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SIMPLICITY AND COMPLEXITY IN ECOLOGICAL DATA ANALYSIS
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Abstract. I argue that ecological data analyses are often needlessly complicated, and I
present two examples of published analyses for which simpler alternatives are available.
Unnecessary complexity is often introduced when analysts focus on subunits of the key
experimental or observational units in a study, or use a very general framework to present an
analysis that is a simple special case. Simpler analyses are easier to explain and understand;
they clarify what the key units in a study are; they reduce the chances for computational
mistakes; and they are more likely to lead to the same conclusions when applied by different
analysts to the same data.
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INTRODUCTION

I can easily test the hypotheses by simple t tests, but

want something more ‘‘elegant’’ that will fit well with

a ‘‘better’’ journal.

—Oregon State University professor

requesting statistical help

This comment reflects an attitude that is all too

common in ecology, and probably many other fields: the

more complicated and technical-sounding the data

analysis, the more compelling will be the conclusions

from that analysis. In my view, simple statistical

arguments are more persuasive than complicated ones,

since one can more easily follow the train of logic and

verify that there are no weaknesses obscured by

elaborate statistical manipulations. This is apparently a

minority view, as evidenced by an abundance of

needlessly complicated and confusing statistical meth-

odology in modern ecological literature.

The statistical analyst tries to quantify in an objective

way the extent to which a set of data supports or refutes

particular hypotheses about the population(s) from

which the data came. Statistical theory has been

developed to reduce the data to their essence, e.g., by

identifying sufficient statistics, which are more compact

than the original set of data, yet contain all of the

information pertinent to the hypotheses of interest.

Inferences based on these statistics are usually as direct

and powerful as possible.

It is often not necessary to develop explicit models for

observations made below the level of the experimental or

sampling unit in a study (so-called ‘‘subsamples’’), since

unit-specific summaries will be the foundation for

statistical inference. Avoiding detailed descriptions of

subsamples simplifies the presentation of the analysis

and clarifies what the effective sample size really is.

Simple models are more likely to convey the key features

of the data to other scientists, and they increase the

chances that different analysts will reach the same

conclusions.

It is natural, as a scientific field matures, for mostly

descriptive work to be supplanted by more rigorous

observational and experimental protocols, with a

corresponding increase in the use of statistical inference.

But some ecologists seem to go overboard in the detail

and complexity of their statistical presentations. For

example, Schluter (1994) presents 14 P values in

describing a study based on two divided ponds, and

Stewart-Oaten (1996) and Murtaugh (2000) use 15 and

14 equations, respectively, in their discussions of models

of time series from two ecological units. Following are

two other examples of analyses that I think could have

been presented more simply and clearly.

All of the modeling and calculations in this paper

were done with R (R Development Core Team 2005).

EXAMPLE 1: SIZES OF ZOOPLANKTON

IN EXPERIMENTAL PONDS

Murtaugh (1989) studied the size and species compo-

sition of zooplankton in six experimental ponds at

Cornell University, three of which had reproducing

populations of planktivorous fishes and three of which

were fishless. I measured the body lengths of thousands

of zooplankters, and tested for a difference in body size

between the fish-containing and fishless ponds. In the

following sections, I present two ways of comparing the

sizes of macrozooplankton between pond types: the first

approach was used in the original paper, and the second

I came up with more recently. I illustrate the approaches

using a set of 288 zooplankton sizes selected randomly

from the published data, shown in Fig. 1.
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Analysis 1: Nested analysis of variance

Here is an excerpt from Murtaugh (1989) explaining

this method:

‘‘I ran a nested analysis of variance (ANOVA) on the

lengths of zooplankton in the six ponds—the effect of

pond on body size is nested within the effect of

predation treatment. Note that, since the study ponds

can be thought of as a sample from a larger population

of ponds that might have been used, ‘pond’ is a random

effect nested within the fixed effect of fish . . . Because of

the complications involved in nested ANOVA’s with

unequal sample sizes (Sokal and Rohlf 1981), I fixed the

number of replicates per pond at the value for the pond

with the smallest number of length measurements

available . . .; appropriately-sized samples were obtained

from the larger sets of measurements by random

sampling without replacement.’’

Table 1 summarizes the nested analysis of variance on

the current subset of the zooplankton size data. We have

strong evidence that mean sizes differ between the fish

treatments (F1,4 ¼ 55.78, P ¼ 0.002). It is worth noting

that this analysis could also be called one-way analysis

of variance with subsampling (see Kuehl 2002:159).

Analysis 2: Two-sample t test

Comparing the mean sizes in the fish-containing ponds

(0.642, 0.582, and 0.580 mm) to the mean sizes in the

fishless ponds (0.235, 0.275, and 0.358mm), a two-sample

t test yieldsP¼0.002 (t4¼7.469).We have strong evidence

that mean sizes differ between the fish treatments.

Comparison of approaches

Obviously, analysis 2 is simpler and easier to

understand. Furthermore, it is mathematically equiva-

lent to analysis 1: the F statistic in analysis 1 is the

square of the t statistic from analysis 2 (see Appendix

A). Nevertheless, the first analysis somehow seems more

impressive than the second. If someone had told me in

1989 that my nested ANOVA could be restated as a two-

sample t test, I would have been dismayed by the

mismatch between the effort involved in data collection

and the simplicity of the subsequent analysis. And I’m

guessing that some readers would have been skeptical

that an analysis of thousands of size measurements in six

ponds could be summarized so simply.

In spite of its veneer of respectability, I see no

advantages to analysis 1. It is harder to understand; it

takes longer to explain; and it gives details about a

component of variation (zooplankters within pond) that

is not directly relevant to the hypothesis test of interest.

If there is interest in the nature of the distribution of

zooplankton size within ponds, graphical approaches

(like the histograms in Fig. 1) are much more

informative than an extra line in an ANOVA table.

This is not to say that the effort ofmeasuring thousands

of zooplankters was in vain; the larger the number of

measurements contributing to each pond-specific mean,

the more precise is our estimation of the mean. That is, as

the number of measurements per pond increases, the

variability of the pond means within each treatment will

decrease,making it easier to detect a possible fish effect on

zooplankton size. In this case, interestingly, retrospective

power calculations (not shown) suggest that I would have

been nearly as likely to detect the fish effect if I had made

only a tiny fraction of the number of measurements that I

actually did. A small amount of pilot data, along with

some guidance about optimal allocation of sampling

effort in the face of multiple components of variation

(e.g., see Kuehl 2002: 163), could have saved me con-

siderable time and effort.

Some might contend that the simplicity of the

presentation of analysis 2 obscures assumptions that are

implicit in the analysis. In fact, the assumptions behind

the two analyses are identical, viz., that the six pond

means are independent and normally distributed random

FIG. 1. Sizes of macrozooplankton in six experimental
ponds at Cornell University, Ithaca, New York, USA
(Murtaugh 1989): three ponds without fish (left column), three
with fish (right), 48 zooplankton measurements per pond. The
vertical dashed lines show the average sizes in each pond, used
in the second analysis of the data.

TABLE 1. Nested ANOVA table for the zooplankton size data.

Source df SS MS F P

Fish 1 7.009 7.009 55.782 0.0017
Pond within fish 4 0.503 0.126 2.709 0.0305
Residual 282 13.080 0.046
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variables with equal variances. The choice of whether to

summarize the results as a t test or as an F test from an

ANOVA table is a matter of stylistic preference.

The difference between the two approaches comes in

when extra attention is paid to the within-pond compo-

nent of variation: this could be merely the use of a fancy

name (nested ANOVA, or ANOVA with subsampling),

or the analyst might proceed with another F test,

comparing between-pond to within-pond variation in

zooplankton size. The latter test requires an additional

assumption—that the individual size measurements are

normally distributed—and it is not directly germane to

the test for an effect of fish on body size. The t test does

not require this extra assumption, because the Central

Limit Theorem ensures that means of 48 observations

will be approximately normally distributed, regardless of

the distribution of the individual observations.

EXAMPLE 2: ASSOCIATION OF TEMPERATURE

WITH FISH GROWTH

These data are from a study of the associations of

environmental variables with the daily growth rates of

suckers in Upper Klamath Lake, Oregon (Terwilliger et

al. 2003). Daily growth increments of the otoliths from

juvenile fish were related to a variety of variables mea-

sured in the lake. Here I focus on a set of 53 Lost River

suckers collected in 1995, and consider the association of

temperature with the width of otolith increments. The

total number of measured increments was 4996.

Fig. 2 illustrates the steps used in processing the data

from this study: time series of increment widths for

individual fish were ‘‘de-trended’’ by fitting lowess curves

(Fig. 2a; Cleveland 1981), and residuals from those fits

were then compared to ambient temperatures on the days

corresponding to the growth increments (Fig. 2b). Fig. 2c

shows one way of visualizing the relationship between

residual increment width and temperature for an

individual fish. The following two analyses are ways of

summarizing these relationships over the sample of 53

fish, in an effort to make broader inferences about the

association between temperature and increment growth

rate in the larger population of fish.

Analysis 1: Linear mixed-effects (LME) model

This is the approach used by Terwilliger et al. (2003),

following my recommendation. A general model for the

residual increment width of fish i (in lm) at age tj (in

days) can be written as

yij ¼ gi þ bixj þ eij ð1Þ

where gi is a random intercept associated with fish i; xj is

the temperature (in 8C) on the date that this fish was age

tj; bi is the change in increment width for fish i associated

with a one-degree increase in temperature; and ei1, ei2,
. . ., ei ni are sequential errors for fish i.

To fit a specific variant of the model in (1), a number

of decisions must be made (e.g., see Pinheiro and Bates

2000, Venables and Ripley 2002):
1) Should we allow each fish to have its own

relationship between increment width and temperature

(i.e., model bi as a random effect), or should we assume

that all fish share the same relationship (i.e., let b1¼b2¼
��� ¼ b53 ¼ b, a fixed effect)?

2) What is the nature of the serial correlation of the

errors within fish (ei1, ei2, . . ., ei ni )? Possible models

FIG. 2. Illustration of the processing of data from a single
Lost River sucker (Terwilliger et al. 2003), showing (a) width of
daily otolith increments (in lm) vs. the date on which they were
deposited, with a ‘‘lowess’’ fit superimposed; (b) increment-
width residuals from the above fit vs. date, and lake temperature
(in 8C) vs. date; and (c) increment-width residuals vs. lake
temperature, with a least-squares regression line superimposed.
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include an autoregressive process of order p, AR(p); a

moving-average process of order q, MA(q); a combina-

tion of autoregressive and moving-average processes;

and a continuous-time autoregressive process, CAR(1),

in which the time position variable can be any

continuous variable. Once a model is chosen, it must

be ‘‘tuned’’ to the data—for example, one must select

values of p or q, or, in the case of the CAR(1) model, one

must decide how the time position variable is to be

specified (in the fish example, it could be Julian days

corresponding to the growth increments, or simply the

order of observations within each fish).

3) After the model and the within-group correlation

structure have been specified, one must decide whether

to estimate parameters using maximum likelihood (ML)

or restricted maximum likelihood (REML). The two

approaches, which differ in the way that variance

components are estimated, can give quite different

results when the sample sizes and number of groups

are small (Venables and Ripley 2002).

4) What do we do if the estimation algorithm fails to

converge for our data set? Most users of linear mixed-

effects models have faced this problem at one time or

another.

Analysis 2: Individual regression lines

In this alternative approach, the increment-width

residuals are regressed against ambient temperature

separately for each of the 53 fish, resulting in 53 least-

squares estimates of the association between increment

width and temperature, b̂1, b̂2, . . ., b̂53 (Fig. 3). Since it is
unlikely that one fish’s growth increments ‘‘influence’’

those of another fish, it is reasonable to assume that the

53 regression coefficients are statistically independent.

Furthermore, the least-squares regression estimates are

unbiased for the underlying population mean, no matter

what the correlation structure of the errors within fish

(e.g., see Diggle et al. 2002: 59).

The variances of the fish-specific b̂’s will vary,

depending on the number of observations made for

each fish and the temperatures recorded on those dates.

Unbiased estimates of those variances are available from

the output for the 53 fish-specific regression fits. The

optimal summary is therefore a weighted average of the

fish-specific regression coefficients, with weights propor-

tional to the reciprocals of the squared standard errors

from the individual fits:

^̂b [
X53

i¼1

wib̂i

wi ¼
1= SE b̂i

� �h i2

X53

j¼1

1= SE b̂j

� �h i2
� � : ð2Þ

Assuming the b̂i’s are independent, the natural estimate

of the standard error of the weighted average is

calculated as follows:

SE
^̂b
� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X53

i¼1

wi b̂i �
^̂b

� �2

53� 1

vuuuut
: ð3Þ

If, as is usually assumed, each b̂i has a normal

distribution, we can base one-sample statistical inference

on the fact that (b̂̂� b)/SE(b̂̂) has a t distribution with 52

degrees of freedom. The estimates b̂̂ and SE(b̂̂) can be

obtained from most regression packages by fitting an

intercept-only model of the 53 b̂’s, with weights equal to

the reciprocals of the squared standard errors from the

53 fish-specific fits.

This approach assumes only that there is some

underlying b relating increment width to temperature

for this population of fish, for which b̂1, . . ., b̂53 are

independent estimates. Whether b is a fixed effect for all

FIG. 3. For 53 Lost River suckers collected in 1995
(Terwilliger et al. 2003), a histogram of the slopes of regressions
of increment-width residuals vs. lake temperature, done
separately for each of the 53 fish, as shown in the top panel
and in Fig. 2c. The vertical dashed line in the histogram
indicates zero slope. The average of the 53 slopes, weighted by
the inverse of their estimated variances, is 0.0218 lm/8C.
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fish, or the mean of fish-specific random effects (cf.

Eq. 1), is irrelevant, as is the correlation structure of the

errors within individual fish.

Comparison of approaches

Table 2 shows estimates obtained using variants of

each of these methods. The individual-based method

estimates that a one-degree increase in temperature is

associated with a 0.0218-lm increase in otolith incre-

ment width (SE ¼ 0.0059). The estimates based on the

linear mixed-effects models range from 0.0195 to 0.0235

lm/degree, with the choice of correlation structure

having a large influence on the result. The standard

errors from the mixed-effects models are also quite

variable, with the largest (0.0071) being 61% larger than

the smallest (0.0044).

Of course, one cannot determine by inspection which

of the estimates in Table 2 is ‘‘best.’’ To explore the

validity of the different approaches in this example, I

simulated data by (1) generating intercepts and slopes of

53 fish-specific regressions of increment width vs.

temperature from a bivariate normal distribution based

on the empirical data, and (2) adding time series of

errors of the appropriate length to each regression line,

with correlation structure dictated by the distributions

of residuals in the original data. Details of these

simulations are given in Appendix B.

I then applied the various analysis methods to the

simulated data; recorded the slope estimates and their

standard errors; and constructed confidence intervals for

the population mean slope, noting whether or not each

interval included the true slope (used in simulating the

data). Figure 4 shows the results of these simulations.

The individual-based method (analysis 2) yields slope

estimates that are, on average, very close to the true

value, and the confidence intervals have the expected

95% coverage. The LME models treating the tempera-

ture effect as random (labeled RE in Fig. 4) are

reasonably accurate, with confidence-interval coverage

close to the nominal level. The models that treat

temperature as a fixed effect (FE) behave more

erratically. The confidence intervals have smaller than

the nominal coverage, because the estimated standard

errors are too small.

It is not surprising that the LME models treating

temperature as a random effect do better than those

treating temperature as a fixed effect, since the simula-

tion algorithm is essentially a random-effects model (see

Appendix B). Of course, in analyses of real data, the

underlying model is not known, and the choice of how to

model the temperature effect may be quite subjective.

As mentioned earlier, the choice of correlation

structure in LME modeling can have a large effect on

the results (Fig. 4). In addition, for certain models,

different estimation algorithms (REML or ML) may

yield quite different results—see, for example, the results

for fixed-temperature-effect models assuming no within-

fish correlation of errors (labeled FE, NONE).

This single set of simulations does not prove that the

performance of the individual-based method is always as

good as or better than those of the LME modeling

approaches. But the simplicity of the assumptions

behind the individual-based approach—that the fish-

specific regression coefficients are independent, normally

distributed random variables—suggests that this ap-

proach is likely to work well under a variety of possible

scenarios of data generation.

The results of the LME approaches, on the other

hand, are potentially quite sensitive to the choices that

TABLE 2. Estimates of the regression coefficient relating
increment width to temperature for the 53 Lost River
suckers, based on a variety of statistical approaches.

General approach
and temperature

effect

Assumed
correlation
structure Estimate SE

Linear mixed effects

Fixed none 0.0224 0.0044
AR(1) 0.0195 0.0071
MA(1) 0.0219 0.0054

Random none 0.0235 0.0057
AR(1) 0.0195 0.0071
MA(1) 0.0219 0.0054

Individual based 0.0218 0.0059

Note: All of the LME results were obtained using restricted
maximum likelihood (REML).

FIG. 4. Estimates of the regression coefficient (in lm/8C) for
temperature vs. increment width from analyses of data sets
simulated as described in Appendix B. Lines show 95% CI
based on the empirical variance of 200 simulated slope
estimates. The labels on the left give the analysis method (IB,
individual based; RE, temperature as a random effect; FE,
temperature as a fixed effect); the correlation structure assumed
for the errors (none, first-order autoregressive, or moving
average); and the estimation algorithm (maximum likelihood or
restricted maximum likelihood). The numbers on the right give
the proportions of 200 simulated confidence intervals that
included the true mean slope.
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need to be made in implementing the analyses, mostly

pertaining to the modeling of the correlation of

observations within units. Some statisticians may be

able to use experience, intuition and subtle techniques of

data exploration to guide the decisions that must be

made in fitting LME models (e.g., see Venables and

Ripley 2002: 272–279), but many other users, including

this one, will be overwhelmed by the technical detail that

must be mastered in order to use these methods

appropriately and effectively.

This is not to say that linear mixed-effects models are

not useful; they are invaluable when there is specific

interest in the nature of the variation of responses made

within units, and the way that the within-unit variability

interacts with the between-unit variability to determine

the overall pattern of responses. If the questions of

interest focus on the larger units, however, the analysis

can often be simplified by summarizing, rather than

modeling, the multiple observations made within units—

in this example, using a least-squares regression esti-

mate, instead of a time-series model, to summarize each

fish’s data.

OTHER ISSUES

There is a variety of other ways that ecologists might

simplify and strengthen their analyses. One is to use

more graphs. In my opinion, one should be skeptical of

a statistical conclusion that is unaccompanied by some

graphical demonstration of the trend or difference being

tested. Graphical exploration is a good first step of any

analysis, with statistics often playing a secondary,

confirmatory role. Nonetheless, complicated statistical

analyses are often presented without graphs. For

example, a long discussion of the effects of forest

practices on peak flows in watersheds in the western

Cascades of Oregon (Thomas and Megahan 1998,

Beschta et al. 2000, Jones 2000) includes no examples

of the hydrographs upon which the analyses are based.

As in the examples explored here, complexity is often

introduced when analyses are based on multiple

measurements made on a relatively small number of

experimental or observational units. Substantial effort

may be devoted to the modeling of the measurements

within units, when often all that is needed is a single

summary of those measurements at the level of the

experimental unit. O’Brien and Shampo (1988) describe

a study of time series of blood flow in eight subjects in

which there is no attempt, or need, to model the serial

correlation of measurements within subjects: ‘‘We

believe that, in this instance, the use of a graphic display

aided by t tests appropriately conveyed the pertinent

information obtained by the investigators and that the

use of more sophisticated statistical analysis would not

have been helpful.’’

CONCLUSIONS

Some statistical methods are unavoidably complex,

e.g., survival analysis, mark-recapture analyses, many

applications of Bayesian inference, and spatial statistics.

Presentations of such analyses will necessarily be quite

technical and involved. But, in more ‘‘run-of-the-mill’’

analyses, simplicity is a worthy goal to strive for. Simple

analyses offer fewer chances for mistakes; they are easier

to explain and understand; they require fewer arbitrary

choices by the analyst; and they are likely to lead to the

same conclusions when applied by different analysts to

the same data.

Of course, statistical rigor should not be sacrificed in

the quest for directness; there are many examples of

simple analyses that are misleading or incorrect (e.g., see

Hurlbert 1984). Identifying the crux of a statistical

problem may require considerable statistical training,

experience and intuition, even if the ultimate solution

involves a commonplace technique.

If statistical analyses were more transparent, it would

be easier for readers and reviewers to judge the validity

and strength of a study’s conclusions. At a minimum,

the methodology should be understandable to a

professional statistician; it should be explained in

enough detail that the statistician could reproduce the

analysis; it should be supported by graphical or

descriptive summaries of the data; and it should be

simple and direct enough that two analysts using the

same approach are likely to reach the same conclusions.

In my opinion, the quality of the ecological literature

would improve if these criteria were more often met.
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APPENDIX A

Equivalence of the F test and t test in Example 1 (Ecological Archives E088-003-A1).

APPENDIX B

A description of how data were simulated for the evaluation of the different analysis techniques for Example 2 (Ecological
Archives E088-003-A2).
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