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 The Abuse of Power: The Pervasive Fallacy of Power

 Calculations for Data Analysis

 John M. HOENIG and Dennis M. HEISEY

 It is well known that statistical power calculations can be

 valuable in planning an experiment. There is also a large lit-

 erature advocating that power calculations be made when-

 ever one performs a statistical test of a hypothesis and one

 obtains a statistically nonsignificant result. Advocates of

 such post-experiment power calculations claim the calcu-

 lations should be used to aid in the interpretation of the

 experimental results. This approach, which appears in vari-

 ous forms, is fundamentally flawed. We document that the

 problem is extensive and present arguments to demonstrate

 the flaw in the logic.

 KEY WORDS: Bioequivalence testing; Burden of proof;

 Observed power; Retrospective power analysis; Statistical

 power; Type II error.

 1. INTRODUCTION

 It is well known among applied scientists that a lack of

 impact or effect is not sufficiently established by a failure

 to demonstrate statistical significance. A failure to reject

 the null hypothesis of no effect may be the result of low

 statistical power when an important effect actually exists
 and the null hypothesis of no effect is in fact false. This can

 be called the dilemma of the nonrejected null hypothesis:

 what should we do when we fail to reject a hypothesis?

 Dismayingly, there is a large, current literature that advo-
 cates the inappropriate use of post-experiment power cal-

 culations as a guide to interpreting tests with statistically

 nonsignificant results. These ideas are held tenaciously in a

 variety of disciplines as evidenced by methodological rec-

 ommendations in 19 applied journals (Table 1). In our ex-
 perience as consulting statisticians, authors are not infre-

 quently required to perform such calculations by journal
 reviewers or editors; at least two journals ask for these cal-

 culations as a matter of policy (Anon. 1995; Anon. 1998).

 We emphasize that these calculations are sought primarily

 with the thought that they are useful for explaining the ob-

 served data, rather than for the purpose of planning some

 future experiment. We even found statistical textbooks that
 illustrate the flawed approach (e.g., Rosner 1990; Winer,

 Brown, and Michels 1991; Zar 1996). Researchers need to

 be made aware of the shortcomings of power calculations

 as data analytic tools and taught more appropriate method-

 ology.

 It is important to understand the motivation of applied

 scientists for using power analysis to interpret hypothesis

 tests with nonsignificant results. The traditional, widely ac-

 cepted standard has been to protect the investigator from

 falsely concluding that some treatment has an effect when

 indeed it has none. However, there is increasing recognition

 that a "reversal of the usual scientific burden of proof" (e.g.,

 Dayton 1998) is preferred in many areas of scientific infer-
 ence. Areas where this is a particular concern include mak-

 ing decisions about environmental impacts, product safety,

 and public welfare where some people want to be protected

 from failing to reject a null hypothesis of no impact when

 a serious (e.g., harmful or dangerous) effect exists. We be-
 lieve that the post-hoc power approaches that have conse-

 quently arisen are due to applied scientists being heavily

 tradition-bound to test the usual "no impact null hypothe-

 sis," despite it not always being the relevant null hypothesis

 for the question at hand.

 We describe the flaws in trying to use power calculations
 for data-analytic purposes and suggest that statistics courses

 should have more emphasis on the investigator's choice of
 hypotheses and on the interpretation of confidence intervals.

 We also suggest that introducing the concept of equivalence
 testing may help students understand hypothesis tests. For
 pedagogical reasons, we have kept our explanations as sim-

 ple as possible.

 2. INAPPROPRIATE USES OF POWER ANALYSIS

 2.1 "Observed Power"

 There are two common applications of power analysis
 when a nonrejected null hypothesis occurs. The first is

 to compute the power of the test for the observed value
 of the test statistic. That is, assuming the observed treat-

 ment effects and variability are equal to the true parame-
 ter values, the probability of rejecting the null hypothesis
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 Table 1. Journals with Articles Advocating Post-Experiment Power
 Analysis

 American Journal of Physical Anthropology. Hodges and Schell (1988)

 American Naturalist Toft and Shea (1983); Rotenberry and Wiens (1985)

 *Animal Behavior Thomas and Juanes (1996); Anon. (1998)

 Aquaculture: Searcy-Bernal (1994)

 Australian Journal of Marine and Freshwater Research:
 Fairweather (1991)

 Behavioral Research Therapy. Hallahan and Rosenthal (1996)

 Bulletin of the Ecological Society of America: Thomas and Krebs (1997)

 Canadian Journal of Fisheries and Aquatic Sciences:

 Peterman (1989, 1990a)

 Conservation Biology Reed and Blaustein (1995, 1997);

 Hayes and Steidl (1997); Thomas (1997)

 Ecology. Peterman (1 990b)

 Journal of Counseling Psychology. Fagley (1985)

 'Journal of Wildlife Management (Anon., 1995); Steidl,

 Hayes and Schauber (1997)

 Marine Pollution Bulletin: Peterman and M'Gonigle (1992)

 Neurotoxicology and Teratology: Muller and Benignus (1992)

 Rehabilitation Psychology. McAweeney, Forchheimer, and Tate (1997)

 Research in the Teaching of English: Daly and Hexamer (1983)

 Science: Dayton (1998)

 The Compass of Sigma Gamma Epsilon: Smith and Kuhnhenn (1983)

 Veterinary Surgery. Markel (1991)

 NOTE: * indicates journal requires or requests post-experiment power calculations when test

 results are nonsignificant.

 is computed. This is sometimes referred to as "observed
 power." Several widely distributed statistical software pack-

 ages, such as SPSS, provide observed power in conjunction
 with data analyses (see Thomas and Krebs 1997). Advo-
 cates of observed power argue that there is evidence for

 the null hypothesis being true if statistical significance was
 not achieved despite the computed power being high at the
 observed effect size. (Usually, this is stated in terms of the
 evidence for the null hypothesis (no effect) being weak if
 observed power was low.)

 Observed power can never fulfill the goals of its advo-
 cates because the observed significance level of a test ("p
 value") also determines the observed power; for any test
 the observed power is a 1:1 function of the p value. A
 p value is a random variable, P, on [0, 11. We represent
 the cumulative distribution function (cdf) of the p value as
 Pr(P < p) = G6(p), where 6 is the parameter value. Con-

 sider a one-sample Z test of the hypothesis Ho: , < 0 ver-
 sus Ha: [ > 0 when the data are from a normal distribution

 with known a. Let 6 = rU/CJ. Then G6(p) = I- (Zp- ),
 where Zp is the 100(1 - p)th percentile of the standard nor-
 mal distribution (Hung, O'Neill, Bauer, and Kohne 1997).
 That is, Zp is the observed statistic. Both p values and ob-
 served power are obtained from G6 (p). A p value is obtained
 by setting ,tlu 0, 50 Go(p) 1 1- b(Zp) =p. Observed
 power is obtained by setting the parameter to the observed

 statistic and finding the percentile for P < cg, so observed
 power is given by Gzp(ao) 1 1- (Za - 4) and thus the
 observed power is determined completely by the p value

 and therefore adds nothing to the interpretation of results.

 An interesting special case occurs when P = a; for the

 Z test example above it is immediately obvious that ob-

 served power = .5 because Zc, = Zp. Thus, computing ob-
 served power can never lead to a statement such as "because

 the null hypothesis could not be rejected and the observed

 power was high, the data support the null hypothesis." Be-
 cause of the one-to-one relationship between p values and

 observed power, nonsignificant p values always correspond
 to low observed powers (Figure 1). Computing the observed

 power after observing the p value should cause nothing to
 change about our interpretation of the p value. These results

 are easily extended to two-sided tests.

 There is a misconception about the relationship between

 observed power and p value in the applied literature which

 is likely to confuse nonstatisticians. Goodman and Berlin

 (1994), Steidl, Hayes, and Schauber (1997), Hayes and

 Steidl (1997), and Reed and Blaustein (1997) asserted with-
 out proof that observed power will always be less than .5

 when the test result is nonsignificant. An intuitive coun-

 terexample is as follows. In a two-tailed Z test, the test

 statistic has the value Z = 1.96 if the test is marginally sig-
 nificant at a = .05. Therefore, the probability of observing

 a test statistic above 1.96, if the true mean of Z is 1.96,
 is .5. The probability of rejecting the null hypothesis is the

 probability of getting a test statistic above 1.96 or below

 -1.96. Therefore, the probability is slightly larger than .5.
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 a

 V

 a)
 no

 0

 0.0 0.2 0.4 0.6 0.8 1.0

 20 Statistical Practice

This content downloaded from 142.103.160.110 on Mon, 04 Sep 2017 16:45:27 UTC
All use subject to http://about.jstor.org/terms



 In fact, it is rather easy to produce special examples of test

 statistics with skewed distributions that can produce arbi-

 trarily high observed powers for p =c>.

 A number of authors have noted that observed power may

 not be especially useful, but to our knowledge a fatal logical

 flaw has gone largely unnoticed. Consider two experiments

 that gave rise to nonrejected null hypotheses. Suppose the

 observed power was larger in the first experiment than the

 second. Advocates of observed power would interpret this

 to mean that the first experiment gives stronger supportfa-
 voring the null hypothesis. Their logic is that if power is

 low one might have missed detecting a real departure from

 the null hypothesis but if, despite high power, one fails to

 reject the null hypothesis, then the null is probably true or

 close to true. This is easily shown to be nonsense. For ex-

 ample, consider the one-sided Z test described above. Let

 ZP1 and ZP2 refer to the observed test statistics in the re-
 spective experiments. The observed power was highest in

 the first experiment and we know this implies ZP1 > ZP2
 because observed power is Gzp (c>) which is an increasing
 function of the Z statistic. So by usual standards of us-

 ing the p value as statistical evidence, the first experiment

 gives the stronger support against the null, contradicting

 the power interpretation. We will refer to this inappropri-

 ate interpretation as the "power approach paradox" (PAP):

 higher observed power does not imply stronger evidence

 for a null hypothesis that is not rejected.

 2.2 "Detectable Effect Size" and "Biologically
 Significant Effect Size"

 A second, perhaps more intriguing, application of post-
 experiment power calculations is finding the hypothetical

 true difference that would have resulted in a particular
 power, say .9. This is an attempt to determine the "de-

 tectable effect size." It is applied as follows: an experiment
 is performed that fails to reject the null. Then, based on

 the observed variability, one computes what the effect size

 would have needed to have been to have a power of .9. Ad-

 vocates of this approach view this "detectable effect size" as
 an upper bound on the true effect size; that is, because sig-
 nificance was not achieved, nature is unlikely to be near this

 state where power is high. The closer the detectable effect

 size is to the null hypothesis of 0, the stronger the evidence
 is taken to be for the null. For example, in a one-tailed Z

 test of the hypothesis Ho: ,u < 0 versus Ha: ft > 0, one
 might observe a sample mean X = 1.4 with o- = 1. Thus,
 Z = 1.4 and P = .08, which is not significant at co = .05.

 We note that if the true value of ,t were 3.29 (and yx were
 1) we would have power = .95 to reject Ho. Hence, 3.29
 would be considered an upper bound on the likely value of
 the true mean. (Note that a 95% upper confidence bound
 on ,u would be 3.04. We return to this point later.)

 A variant of the "detectable effect size" approach is the
 "biologically significant effect size" approach, where one
 computes the power at some effect size deemed to be bio-

 logically important. The higher the computed power is for

 detecting meaningful departures from the null, the stronger

 the evidence is taken to be for nature to be near the null

 when the null is not rejected.

 These inferential approaches have not been justified for-

 mally. Cohen (1988, p. 16) claimed that if you design a

 study to have high power 1 - 13 to detect departure A from
 the null hypothesis, and you fail to reject the null hypoth-

 esis, then the conclusion that the true parameter value lies

 within A units of the null value is "significant at the 13
 level. Thus, in using the same logic as that with which we

 reject the null hypothesis with risk equal to c>, the null hy-

 pothesis can be accepted in preference to that which holds

 that ES [the effect size] = A with risk equal to /3." (We

 have changed Cohen's notation in the above to conform to

 that used here.) Furthermore, Cohen stated (p. 16) "'proof'

 by statistical induction is probabilistic" without elabora-

 tion. He appeared to be making a probabilistic statement

 about the true value of the parameter which is invalid in a

 classical statistical context. Furthermore, because his pro-

 cedure chooses the sample size to have a specified, fixed

 power before conducting the experiment, his argument as-

 sumes that the actual power is equal to the intended power

 and, additionally, his procedure ignores the experimental

 evidence about effect size and sampling variability because

 the value of /3 is not updated according to the experimen-

 tal results. Rotenberry and Wiens (1985) and Searcy-Bernal

 (1994) cited Cohen in justifying their interpretation of post-

 experiment computed power.

 Although many find the detectable effect size and biologi-

 cally significant effect size approaches more appealing than

 the observed power approach, these approaches also suf-

 fer from fatal PAP. Consider the previous two experiments

 where the first was closer to significance; that is, ZP1 > ZP,2.
 Furthermore, suppose that we observed the same estimated

 effect size in both experiments and the sample sizes were

 the same in both. This implies cr1 < 02. For some desired

 level of power HI1, one solves HI = 1- 1(Z, - rp/u) for
 p to obtain the desired detectable effect size, p. It follows

 that the computed detectable effect size will be smaller in

 the first experiment. And, for any conjectured effect size,

 the computed power will always be higher in the first ex-

 periment. These results lead to the nonsensical conclusion

 that the first experiment provides the stronger evidence for

 the null hypothesis (because the apparent power is higher

 but significant results were not obtained), in direct contra-
 diction to the standard interpretation of the experimental

 results (p values).
 Various suggestions have been made for "improving"

 post-experiment power analyses. Some have noted certain

 estimates of general effect sizes (e.g., noncentrality param-
 eters) may be biased (Thomas 1997; Gerard, Smith, and
 Weerakkody 1998), which potentially could be corrected.
 Others have addressed the fact that the standard error used

 in power calculations is known imprecisely, and have sug-

 gested computing confidence intervals for post-experiment

 power estimates (Thomas 1997; Thomas and Krebs 1997).
 This is curious because, in order to evaluate a test result, one
 apparently needs to examine power but, in order to evaluate

 (test) if power is adequate one does not consider the power

 of a test for adequate power. Rather, one switches the in-

 ferential framework to one based on confidence intervals.
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 These suggestions are superfluous in that they do nothing

 to correct the fundamental PAP.

 3. POWER ANALYSIS VERSUS CONFIDENCE

 INTERVALS

 From a pedagogic point of view, it is interesting to com-

 pare the inference one would obtain from consideration of

 confidence intervals to that obtained from the power anal-

 ysis approach. Confidence intervals have at least two inter-

 pretations. One interpretation is based on the equivalence

 of confidence intervals and hypothesis tests. That is, if a

 confidence interval does not cover a hypothesized param-

 eter value, then the value is refuted by the observed data.

 Conversely, all values covered by the confidence interval

 could not be rejected; we refer to these as the set of non-

 refuted values. If the nonrefuted states are clustered tightly

 about a specific null value, one has confidence that nature

 is near the null value. If the nonrefuted states range widely

 from the null, one must obviously be cautious about inter-

 preting the nonrejection as an indication of a "near-null"

 state. The more widely known interpretation is that confi-

 dence intervals cover the true value with some fixed level of

 probability. Using either interpretation, the breadth of the

 interval tells us how confident we can be of the true state

 of nature being close to the null.

 Once we have constructed a confidence interval, power

 calculations yield no additional insights. It is pointless to
 perform power calculations for hypotheses outside of the

 confidence interval because the data have already told us

 that these are unlikely values. What about values inside the

 confidence interval? We already know that these are values

 that are not refuted by the data. It would be a mistake to
 conclude that the data refute any value within the confi-

 dence interval. However, there can be values within a 95%
 confidence interval that yield computed powers of nearly

 .975. Thus, it would be a mistake to interpret a value asso-

 ciated with high power as representing some type of upper
 bound on the plausible size of the true effect, at least in

 any straightforward sense. The proposition that computed

 power for effect sizes within a confidence interval can be
 very high can be demonstrated as follows. Consider the case
 where the random variable X has a normal distribution. We

 wish to test the null hypothesis that the mean is zero ver-
 sus the alternative that it is not zero. A random sample of

 large size is taken which has a mean, x, of 2 and a standard

 error of the mean of 1.0255. The upper critical region for

 a two-sided Z test then corresponds to values of the mean

 greater than 1.96 x 1.0255 -2.01. Therefore, we fail to re-

 ject the null hypothesis. A 95% confidence interval would
 be (-.01,4.01). We note that a value of 4 for the popula-
 tion mean is not refuted by the data. Now post-hoc power
 calculation indicates the probability of rejecting the null

 hypothesis if the mean is actually 4 is Pr( XJ > 2.01) =
 Pr(Z > (2.01 - 4)/1.0255) + Pr(Z < (-2.01 - 4)/1.0255)
 which is about .974. Thus, the power calculation suggests

 that a value of 4 for the mean is unlikely-otherwise we

 ought to have rejected the null hypothesis. This contradicts

 the standard theory of hypothesis tests.

 4. EQUIVALENCE TESTING

 Simply saying that an experiment demonstrates that a

 treatment is "near-null" because the confidence interval

 is narrow about the null value may seem unsatisfactorily

 "seat-of-the-pants." However, this can be formulated as a

 rigorous test. Suppose that we are willing to conclude that

 a treatment is negligible if its absolute effect is no greater

 than some small positive value A. Demonstrating such prac-

 tical equivalence requires reversing the traditional burden

 of proof; it is not sufficient to simply fail to show a dif-

 ference, one must be fairly certain that a large difference

 does not exist. Thus, in contrast to the traditional casting

 of the null hypothesis, the null hypothesis becomes that a

 treatment has a large effect, or HO: IDI > A, where D is
 the actual treatment effect. The alternative hypothesis is the

 hypothesis of practical equivalence, or HA: IDI < A.
 Schuirmann (1987) showed that if a 1 - 2cv confidence

 interval lies entirely between -A and A, we can reject the

 null hypothesis of nonequivalence in favor of equivalence

 at the oa level. The equivalence test is at the a level because
 it involves two one-tailed a level tests, which together de-

 scribe a 1 - 2a level confidence interval. This approach to

 equivalence testing is actually always a bit on the conser-

 vative side; the actual level a' for normally distributed data
 from a one-sample experiment with known u- and nominal

 level a is a' =a - 1 + d) (2Z\A 1/o - Z,), which shows the
 conservatism will be slight in many practical applications

 where 2z\A /uo substantially exceeds Z,. More powerful
 equivalence testing procedures exist (e.g., Berger and Hsu
 1996), but for well-behaved problems with simple struc-

 tures the simplicity of this approach seems to make it a
 compelling choice to recommend to the researcher involved
 in analysis (Hauck and Anderson 1996).

 Considering the power approach as a formal test in the
 above equivalence testing framework makes it clear why
 it is logically doomed. The power approach requires two

 outcomes before declaring equivalence, which are (1) the
 null hypothesis of no difference Ho: D = 0 cannot be re-

 jected, and (2) some predetermined level of power must be

 achieved for IDI = A. To achieve outcome 1, the absolute
 value of the observed test statistic must be less than Z,.
 This in turn implies that the observed absolute difference

 Idl must be less than Zao/ \;. Thus, as IDI becomes more
 precisely estimated by increasing n or decreasing u-, the ob-

 served difference Idl must become progressively smaller if
 we want to demonstrate equivalence. This simply does not
 make sense: it should become easier, not more difficult, to

 conclude equivalence as IDI becomes better characterized.
 Schuirmann (1987) noted that when viewed as a formal test
 of equivalence, the power approach results in a critical re-

 gion that is essentially upside down from what a reasonable

 equivalence test should have.

 5. DISCUSSION

 Because of the prominence of post-hoc power calcula-

 tions for data analysis in the literature, elementary statis-

 tics texts should devote some attention to explaining what

 should not be done. However, there is a larger^ lesson to be
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 learned from the confusion about power analysis. We be-

 lieve the central focus of good data analysis should be to

 find which parameter values are supported by the data and

 which are not. Perhaps unwittingly, advocates of post-hoc

 power analysis are seemingly grappling with exactly this

 question.

 The reader with Bayesian inclinations would probably

 think "what foolishness-the whole issue would be moot if

 people just focused on the sensible task of obtaining poste-

 rior distributions." Philosophically, we find this attractive as

 it avoids some nagging issues in frequentist statistics con-

 cerning p values and confidence intervals (e.g., Berry 1993;
 Freeman 1993; Schervish 1996; Goodman 1999a,b). But,

 the real world of data analysis is for the most part solidly

 frequentist and will remain so into the foreseeable future.

 Within the limitations of the frequentist framework, it is

 important that analyses be as appropriate as possible.

 Introductory statistics classes can focus on characteriz-

 ing which parameter values are supported by the data by

 emphasizing confidence intervals more and placing less em-

 phasis on hypothesis testing. One might argue that a rigor-

 ous understanding of confidence intervals requires a rigor-
 ous understanding of hypothesis testing and p values. We

 feel that researchers often do not need a rigorous under-

 standing of confidence intervals to use them to good ad-

 vantage. Although we cannot demonstrate it formally, we

 suspect that imperfectly understood confidence intervals are
 more useful and less dangerous than imperfectly under-

 stood p values and hypothesis tests. For example, it is surely
 prevalent that researchers interpret confidence intervals as

 if they were Bayesian credibility regions; to what extent

 does this lead to serious practical problems? The indirect

 logic of frequentist hypothesis testing is simply nonintuitive

 and hard for most people to understand (Berry 1993; Free-
 man 1993; Goodman 1999a,b). If informally motivated con-
 fidence intervals lead to better science than rigorously mo-

 tivated hypothesis testing, then perhaps the rigor normally
 presented to students destined to be applied researchers can

 be sacrificed.

 Of course, researchers must be exposed to hypothesis

 tests and p values in their statistical education if for no

 other reason than so they are able to read their literatures.
 However, more emphasis should be placed on general prin-

 ciples and less emphasis on mechanics. Typically, almost
 no attention is given to why a particular null hypothesis

 is chosen and there is virtually no consideration of other

 options. As Hauck and Anderson (1996) noted, both statis-
 ticians and nonstatisticians often test the wrong hypothesis

 because they are so conditioned to test null hypotheses of
 no difference. Statisticians need to be careful not to present

 statistical analysis as a rote process. Introductory statistics
 students frequently ask the question, "why focus on pro-
 tection against erroneously rejecting a true null of no dif-

 ference?" The stock answer is often something like "it is

 bad for science to conclude a difference exists when it does

 not." This is not sufficient. In matters of public health and

 regulation, it is often more important to be protected against

 erroneously concluding no difference exists when one does.

 In any particular analysis, one needs to ask whether it is

 more appropriate to use the no difference null hypothesis

 rather than the nonequivalence null hypothesis. This is a

 question that regulators, researchers, and statisticians need

 to be asked and be asking constantly. We doubt whether

 many researchers are even aware that they have choices

 with respect to the null hypotheses they test and that the

 choices reflect where the burden of proof is placed.

 We would not entirely rule out the use of power-type con-

 cepts in data analysis, but their application is extremely lim-

 ited. One potential application might be to examine whether

 several experiments were similar, except for sample size;

 this might be an issue for example in meta-analyses (Hung,

 O'Neill, Bauer, and Kohne 1997). The goal here, examin-
 ing homogeneity, differs from the usual motivations for post

 hoc power considerations.

 Power calculations tell us how well we might be able to

 characterize nature in the future given a particular state and

 statistical study design, but they cannot use information in

 the data to tell us about the likely states of nature. With

 traditional frequentist statistics, this is best achieved with
 confidence intervals, appropriate choices of null hypotheses,
 and equivalence testing. Confusion about these issues could

 be reduced if introductory statistics classes for researchers
 placed more emphasis on these concepts and less emphasis

 on hypothesis testing.

 [Received July 2000. Revised September 2000.]
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