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Popular procedures to control the chance of making type I errors when multiple
statistical tests are performed come at a high cost: a reduction in power. As the number
of tests increases, power for an individual test may become unacceptably low. This is a
consequence of minimizing the chance of making even a single type I error, which is the
aim of, for instance, the Bonferroni and sequential Bonferroni procedures. An
alternative approach, control of the false discovery rate (FDR), has recently been
advocated for ecological studies. This approach aims at controlling the proportion of
significant results that are in fact type I errors. Keeping the proportion of type I errors
low among all significant results is a sensible, powerful, and easy-to-interpret way of
addressing the multiple testing issue. To encourage practical use of the approach, in this
note we illustrate how the proposed procedure works, we compare it to more
traditional methods that control the familywise error rate, and we discuss some
recent useful developments in FDR control.
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The problem

The appropriate threshold to declare a test statistic’s

p value significant becomes complex when more than

one test is performed. In the absence of a true effect each

test has a chance of a to yield a significant result, and the

chance of drawing at least one false conclusion increases

rapidly with the number of tests performed. Protection

against false rejections of the null hypothesis, or type I

errors, is usually achieved via a Bonferroni-type correc-

tion procedure (Holm 1979). By performing individual

tests at error rates that are a fraction of the overall

nominal a, the chance of making even a single type I

error can be maintained at the desired a level (usually

5%). This is called control of the familywise error rate

(FWER). With an increasing number of tests, maintain-

ing a low chance of making even one type I error comes

at the direct cost of making more type II errors, i.e. not

recognizing a true effect as significant. The classical

Bonferroni procedure, which performs each of m tests at

a type I error rate of a/m, is undesirable because of this

trade-off: only a very strong effect is likely to be

recognized as significant when many tests are performed.

Several improvements to the classical Bonferroni have

been proposed in order to reduce the problem of low

power (reviewed by Garcı́a 2004). For instance, the well

known Holm’s step-down or sequential Bonferroni

procedure (Holm 1979, popularized among evolutionary

biologists and ecologists by Rice 1989) performs tests in

order of increasing p values, and conditional on having

rejected tests with smaller p values an increasingly

permissive threshold can be used while maintaining the

FWER at the desired level (5%). Further power gains are

possible with the sequential approach by using a step-up

instead of a step-down procedure (that is, testing in

order of decreasing p values, Hochberg 1988), by

estimating the number of true null hypotheses and

correcting for those instead of all tests performed
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(Schweder and Spjøtvoll 1982, Hochberg and Benjamini

1990), and by accounting for correlations within the

dataset which can reduce the effective number of

independent tests performed (Cheverud 2001). Although

an improvement over the classical Bonferroni, all these

procedures still focus on limiting the chance of making

even a single type I error, and as such will result in more

type II errors than is perhaps desired.

The problem with this approach to type I error

control, which has led some to suggest that we should

abandon correcting for multiple testing altogether

(Moran 2003), is that overall interpretation may not be

erroneous if one test is falsely rejected, but may be

severely affected by a large number of type II errors.

FWER control offers limited opportunity to strike a

sensible compromise between the two types of error. The

a level can be raised to a 10% (or even 20% or 50%)

chance of making at least one type I error, thereby

decreasing the rate of type II errors. But with a growing

number of tests this still leads to an increasing number of

type II errors; it is inherent to controlling the chance of

making even a single type I error.

Controlling the false discovery rate

An elegant way to deal with the problem, that was

recently advocated for ecological studies by Garcı́a

(2003, 2004), is to control the proportion of significant

results that are in fact type I errors (‘false discoveries’)

instead of controlling the chance of making even a single

type I error. This new approach was developed by

Benjamini and Hochberg (1995). To see the difference

between FWER and the false discovery rate (FDR),

consider the potential outcomes of each test (Table 1).

FWER is the probability that V, the number of type I

errors, is greater than or equal to one. FDR, as defined

by Benjamini and Hochberg (1995), is the expected

proportion of type I errors among all significant results

(V/r). Control of FWER, for instance via Bonferroni or

sequential Bonferroni adjustment of the per comparison

error rate, means that the probability that V]/1 is

maintained at a desired level. Control of FDR means

that the expected proportion V/r is maintained at a

desired level. When all null hypotheses are true, control-

ling FWER and FDR are equivalent. In that case either

V/r�/0 (by definition if V�/0) or V/r�/1 (if V�/0,

because all significant results are false), and the expected

ratio equals the chance that any false rejection is made.

However, if some of the alternative hypotheses are true

and S�/0, then V/r is either 0 (if V�/0) or 0B/V/rB/1

(if V�/0), and the expected ratio is smaller than the

chance that any false rejection is made (Benjamini and

Hochberg 1995). In those cases FDR is smaller than

FWER, and controlling FDR at, say, 5% can result in

fewer type II errors than controlling FWER at 5%. The

gain increases when more alternative hypotheses are true.

The following simple procedure to control FDR at

level a was proposed by Benjamini and Hochberg (1995):

For m tests, rank the p values in ascending order P(1)5/

P(2)5/. . .5/P(m), and denote by H(i) the null hypothesis

corresponding to P(i); Let k be the largest i for which

P(i)5
a
m

i

and reject all null hypotheses H(1) . . . H(k). In other

words, starting with the highest p value each p is checked

for this requirement; at the first p that meets the

requirement its corresponding null hypothesis and all

those having smaller p’s are rejected. To visualize the

potential for reduction in type II errors using this 1995

Benjamini and Hochberg FDR procedure compared to

(sequential) Bonferroni FWER control at the same 5%

level, consider the example in Fig. 1. The cost of not

wanting to make even a single type I error is reflected in

the difference between FWER and FDR significance

thresholds for individual tests. Note that if the FDR

threshold of 5% yields a list of, for instance, 20

significant results then the expected number of type I

errors among these is one.

The above procedure was shown by Benjamini and

Hochberg (1995) to control FDR in the case when all

m tests are independent, and was also shown (Benjamini

and Yekutieli 2001) to control FDR when tests are

positively correlated. These are thought to be the most

common situations in genetic and ecological studies.

Positive dependence, for instance, can occur in marker-

trait association studies when markers are linked, or in

ecological studies when explanatory variables are corre-

lated. When tests are negatively correlated, or have a

more complex dependence structure, Benjamini and

Yekutieli (2001) showed that replacing m in the above

procedure with

m
Xm

i�1

1

i

will provide FDR control. This modification is more

conservative than the original procedure, and thus

should be used only when made necessary by negative

dependency among tests. Structure among variables

Table 1. Possible outcomes of individual tests. Note that V is
the number of type I errors; T is the number of type II errors;
and only m, r and m�/r are observed while the other variables
are unknown.

Truth Decision Total

Not significant Significant

Null hypothesis U V m0

Alternative hypothesis T S m�/m0

Total m�/r r m
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(along a chromosome, in an environment) will most

often result in positive dependencies, and thus the

original correction is usually appropriate.

An example

Consider the following situation: 50 independent tests

are performed, of which 15 represent true alternative

hypotheses and 35 represent true null hypotheses. How is

interpretation of the p values affected by using Benja-

mini and Hochberg (1995) FDR control instead of

FWER controlling procedures? Fig. 2 shows a simulated

example. P values for the true null cases were obtained

by drawing randomly from a uniform distribution with

boundaries 0 and 1. P values for the true alternative

cases were obtained by drawing randomly from a normal

distribution with a mean of 1.5 and a standard deviation

of 1, and calculating the probability of drawing a more

extreme value under the z distribution (thus simulating

an effect size of 1.5 sd units). Note that this example

serves only to illustrate application of the procedure;

simulation-based power estimates are presented in

Benjamini and Hochberg (1995) and Brown and Russell

(1997).

In this example, FDR control resulted in considerably

fewer type II errors than either procedure for FWER

control, while the number of type I errors among the

significant results was close to the expected values: zero

out of five at FDR 0.05 (expected value 0.25); one out

of 11 at FDR 0.1 (expected value 1.1); and three out

of 16 at FDR 0.2 (expected value 3.2). FWER

control procedures resulted in zero type I errors at all

significance levels (as expected), but at the cost of

recognizing only a small fraction of the true alternative

cases. A simple spreadsheet program to perform

this simulation with test numbers, effect sizes and

significance thresholds of choice can be downloaded

as an Appendix on Oikos homepage www.oikos.lu.se/ or

can be obtained from the authors.

Beyond the Benjamini and Hochberg FDR
procedure

FDR control is an active field of research. Here we

discuss some recent developments that either provide

increased power over the 1995 Benjamini and Hochberg

procedure, or provide tools for better understanding and

interpretation of FDR control.

Sharpened FDR control

In common with the Holm’s step-down (1979) and

Hochberg’s step-up (1988) sequential Bonferroni proce-

dures, the Benjamini and Hochberg FDR method is

conservative in the sense that it controls FDR no matter

how many of the m tests are true null cases (m0). The

procedure, in fact, controls FDR at the level am0/m

(Benjamini and Hochberg 1995). For instance, if we set

a�/0.05 and 20% of the tests happen to be true

alternative cases then FDR is really controlled at a level

of 0.04. The resulting loss of power can be remedied in

the same spirit as sharpened FWER methods: by

estimating the proportion of true null cases (m0/m) and

adjusting the critical threshold accordingly (Hochberg

and Benjamini 1990). There are several graphical

m0 estimation procedures that are based on the fact

that the p values of the true null cases should follow a

uniform distribution while those of the true alternative

cases do not. Benjamini and Hochberg (2000) present a

simple sharpening procedure for their FDR method

(included in our downloadable spreadsheet program),
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Fig. 1. Comparison of threshold p values with classical Bonferroni FWER control, Holm’s sequential Bonferroni FWER control
(Holm 1979, Rice 1989) and Benjamini and Hochberg FDR control (Benjamini and Hochberg 1995), when 50 tests are performed
and FWER�/FDR�/0.05. Threshold values are calculated according to the inset table (m�/50; a�/0.05). Using Holm’s sequential
Bonferroni method, tests are performed from smallest to largest p until a p value exceeds the threshold; with the Benjamini and
Hochberg (1995) FDR method testing is from largest to smallest p until a p value falls below the threshold.
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and show that power can be increased considerably.

Applied to our example of 50 tests described above, at

a�/0.05, this sharpening procedure resulted in eight type

II errors and one type I error, compared to ten and zero

without sharpening (Fig. 2).

In the same example, similar sharpening of the FWER

controlling methods using the procedures described in

Hochberg and Benjamini (1990) did not result in fewer

type II errors. Brown and Russell (1997) use simulation

studies to compare the power of these sharpened FWER

procedures with a number of other type I error control

methods, and provide software for applying the proce-

dures to a list of p values.

The false non discovery rate (FNR)

A natural companion to the FDR is the false non

discovery rate (FNR), or the expected proportion of non

rejections that are incorrect (Genovese and Wasserman

2002). This is the ratio T/m�/r in Table 1. The FNR

plays a similar role in FDR control as power does in

FWER control: given a procedure to decide which

p values are significant and which are not, it quantifies

a rate of making type II errors. The FNR can be

estimated based on an estimate of the proportion of true

null cases (m0/m in Table 1) combined with an expecta-

tion for the number of false discoveries (from an FDR

controlling procedure; V/r in Table 1, Genovese and

Wasserman 2002, Taylor et al. in press). Insight into the

FNR complements FDR control in a fundamental way,

since the motivation to switch from FWER to FDR

control is to strike a more balanced compromise between

type I and type II errors. Joint consideration of FDR

and FNR allows the total misclassification risk to be

estimated (type I plus type II errors; Genovese and

Wasserman 2002). It can be used as an evaluation tool to

get a sense of the ‘miss rate’. For instance, in simulation

studies different FDR controlling procedures (or even

different tests) can be compared in terms of their FNR.

In a genomics context where thousands of tests are

performed, Taylor et al. (in press) propose to estimate

the FNR over a range of null hypotheses that were close

to being rejected (for instance with p values between the

cutoff value determined by the FDR procedure and 0.05).

Fig. 2. Application of Benjamini and
Hochberg (1995) FDR control. The
graph shows ranked p values from a
simulated example with 50 tests of
which 15 were true alternative
hypotheses and 35 were true null
hypotheses (see text); plus significance
thresholds corresponding to FDR
levels of 0.05, 0.1, and 0.2. Only the 25
lowest p values are shown. Closed
symbols represent true alternative
cases and open symbols represent true
null cases. Lower panels show
tabulated outcomes when applying
different type I error control
procedures (1995 Benjamini and
Hochberg FDR control, sharpened
Benjamini and Hochberg FDR
control [see ‘Beyond the Benjamini
and Hochberg FDR procedure’],
classical Bonferroni FWER control,
and Holm’s sequential Bonferroni
FWER control), at different levels, to
the simulated set of p values (H0: true
null case; H1: true alternative case;
NS: not significant; S: significant).
Type I and type II errors are shown in
italics.
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Measuring significance in the FDR context

The Benjamini and Hochberg procedure sets the FDR at

a desired level a, which defines a threshold to which

individual p values are compared, and results in a list of

rejected hypotheses of which a proportion a are expected

to be type I errors. The threshold in itself does not give

insight into the degree of significance for individual tests.

The p value is a measure of significance in terms of the

false positive rate, and is useful in the FWER context to

assess for each test the risk that the null hypothesis is

falsely rejected. Storey (2002) proposes a corresponding

significance measure for the FDR context, the q value.

This value gives the expected proportion of significant

results that are truly null cases (false discoveries) when

the cutoff point for H0 rejection is at that test’s p value.

The q value for a test is estimated by reversing the

Benjamini and Hochberg process: a rejection threshold

is set at a the test’s p value and the associated FDR is

estimated. Q values can be calculated for each test,

ranked in ascending order, and the FDR consequences

of choosing a cutoff point for H0 rejection are then

apparent. Storey and Tibshirani (2003) provide software

for transferring a list of p values to q values. Their FDR

procedure exploits estimation of the proportion of true

null hypotheses among all tests, and is more powerful

than the 1995 Benjamini and Hochberg procedure and

equally powerful to the sharpened 2000 Benjamini and

Hochberg procedure (Black 2004).

Conclusion

When many tests are performed, keeping the proportion

of false discoveries relative to all significant results at a

low level is a powerful alternative to the traditional

approach of avoiding even a single false discovery.

Control of the FWER at a, via (sequential) Bonferroni

procedures, is a suitable approach only if the penalty of

making even one type I error is severe. In many studies

avoiding any type I error irrespective of its cost in terms

of type II errors is not a satisfactory approach. FDR

control provides a sensible solution: it offers an easily

interpretable mechanism to control type I errors while

simultaneously allowing type II errors to be reduced.

Control of the false discovery rate is being widely

adopted in genomic research. Here, genomewide scans

necessitate the interpretation of hundreds or thousands

of simultaneous tests, and minimizing the chance of

making even a single type I error can keep the vast

majority of true effects from being detected. FDR

control can address a much wider range of multiple

testing problems in evolution and ecology as well

(Garcı́a 2003, 2004), where the loss of power inherent

to strict FWER control does not do justice to the nature

of many experiments. FDR control is more powerful and

often is more relevant than controlling the FWER. It is

also flexible, and ease of interpretation is not affected by

changing the significance threshold. The threshold level

can vary with, for instance, the number of tests and the

nature of the study (e.g. exploratory or confirmatory), in

a way that is less constrained than FWER control.

Sensible biological interpretation of multiple testing

results may therefore benefit more from FDR than

FWER control.
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