses. In these
situations, scientific possibility is limited to describing
the system and identifying models consistent with the
observed phenomenon. One of  the most commonly
used techniques for this purpose is multiple regression
or, more generally, a general linear model with multiple
predictors. The statistical theory underlying this
methodology is well understood (e.g. Draper & Smith
1981; McCullagh & Nelder 1989), as are the assump-
tions and limitations of the approach (e.g. Derksen &
Keselman 1992; Burnham & Anderson 2002).

Although the scientific primacy of  a principle of
parsimony is without clear support (Guthery 

 

et al

 

. 2005),
it is usually the case that models with fewer variables
also contain fewer nuisance variables and have greater
generality (Ginzburg & Jensen 2004). For that reason,
research is usually directed towards identifying a
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relatively parsimonious model that is in general agree-
ment with observed data. A suite of model simplifica-
tion techniques has been developed, and the notion of
a minimum adequate model (MAM) has become com-
monplace in ecology. A MAM is defined as the model
that contains the minimum number of predictors that
satisfy some criterion, for example, the model that only
contains predictors that are significant at some pre-
specified probability level. Finding such a model is not
straightforward, and most statistical packages offer
algorithms for model selection in multiple regression.
These include algorithms that operate by successive
addition or removal of  significant or nonsignificant
terms (forward selection and backward elimination,
respectively), and those that operate by forwards selec-
tion but also check the previous term to see if  it can now
be eliminated (stepwise regression). Collectively, these
algorithms are usually referred to as stepwise multiple
regression.

In spite of  wide recognition of  the limitations of
stepwise multiple regression (Hurvich & Tsai 1990;
Steyerberg 

 

et al

 

. 1999; Grafen & Hails 2002; Wintle

 

et al

 

. 2003; Johnson 

 

et al

 

. 2004; Stephens 

 

et al

 

. 2005),
use of the technique in ecology remains widespread
(see further below for a review of applications in major
journals). In particular, three problems with the approach
are frequently overlooked in ecological analyses, all of
which may lead to erroneous conclusions and, poten-
tially, misdirected research. These include bias in parameter
estimation, inconsistencies among model selection
algorithms, and an inappropriate focus or reliance on
a single best model, where data are often inadequate to
justify such confidence.

In this paper, we give a brief  review of  the major
problems with stepwise multiple regression and we
analyse how frequently the technique is used in leading
ecological and behavioural journals. We present an
example of how focusing on a single model may lead to
difficulties of interpretation. Finally, we discuss the
problems of analysing and modelling data from com-
plex multivariable ecological data sets.

 

Problems with multiple regression

 

   

 

Stepwise multiple regression requires that model selec-
tion (i.e. deciding which regression variables should be
included in the final MAM) is conducted through
parameter inference (i.e. testing whether parameters
are significantly different from zero) (Chatfield 1995),
which can lead to biases in parameters, over-fitting
and incorrect significance tests. To see this, consider a
simple example, using a single parameter. Consider
the linear model that models an observation 

 

y

 

i

 

 as a
function of parameters 

 

α

 

 and 

 

β

 

, predictor value 

 

x

 

i

 

 and
some error 

 

ε

 

:

 

y

 

i
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xi

 

 

 

+

 

 

 

ε

 

i

 

eqn 1

which is fitted to data vector 

 

y

 

 and predictor vector 

 

x

 

.
A stepwise approach may be used to decide whether the
model in eqn 1 is preferable to the simpler model:

 

y

 

i

 

 

 

=

 

 

 

α

 

 

 

+

 

 

 

ε

 

i

 

eqn 2

One simple way to do this is to compute the estimate
of 

 

β

 

 (termed 

 

b

 

) and then determine whether 

 

b

 

 is signi-
ficantly different from zero.

Figure 1 shows a simple simulation example that
illustrates the logical problem in using the test on 

 

b

 

 to
determine which of  models (1) and (2) are preferable
(see Fig. 1. legend for details). For the simulated
data, Fig. 1(a) shows the sampling distribution of  

 

b

 

, a

 

t

 

-distribution. The distribution in Fig. 1(a) corresponds
to the distribution of 

 

b

 

 when model (1) only is fitted to
the data, and no attempt is made at distinguishing
between (1) and (2).

Figure 1(b) shows the corresponding sampling
distribution when model selection based on the signi-
ficance of  

 

b

 

 is employed. Accepting model (2) over
model (1) is equivalent to accepting a value of 

 

b

 

 

 

=

 

 0 as
an estimate of  

 

β

 

 in model (1). Thus, in Fig. 1(b), the
distribution of estimates of 

 

β

 

 has a peak at zero, as most
estimates in Fig. 1(a) are nonsignificant (i.e. 

 

P

 

 

 

>

 

 0·05).
In the right tail an estimate is significant only when it
exceeds a critical value. What is clear from Fig. 1(b) is
that the sampling distribution that results from model
selection is highly unrepresentative of  the expected

Fig. 1. Model selection bias in a simple simulation. Data were
generated according to the model y = 1 + 0·5x + e, where e was
an error term with zero mean and standard deviation = 1.
Data sets of sample size n = 10 were drawn, and a linear model
fitted. (a) The distribution of estimates of the slope parameter.
The slope parameter was tested against a slope of  zero, and
the linear model (main text, eqn 1) rejected in favour of the
simpler model (main text, eqn 2) if  the test was nonsignificant
(i.e. a slope of zero was accepted for P < 0·05). (b) The
resultant sampling distribution based on this model selection
method.
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distribution of 

 

b

 

 in Fig. 1(a). Importantly, any individual
estimate 

 

b

 

 in this example is biased: either a value of
zero is accepted if  the significance test on 

 

b

 

 is nonsigni-
ficant, underestimating 

 

β

 

, or values greatly in excess of
the true value are accepted if  the test on 

 

b

 

 is significant.
This phenomenon is termed model selection bias

and will arise in any method of model selection based
on the inclusion/exclusion of individual predictors
without reference to the suite of other possible models
(Chatfield 1995; Burnham & Anderson 1998, 2002). In
contrast, in Fig. 1(a) no individual estimate is biased
one way or the other relative to the true value. This bias
is important if  the model is to be used predictively, and
also has implications for other analyses based on the
model.

 

 ,   


 

A second problem with stepwise multiple regression is
more widely recognized and yet appears not to have
deterred many ecologists from using the technique. The
problem is that the algorithm used (forward selection,
backward elimination or stepwise), the order of para-
meter entry (or deletion), and the number of candidate
parameters, can all affect the selected model (e.g.
Derksen & Keselman 1992). This problem is particu-
larly acute where the predictors are correlated (e.g. see
Grafen & Hails 2002 for an example). In addition, the
number of candidate parameters has a positive effect
on the number of  nuisance (or noise) variables that
are represented in the selected MAM (Derksen &
Keselman 1992). Interpreting the quality of the selected
model can also be difficult. In particular, it is easy to
overlook the fact that a single stepwise regression does
not represent one hypothesis test but, rather, involves
a large number of tests. This inevitably inflates the pro-
bability of Type I errors (false positive results) (Wilkinson
1979). Similarly, searching for a model on the basis
of the data inflates the 

 

R

 

2

 

 value (Cohen & Cohen 1983),
overestimating the fit that would be achieved by the
same model were more data available. Finally, owing to
the selection of variables to include on the basis of the
observed data, the distribution of the 

 

F

 

-statistic is also
affected, invalidating tests of  the overall statistical
significance of the final model (Pope & Webster 1972).

 

‘

 



 

’

 

   

 

A final source of concern with stepwise regression pro-
cedures is their aim of identifying a single ‘best’ MAM
as the sole product of analysis. This can suggest a level
of confidence in the final model that is not justified by
the data, focusing all further analysis and reporting on
that single model. Although one model may be selected,
other models may have a similarly good fit and it is
highly likely that there will be uncertainty surrounding
estimates of  parameters and even which parameters
should be included. Basing inference or conclusions on

a single model may be misleading therefore because
a rather different model may fit the data nearly as well.
The selection of  a single MAM does not allow such
uncertainty to be expressed. We discuss this problem
further below.

 

Current use of stepwise regression

 

Recognition of all of the problems outlined above is not
widespread among ecologists. Recent publications have
drawn attention to the problems of bias arising from
variable selection on the basis of statistical significance
(e.g. Anderson, Burnham & Thompson 2000; Burnham
& Anderson 2002) and, as a result, alternative model
selection protocols are increasingly used. In particular,
use of information theoretic (IT) model selection based
on Akaike’s Information Criterion (AIC, see further
below) has increased substantially over recent years
(Johnson & Omland 2004; Rushton, Ormerod & Kerby
2004; Guthery 

 

et al

 

. 2005). In spite of this, two of the
central messages of  Burnham and Anderson (e.g.
Burnham & Anderson 2002) have been widely over-
looked. These are that models representing different
hypotheses should be compared in their entirety, rather
than through automated selection procedures, and that
further analysis should not be based on a single best
model, but should explicitly acknowledge uncertainty
among models that are similarly consistent with the
data. That these points have been overlooked means
that even where authors have used IT model selection,
they have often retained the use of stepwise procedures,
and based inference on a single best model. Some authors
have attempted to overcome some of the limitations of
stepwise procedures by checking for consistency between
stepwise algorithms (e.g. Post 2005), but this approach
is seldom explicit.

In order to assess the prevalence of different stepwise
approaches in current literature, MJW reviewed 508
papers published in 2004 in three leading journals:

 

Journal of Applied Ecology

 

, 

 

Animal Behaviour

 

 and 

 

Ecology
Letters

 

. In all cases in which a multiple regression
approach (excluding ordination techniques) was
used, the analytical approach was identified as stepwise
or other. Among papers employing stepwise techniques,
studies were further subdivided into those that used least
squares approaches and those that used IT techniques.
Multipredictor regression analyses that did not use
stepwise techniques were divided among those that
based inference on a global model (i.e. inferences were
drawn with all predictors present), and those that used
other techniques (typically IT-AIC) to determine a set
of well-supported models for inference.

Results of  this analysis are presented in Table 1.
Overall, 65 papers used a multiple regression approach,
of  which 57% used a stepwise procedure; however,
there was no statistically significant difference between
the proportion of  studies using stepwise regression
across the three journals (

 

χ

 

2

 

 

 

=

 

 0·145, 

 

P

 

 

 

=

 

 0·98). Of the
studies that used stepwise procedures, six of 37 (16%)
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used IT-AIC, while the remainder used least squares
techniques.

 

Example

 

As an empirical example of  the problems of  using
stepwise multiple regression we reanalysed a published
data set, collected to determine which factors influence
the occurrence of  yellowhammers 

 

Emberiza citrinella

 

L. on lowland farms in the UK (Bradbury 

 

et al

 

. 2000;
see the accompanying electronic supplement for
further details of the data and the analytical methods).
Previous analyses were conducted using least squares
stepwise regression (Bradbury 

 

et al

 

. 2000). Here we were
primarily interested in the limitations of using a single
best model for inference, rather than in the limitations
of the stepwise approach (which are well-established,
see above).

We fitted models to our data set using least squares
procedures (e.g. procedure ‘lm’ in ‘R’) and compared
them using AIC. AIC is a likelihood-based measure of
model fit that accounts for the number of parameters
estimated in a model (i.e. models with large numbers of
parameters are penalized more heavily than those with
smaller numbers of parameters), such that the model
with the lowest AIC has the ‘best’ relative fit, given the
number of parameters included (Akaike 1974).

The IT methodology developed by Burnham &
Anderson (2002) is designed to conduct a comparative
model fit analysis for a group of competing models.
Specifically, for each model a likelihood weight (for
model 

 

i

 

 termed 

 

w

 

i

 

) is calculated. This value has a simple
interpretation: it is the probability that of  the set of
models considered, model 

 

i

 

 would be the AIC-best
model, were the data collected again under identical
circumstances. For a set of  models the likelihood
weights sum to one.

For a data set in which there is a clear ‘best’ model,
one model would have a very high likelihood weight,
and all other models would have very low weights. On

the other hand, if  all the models are poor, or if  most
have similar fit, then a number of models will share a
similarly low probability. If there is no single model that
clearly outperforms all others, the IT methodology
may be used to perform model averaging, in which the
parameter estimates of all models are combined, the
contribution of each model being proportional to its
likelihood weight. By contrast, stepwise methodology
would identify a single model as pre-eminent, encourag-
ing all further interpretation to be based on that model
alone, ignoring the other models with similar fit to
the data.

For the yellowhammer data set, there were nine
predictors, and we fitted all possible subsets of  these
parameters. For each model we generated a likelihood
weight, and we ranked all models from best fitting to
worst fitting on the basis of  AIC values. We plotted
summed likelihood weights against model rank (Fig. 2).
These plots are effectively cumulative probability plots,
with the summed probability measuring the probability
that the cumulative set of models would include the
AIC-best model were the data re-collected. At a given
cumulative probability level (e.g. 95%) this is sometimes
termed a confidence set.

The yellowhammer data set was collected over 4 years.
We analysed the data separately for each year, and for
all years combined. The data from the 4 years analysed
separately failed to yield a model that, in terms of like-
lihood weights, was clearly better than the alternative
models (Fig. 2a,b). For instance, in Fig. 2(a) the 4 years
of study required 77, 114, 172 and 159 models to yield
a summed probability of 0·95. The implication is there-
fore, that any one of  a large number of  models could
have been selected as the best fitting model in each year.
The best-fitting model is, in a sense, a random draw
from this set of similarly well supported models. This
interpretation is backed up by Table 2, which shows the
minimum adequate models selected for the four sepa-
rate years. The models selected are highly variable from
year to year, with no variable selected in all 4 years.

Table 1. Proportion of studies from a range of primary ecological and behavioural journals (all issues in 2004 included in this
analysis) that used stepwise multiple regression for at least one component of their study. Studies using two-way  (or similar)
for replicated experiments are not included as they are not really multivariate analyses that would require this approach (see
discussion)

% of studies 
using stepwise
regression

No. of papers 
published by 
journal in 2004

Ratio of predictors to sample 
size for analyses using stepwise 
regression (no. of cases given 
in which based in parentheses) Alternative approaches

Journal of 
Applied Ecology

52% (12/23)* 88 24 (8) 7 studies fitted full model, 1 
used heirarchical partitioning 
and 3 used an IT approach.

Ecology Letters 58% (7/12) 139 66 (3) 4 studies fitted full model, 1 
used an IT approach.

Animal Behaviour 60% (18/30) 281 9 (6) All 12 studies fitted full model.

In some cases it was not possible to determine exactly how the statistical analysis was performed, these cases are omitted from this table.
*The number of studies in which it was possible to use stepwise methods is indicated in the denominator, e.g. 23 in this case, and 
the number that did so as the numerator, e.g. in this case 12, the remaining studies used alternative methods which are listed in the 
final column.

schluter
Sticky Note
This is not the correct interpretation of the weights. The arguments in this paper are not affected.
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The analysis of the combined data set yielded a smaller
set of  credible models, with only 42 models required
to reach a probability of 0·95. However, this is still too
large a number to be able to base all inference and

conclusions on one model with any confidence. The
MAM for this data set includes most of  the variables
found to be significant in the analysis of the single years.
However, the likelihood weight for this model was only
0·028; it was not the AIC-best model, which itself  had
an AIC weight of  only 0·048. Either of  these models
would be a poor one on which to base inference.

 

Discussion

 

Biases and shortcomings of stepwise multiple regression
are well established. Surprisingly, however, we found
that of  recent papers in three leading ecological and
behavioural journals, approximately half  of those that
employed multiple regression did so using a stepwise
procedure (Table 1). Our example, using detailed data on
yellowhammer habitat selection highlights the dangers
of  this approach. In particular, although the yellow-
hammer field study was conducted on a large scale,
a single year’s data was clearly insufficient to identify
a single best model to explain yellowhammer territory
occupancy, or even a small number of  similarly well-
supported models for that purpose. Even with 4 years’
data, representing a comprehensive autecological study,
as many as 42 models provided similarly good explana-
tions of  the observed data. To select a single MAM
from this set without acknowledging the considerable
uncertainty that remains, would be entirely mislead-
ing. A full model approach (i.e. including all predictors
and all 4 years’ data) gives, in this case, a very similar
result to one derived using the IT methodology (see
Table 2). This reinforces the point that conclusions
based on data collected in any one year may be
erroneous.

Multiple regression is a widely used statistical method
within ecology with 13% of the papers we reviewed using
this method. It was notable that within two of the journals

Fig. 2. Cumulative probability curves for the models fitted to
the data on yellowhammer distributions. The curves show the
summed probabilities for the models ranked from lowest to
highest AIC score. (a) Models fitted separately to the data
from the 4 years separately (each line represents a different year).
(b) Models fitted to the combined data set. The horizontal
lines show a probability of 0·95, i.e. encompassing the set of
models which, under repeated sampling, would be expected to
contain the AIC-best model with a probability of 0·95.

Table 2. Minimum adequate models constructed to explain the distribution of yellowhammers in four separate years. Data were
collected from a variable number of farms in each year and these are indicated in brackets after each year

1994 (5) 1995 (5) 1996 (8) 1997 (9) 1994–97
IT Selection
probability†

Hedge presence * ** P = 0·058 0·73
Tree-line presence * * *** 0·67
Ditch presence ** * * *** 1·00
Road adjacent * * 0·61
Width of margin *** * *** *** 1·00
Pasture adjacent ** * *** *** 1·00
Silage ley adjacent 0·48
Winter rape 0·64
Beans adjacent * 0·37
n 185 185 347 387 1103
Ratio of sample size to predictors 21 21 32 35 123

Boundary length and a code for farm forced into all models, therefore number of predictors entered into all models was 11. 
*P < 0·05, **P < 0·01, ***P < 0·001.
For comparison with the results of the full model we calculated selection probabilities using IT methodology (see Whittingham 
et al. 2005).
†The model selection probability is the probability that a given predictor will appear in the AIC-best model, and is derived from 
the IT-AIC analysis.
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sampled (Animal Behaviour and Ecology Letters) only
between 8 and 9% of studies used a multiple regression
approach, whereas in Journal of Applied Ecology 26%
(23 of 88) used such an approach. Therefore, the pro-
blems we report may very likely be more widespread
within landscape studies (which tend to collect large
numbers of potentially explanatory factors) than in
studies with more restricted experimental designs
(e.g. laboratory experiments that are common within
behavioural science).

As with our example, it is likely that many studies
employing stepwise procedures conceal much uncer-
tainty when selecting a single MAM. Most ecological
data sets usually include a set of predictors with a tapered
distribution of effect sizes (Burnham & Anderson 2002)
and almost all analyses will therefore contain equivocal
variables close to statistical significance. Estimated effects
are likely to be strong, intermediate and weak, or zero.
For predictors with zero or weak effects, MAMs are likely
to yield biased estimates of parameters (e.g. Fig. 1) and
a high Type I error rate. Furthermore, when correlations
exist between the predictors, different combinations of
predictors may yield models with similar explanatory
power (e.g. Grafen & Hails 2002). The methodology
underlying MAMs is generally not designed to analyse
marginal effects.

Instead of using stepwise procedures, two analyses
are arguably valid: a full model including all effects, or
the analysis using IT-AIC methods (the approach that
we demonstrated here). The full model tests a single
set of  hypotheses on a single model. The expected
parameter estimates are unbiased (e.g. Fig. 1), and the
statistical properties of  the generalized linear model
are well understood (e.g. McCullagh & Nelder
1989). If  the main aim of  the study in question were
to analyse whether each of the predictors affected the
distribution of birds, and whether the effects were con-
sistent between years, this analysis should be entirely
justifiable.

The downsides of using the full model for analysis
and inference are that: (1) the model may not be the
‘best’ model for the data in question, as other models
may fit the data equally as well; (2) if  we wished to
use the model predictively, it includes variables that
are nonsignificant; (3) the analysis would rely on null-
hypothesis testing. The first argument is not relevant to
comparisons of the effects of different predictors. The
reason why this model may not be the best model is pre-
cisely that it includes predictors that are nonsignificant.
The analysis is designed to reveal those predictors that
are significant, and those that are not. Hence we would
not expect this model to be the best model.

The second problem is that a full model will contain
estimates for all parameters, irrespective of  whether
they are statistically significant or not. This can
generate an excess of noise, resulting in a model that is
unsatisfactory for prediction. By contrast, techniques
exist for multimodel parameter estimation, particularly
within the IT framework (e.g. Burnham & Anderson

2002). This approach allows model uncertainty to be
measured at the same time as parameter uncertainty to
assess the likely bias in parameters resulting from
selection. The advantage of  using this approach for
prediction, rather than the full model, is that the con-
tribution of  each predictor (in making predictions) is
determined by its performance across the whole suite
of models.

The third problem with basing inference on the
global model, is where tests of  individual parameters
(designed to determine how important they are) are
conducted using null hypothesis testing (NHT). NHT
has been the focus of much criticism in recent decades
(e.g. Carver 1978; Cohen 1994; Johnson 1999; Anderson
et al. 2000). In particular, two problems of NHT apply
directly to the issue of parameter testing within the global
model. First, NHT is essentially binary in nature; either
the tested parameter is (statistically) ‘significant’ or it is
not. Wherever the threshold for significance is drawn,
this can lead to dramatic differences in inference
arising from very small differences in the data set. For
example, consider a threshold for significance drawn
at P = 0·05. Imagine that our estimate for a parameter
coefficient, β, was 2·5, with a 95% confidence interval
between −0·1 < β < 5·1. Here, we would reject the estimate
of β and assume that β = 0 was a more reliable estimate.
However, if  the estimate of  β was the same but with a
confidence interval 0·1 < β < 4·9, then we would accept
that β = 2·5. The second problem of NHT that applies
to analyses of the global model is that, assuming we have
reason to include the variable of interest in the model,
then a null hypothesis of  ‘no effect’ (representing a
coefficient estimate of  β = 0) is a ‘silly null’. Indeed,
in the previous example, an estimate of  β = 5·0 is as
plausible as an estimate of  β = 0·0, and is arguably
more plausible, given that we had a priori reasons to
believe that the tested parameter should be important.

The full model is appropriate if the data are taken from
an experiment (Burnham & Anderson 2002). This is
because an experiment will be designed in order to
examine all main effects as well as, potentially some
of the interactions. In this case the parameter estimates
for one variable should be unaffected by the inclusion
(or otherwise) of other factors.

Stepwise regression is most likely to lead to problems
when it is used for data mining exercises. For example,
it is common within landscape ecology studies for large
numbers of  predictors to be collected that are poten-
tially associated with a particular organism or group of
organisms. This is often the case when the underlying
ecology of an organism is poorly known. Such studies
sometimes use MAMs to reduce the list of predictors
down to a manageable number. As we have shown
the MAM approach will lead to errors for such data
sets.

In our IT analysis we considered all possible subsets
of  models including these. This might be considered
a large number of competing models to consider. The
key issue with the data set we explored here (and another
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discussed elsewhere by Whittingham et al. 2005) is that
the variables included in the analysis represent a small
proportion of  the possible variables that could have
been included. This subset was selected on the basis of
a priori considerations (i.e. with reference to the known
ecology of yellowhammers and similar farmland birds).
Consequently, the analysis is not a ‘shot-gun’ attempt
to find significant variables, but is more precisely testing
the relative effects of  a realistic set of  candidate pre-
dictors (a form of magnitude of effects estimation, sensu
Guthery et al. 2005). That this set is large is a typical
problem in ecological analyses.

We have dealt in this paper with problems in formal
model selection. However, a great deal of selection occurs
informally in exploratory data analysis. For example,
researchers may conduct preliminary analyses to reduce
the set of predictors examined and reported in publica-
tions, or may use statistical tests in the exploratory
phase to guide them towards the final model. This
part of the analytical process is generally not reported;
however, it is clear that a great deal of selection may occur
prior to the final output. Such an approach (termed
‘data-dredging’ by Burnham & Anderson 2002) may
suffer from all of the limitations we have outlined above,
although is less straightforward to recognize or correct.
It cannot be stressed enough how important it is to either
specify hypotheses a priori, or to describe in detail how
the final reported analysis was determined.

In summary we have demonstrated that use of stepwise
multiple regression is widespread within ecology and
some areas of behavioural science. We have outlined
the three main weaknesses of this technique (namely:
bias in parameter estimation, inconsistencies among
model selection algorithms, and an inappropriate focus
or reliance on a single best model) and shown how
erroneous conclusions can be drawn with a worked
example. We suggest that use of  stepwise multiple
regression is bad practice. Ecologists and behavioural
scientists should make use of  alternative (e.g. IT)
methods or, where appropriate, should fit a full model
(i.e. one containing all predictors). Full (or global) models
are unlikely to be well-suited for prediction, however,
and we recommend multimodel averaging techniques
where prediction is the desired end.
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