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ABSTRACT
General linear models (GLM) have become such universal tools of sta-

tistical inference, that their applicability to a particular data set is rarely
questioned. These models are designed to minimize residuals along the y-
axis, while assuming that the predictor (x-axis) is free of statistical noise
(ordinary least square regression, OLS). However, in practice, this assump-
tion is often violated, which can lead to erroneous conclusions, particularly
when two predictors are correlated with each other. This is best illustrated
by two examples from the study of allometry, which have received great in-
terest: (1) the question of whether men or women have relatively larger
brains after accounting for body size differences, and (2) whether men
indeed have shorter index fingers relative to ring fingers (digit ratio) than
women. In depth analysis of these examples clearly shows that GLMs pro-
duce spurious sexual dimorphism in body shape where there is none (e.g.
relative brain size). Likewise, they may fail to detect existing sexual dimor-
phisms in which the larger sex has the lower trait values (e.g. digit ratio)
and, conversely, tend to exaggerate sexual dimorphism in which the larger
sex has the relatively larger trait value (e.g. most sexually selected traits).
These artifacts can be avoided with reduced major axis regression (RMA),
which simultaneously minimizes residuals along both the x and the y-axis.
Alternatively, in cases where isometry can be established there are
no objections against and good reasons for the continued use of ratios as a
simple means of correcting for size differences. Anat Rec, 294:1856–1863,
2011. VVC 2011 Wiley-Liss, Inc.
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The application of general linear models (GLM) has
become such a widely accepted and universal tool for
statistical inference, that many readers will be surprised
to hear about problems associated with it. The purpose
of this commentary is to remind the reader about a
major limitation of GLMs, which are based on ordinary
least square regression (OLS, also known as Model I
regression: Sokal and Rohlf, 1995). The limitations of
OLS regression are well described in the specialized lit-
erature (e.g., Warton et al., 2006; Arnold and Green,
2007; Smith, 2009; Peig and Green, 2010), but there is
still a lack of awareness among researchers as evidenced
by the frequent misuse of OLS regression in the empiri-
cal literature (see e.g., Green, 2001; Peig and Green,

2010). The problem I want to highlight is best illustrated
with examples from the study of allometry (i.e., relative
size or body shape). I will demonstrate that GLMs can
lead to erroneous conclusions in the study of sexual
dimorphism, but the problem is more general and
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extends to a wide range of cases, namely it arises when-
ever GLMs contain two predictors that are correlated
(e.g., sex and body size in a size dimorphic species) and
at least one of the predictors contains considerable
amounts of statistical noise (which I will define later).
Hence, my examples will focus on the issue of how to
deal with body size differences (e.g., between sexes or
between groups of species), but those examples illustrate
a much more general issue.

The study of relative size differences (allometry) is a
minefield of possible mistakes to be made. For instance,
Smith (2005) presents a very insightful review of 2 deca-
des of research literature that was often mislead by a
misunderstanding, namely the failure to distinguish
between (1) the study of relative size by means of ratios
or reduced major axis regression (RMA, explained later)
and (2) the statistical control for differences in size by
means of OLS regression.

1. The study of relative size asks whether body propor-
tions remain the same as body size increases (isome-
try). This has frequently been studied by looking at
ratios, for example, brain mass divided by body mass.
This is a very natural way of looking at body shape
because it directly relates to the Intercept Theorem of
elementary geometry, which deals with the equality of
ratios of distances. However, the use of such ratios
got criticized very heavily for a variety of reasons
(e.g., Packard and Boardman, 1988; Ranta et al.,
1994). First, many traits scale allometrically rather
than isometrically to size, and ratios cannot account
for this allometry. Second, ratios still show a (typically
negative) correlation with the denominator (e.g., body
mass), which seemingly they mean to control for.
However, such remaining correlations with measures
of size are not always problematic or unwanted. For
instance, relative body fat content (mass of fat divided
by total mass) only remains a sensible measure of fat-
ness as long as it remains correlated with body mass
(here positively, i.e., a 300 kg person scoring higher
than a 40 kg person of the same height).

2. Statistical control for differences in body size is
achieved by taking residuals from an OLS regression
of the trait of interest over body size, or by fitting
body size as a covariate into a GLM (or specifically
ANCOVA). This approach has the statistically conven-
ient property of removing any residual correlation
with the particular measure of size that was con-
trolled for. However, as I will show later, its apparent
success in rendering measurements independent of
size is illusionary (see also Green, 2001).

THE DISTINCTION BETWEEN OLS AND RMA
REGRESSION

For a better understanding, it first needs to explain
the critical distinction between the very widely used
OLS regression and the relatively unknown reduced
major axis (RMA) regression (also named standardized
major axis regression or geometric mean regression:
McArdle, 1988; Sokal and Rohlf, 1995; Warton et al.,
2006; Smith, 2009).

OLS regression is the type of regression that everyone
is familiar with: a regression line is fitted to the data

such that the deviation of data points along the y axis
(dependent variable) from the line is minimized. This
method of line fitting assumes that all deviations of data
points from the regression line are due to statistical
noise in the dependent variable y, whereas the x axis is
free of such noise (Sokal and Rohlf, 1995). The violation
of this assumption is unproblematic when regression is
only used to measure the strength of a relationship (in
terms of r2 or P), and also when our purpose is to predict
values of y from measured values of x (Warton et al.,
2006). However, when the slope (b) of the regression line
is important for statistical inference, then it is easy to
be misled (see also Smith, 2009; for a detailed discus-
sion). In studies of allometry, the x axis is a morphomet-
ric trait that shows both measurement error (1) and,
more importantly, biological noise (2). (1) Measurement
error refers to imprecise measuring of individuals, or,
when data points represent species, this additionally
includes sampling error, that is, noise due to picking one
individual but not another. (2) Biological noise refers to
the sum of all genetic and environmental effects that are
specific to an individual (or species) and that have
uncorrelated effects on x and/or y. It is the sum of all
these effects that make individual data points deviate
from a regression line of y over x. In studies of allometry,
the x and y variables share much of the same properties
and can be exchanged arbitrarily. If it seems probable
that the deviation of data points from the regression line
is due to equal amounts of statistical noise in x and y,
then major axis (MA) regression or reduced major axis
(RMA) regression are the methods of choice for line fit-
ting (Legendre and Legendre, 1998; Warton et al., 2006;
Smith, 2009). If the amount of statistical noise in x and
y is equal in absolute amounts then MA is preferable,
whereas if they are equal in terms of making up equal
proportions of the total variations in x and y, then RMA
is preferable. Both methods fit the regression line such
that the deviations of data points from the line are
simultaneously minimized along both the x and the y
axis.

Note that the two components that make up the sta-
tistical noise have different properties. Although mea-
surement error in x and y can be quantified by taking
repeated measurements, the relative amounts of biologi-
cal noise in x and y are often impossible to know (Smith,
2009). Hence, when x and y have very similar properties,
as in the below example of the lengths of the 2nd and
4th fingers, then the assumption of RMA of equal pro-
portions of noise in x and y seems most justified. If, in
contrast, the x-variable is free of biological noise but
only contains a quantifiable amount of measurement
error, then there are more specific methods to account
for this (see Warton et al., 2006; Freckleton, 2011).

OLS regression lines coincide with RMA regression
lines only when all data points are exactly on the line
(r2 ¼ 1). With increasing scatter around the line (r2 < 1)
OLS regression lines become increasingly shallower
than RMA lines (smaller slopes b in absolute values), a
phenomenon that Galton (1886) termed ‘‘regression back
to the mean,’’ an expression that gave regression its
name. The reason for this behavior of OLS regression
lines lies in the fact that only the deviation along the y
axis is minimized and that, as scatter increases, the best
prediction of y from values of x approaches the popula-
tion mean of y. The shallow regression line of an OLS
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regression produces very large residuals along the x
axis. A RMA regression, in contrast, minimizes the
squared residuals along both axes and this is best
achieved by a steeper regression line. More specifically,
the slope of a RMA regression line is simply the ratio of
the standard deviations of the data along the y and the
x axis, respectively (b ¼ SDy/SDx), whereas in OLS
regression this is multiplied by the correlation coefficient
[b ¼ r * (SDy/SDx)]. Note that slopes of RMA regressions
become meaningless in cases where x and y are unre-
lated (r � 0), which may also bear a danger of leading to
misinterpretation (Smith, 2009).

The failure to distinguish between OLS and RMA
regression has probably lead to numerous mistakes in
the scientific literature of which I would like to point out
two very prominent examples that will hopefully stick in
the mind of the reader and lead to a reduction in the
number of such mistakes in the future. Both examples
are cases of misuse of OLS regression because the wide-
spread use of OLS methods makes such cases abundant.
RMA regressions may also be misused or misinterpreted
(Smith, 2009), but since the less conventional method is
rarely applied without careful consideration, such cases
are probably exceedingly rare.

EXAMPLE 1: INTRODUCING SPURIOUS
DIMORPHISM

Back in 1992, Davison Ankney, who apparently had
read Packard and Boardman’s (1988) critique on the use
of ratios, adopted their OLS regression methodology
(ANCOVA) to reanalyze data on relative brain sizes of
men versus women. The data had been collected by Ho
et al. (1980) and analyzed in terms of the calculation of
ratios (e.g., brain mass divided by body mass). From the
results of the new analysis (which was inappropriate
due to the use of OLS rather than RMA regression),
Ankney (1992) spectacularly concluded that for any
given body height, men had �100 g heavier brains (and
by inference an expectation of greater intelligence: Rush-
ton and Ankney, 1996) than women. This politically, bio-
logically, and statistically questionable conclusion caused
a rush of excitement throughout the scientific commu-
nity as well as the public, as evidenced by a series of cor-
respondences published in Nature. Although most critics
accepted Ankney’s statistical analysis and instead
focused on the inappropriateness of setting up expecta-
tions about intelligence, it apparently was only Dolf
Schluter (1992) who spotted the statistical problem.
Probably due to the limited space, he did not focus on
the critical distinction between OLS and RMA regres-
sion, but instead pointed out that the opposite of
Ankney’s conclusion follows when x and y axes are
exchanged. Schluter also used OLS regression to show
that, when regressing body heights over brain masses,
one comes to the conclusion that, for a given brain mass,
women were on average actually 10 cm shorter than
men, meaning they had relatively larger brains. Appa-
rently Ankney did not see or was not convinced by
Schluter’s comment, so he continued following his own
conclusion, and went on asking why females did not
score lower on intelligence tests than men despite them
having the relatively smaller brains (Rushton and
Ankney, 1996). Also, it appears to me that Ankney’s but
not Schluter’s conclusion stuck to many minds of the

public, so there is still a need to rectify this issue. As
far as I am aware, the data of Ho et al. (1980) was
never reanalyzed appropriately using RMA regression.
Although the raw data of Ho et al. (1980) is not avail-
able, it is still possible to draw the respective OLS and
RMA regression lines for both sexes (Fig. 1) by extract-
ing all the necessary parameters from the paper. The
bold red and dark blue OLS regression lines of brain
mass over body height (taken from Ankney, 1992) are
very shallow, reflecting the very low r2 values (around
5%). This situation with much scatter exaggerates the
apparent sexual dimorphism, leading to the conclusion
of male brain mass being about 100 g greater than
female brain mass for a given body height. Schluter’s
inversed OLS regression lines (taken from Schluter,
1992) for regressing body height on brain mass are also
indicated (bold pink and light blue). When turning the
page by 90� they beckon the opposite conclusion: for any
given brain mass, men are about 10 cm taller than
women, hence women have relatively larger brains. The
according RMA regression lines can be computed as fol-
lows. First, they have to pass through the average body
height (women 162.6 cm, men 174.8 cm) and average
brain mass (women 1,252 g, men 1,392 g) values for the
two sexes, respectively. Second, their slope is the geo-
metric mean (square-root of the product) of the two OLS
regression slopes (hence the alternative name ‘‘geometric
mean regression,’’ Sokal and Rohlf, 1995). For instance,
according to the bold red line (OLS, women) brain mass
increases by 3.1 g/cm of body height, and the bold pink
line (Inverted OLS, women) represents an increase by
52.6 g/cm of body height, the geometric mean of which is
12.8 g/cm [note that 52.6 ¼ (1/r)*12.8 and 3.1 ¼ r*12.8,
with r ¼ 0.243]. The best way to think about a RMA
equation is that it represents the intermediate between
two OLS equations, one for regressing y over x and one
for regressing x over y. It is thereby the solution on
which the two OLS equations would converge if the cor-
relation coefficient r approached unity (Smith, 2009). The
RMA slope for men is marginally steeper (13.4 g/cm)

Fig. 1. Different regression lines relating brain mass to body height
in the two sexes. OLS regression lines (bold red and bold dark blue)
show the shallow slopes characteristic for low r2 values. When body
height is regressed over brain mass, OLS regression lines are also
shallow, and hence they become very steep when plotted in this figure
where the axes are exchanged (inverted OLS lines in bold pink and
bold light blue). RMA regression lines (thin lines) have slopes of
intermediate steepness (geometric mean of the two OLS slopes). Note
that for each sex, the three regression lines pass through the
respective centre of data (mean body height and mean brain mass).
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than that for women. At an average human body height
of 168.7 cm, women’s brains are on average about 20 g
heavier (and not 100 g lighter) than that of men.

Although this looks like a female ‘‘victory’’ in terms of
relative brain size in this particular data set, it has to be
mentioned that this analysis still suffers from a number of
shortcomings, that cannot be resolved without access to
the original data and that are slightly beyond the scope of
this commentary. Actually, fitting an appropriate regres-
sion line is far from trivial, and the interested reader is
referred to Warton et al. (2006) for a more detailed treat-

ment of the subject. The biggest flaw to be considered is
the difference in dimensionality between body height (lin-
ear) and brain mass (volumetric). As a consequence of
this, the relationship is expected to be curvilinear, which
can be remedied by proper transformations (e.g., by using
the cube-root of brain mass or by log-transformation of
both x and y). The difference in dimensionality may also
provoke doubts whether the assumption of RMA (equal bi-
ological noise and measurement error in x and y) are really
met precisely. Note that regressing brain mass over body
mass would solve the issue of dimensionality at the cost of

Fig. 2. Panel (a) shows how the random data were generated along
the lines of isometry for females (y ¼ x) and males (y ¼ 0.985x),
respectively. Panel (b) shows the relationship between 2nd and 4th fin-
ger lengths after adding noise along both the x- and the y axis to the
data from (a). Separate OLS regression lines are shown for the two
sexes (bold) as well as the initial lines of isometry (thin lines). Panel (c)
shows the same data set as in (b) but with x and y-axes exchanged.

Note that in this inverted data set, the male isometry line (thin blue
line) is steeper (y ¼ x/0.985 ¼ 1.01523x) than the female isometry line
(thin red line). Again, separate OLS regression lines are shown for the
two sexes (bold). Panel (d) shows the 2nd finger length [y axis of (b)]
over the initial 4th finger length before the noise was added [x axis of
(a)]. Note that in this case, when the x axis contains no error, OLS
regression lines coincide with the lines of isometry.
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another problem that was highlighted by Arnold and
Green (2007). Since brain mass is a part of total body
mass, y is not being regressed over x but rather over xþy,
which leads to a correlated error structure and up-wards
biased slope estimates.

EXAMPLE 2: MAKING NEGATIVE SIZE
DIMORPHISM DISAPPEAR

Over the past decade there has been a great deal of in-
terest (>300 publications: Voracek and Loibl, 2009) in
the study of digit ratio (i.e., the relative length of the
index finger over that of the ring finger), because this
peculiar morphological trait has been found to be sexu-
ally dimorphic, to correlate with all sorts of sex-hormone
related behavioral and physiological traits, and, follow-
ing various lines of evidence, has been suggested to
reflect sex-hormone exposure during embryo develop-
ment (Manning, 2002). Recently, Kratochvı́l and Flegr
(2009) claimed that all or most of this might be caused
by a statistical artifact of using a ratio that is not size-
independent. Using an OLS regression of the length of
the second over the length of the fourth finger, they find
that this regression line does not pass through the ori-
gin, but instead has a positive intercept (a � SE ¼ 11.2
� 1.7 mm, P < 0.00001). Hence they conclude that the
relationship is allometric rather than isometric and
therefore that ratios will change with absolute size. The
ratio of 2nd to 4th digit lengths will decrease with
increasing size, seemingly explaining why men on aver-
age have lower digit ratios than women. Accordingly,
when re-examining their data in a GLM (here ANCOVA)
with 2nd digit as the dependent variable, 4th digit as a
covariate and sex as a fixed effect, there is no longer a
sex effect (P ¼ 0.23), even though digit ratio itself was
highly significantly dimorphic (P < 0.0001). The GLM
suggests that there is no sexual dimorphism in 2nd dig-
its once controlling for size differences in the 4th digit.
It is easy to imagine that most researchers would agree
with their conclusion. Moreover, three follow-up studies
have discussed and examined the propositions of the
Kratochvı́l and Flegr (2009) study in great detail (Höne-
kopp and Watson, 2010; Manning, 2010; Tobler et al.,
2011). Although all of them, by various means, reach the
conclusion that digit ratio remains sexually dimorphic
even when accounting for allometry, none of the studies
questions the validity of using OLS regression. To the
contrary, they all comply with the inadequate OLS
regression, leading to shallow slopes and positive inter-
cepts, rather than the here appropriate RMA regression.

In the following I would like to identify the specific prob-
lem inherent in the OLS regression analysis of digit ra-
tio, which is best achieved with a simulated data set
rather than with real data, as will become apparent.
Hence, I generated a data set more or less closely follow-
ing the parameters from the original Kratochvı́l and
Flegr (2009) publication.

As shown in Fig. 2a, I started out by drawing 1,000
values from a normal distribution with a mean of 69 mm
and a standard deviation (SD) of 5 mm to represent the
4th digits of 1,000 women. Likewise, 1,000 values for
4th digits of men were created with a mean of 77 mm
and SD of 5 mm. For the 2nd digit of women, I assumed
perfect isometry with a slope of 1 (setting 2nd ¼ 4th),
which corresponds to a digit ratio of 1. Given a sexual
dimorphism in digit ratio of about 1.5%, I used an iso-
metric slope of 0.985 (2nd ¼ 0.985*4th), which corre-
sponds to a male digit ratio of 0.985. In this case, when
there is no scatter, OLS and RMA regression lines coin-
cide, both going through the origin (intercept a ¼ 0)
with slopes of 1 and 0.985 for women and men respec-
tively (Fig. 2a). In a second step, I added noise to each
data point (randomly drawn from a normal distribution
with mean ¼ 0, SD ¼ 2 mm), and this was done inde-
pendently for all of the 2nd and all of the 4th digits (Fig.
2b). An overall (sexes pooled) OLS regression line yields
r2 ¼ 0.81 and a � SE ¼ 9.8 � 0.7 mm, which, for the
present purpose, is sufficiently close to the data from
Kratochvı́l and Flegr (2009; r2 ¼ 0.81, a � SE ¼ 11.2 �
1.7 mm). In fact, the similarity of intercepts suggests
that human digits are probably very close to being iso-
metric. Hence, contrary to Kratochvı́l and Flegr (2009),
human digit ratio appears to be fairly independent of
absolute size and therefore no allometric adjustments
are required. In Fig. 2b one can clearly see how the OLS
regression lines (sexes now separate; in bold) are shal-
lower than the lines of isometry (thin lines) around
which the data were created. The fact that the male and
female OLS regression lines end up being so close to-
gether that a GLM (Table 1, top) judges them as statisti-
cally indistinguishable (P ¼ 0.27), is merely coincidental.
To clearly illustrate the flaw in this analysis, I have
applied Dolph Schluter’s trick in exchanging the x and y
axes using the exactly same data set (Fig. 2c). Note that
the male isometry line now has a slope of 1/0.985 ¼
1.01523. This means that there is ‘‘positive’’ sexual
dimorphism in inverted digit ratios (4th/2nd), meaning
the larger sex has the relatively larger trait values.
Again, OLS regression lines are shallower than the
isometry lines, but this time, male and female lines do

TABLE 1. GLMs to the data sets shown in Fig. 2b–d, respectively

Referring to Dependent Predictor B SE t P

Fig. 2b 2nd finger Intercept 9.183 0.900 10.2 <10�23

4th finger 0.866 0.012 74.4 <10�99

Sex (female) 0.169 0.153 1.1 0.27
Fig. 2c 4th finger Intercept 12.628 0.870 14.5 <10�45

2nd finger 0.849 0.011 74.4 <10�99

Sex (female) �2.244 0.143 �15.6 <10�52

Fig. 2d 2nd finger Intercept �0.803 0.718 �1.1 0.26
4th finger without noise 0.996 0.009 107.1 <10�99

Sex (female) 1.107 0.117 9.5 <10�20

Note that the sex-by-covariate interaction was always non-significant, and hence it was always excluded for simplicity. In
contrast to this, different slopes for males and females were fitted in Fig. 2.
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not coincide. Accordingly, a GLM (Table 1, middle) with
the 4th digit as the dependent variable, the 2nd digit as
a covariate and sex as a fixed factor yields a highly sig-
nificant (P < 10�52) sex difference. This shows that ‘‘neg-
ative’’ size dimorphisms (the smaller sex having
relatively larger trait values; e.g., corpus callosum size;
Smith, 2005) tend to be obscured by the shallower OLS
regression lines, while ‘‘positive’’ size dimorphisms tend
to be exaggerated.

There are two reasons why the presented GLMs are
inappropriate. First, there is collinearity between the
predictors, namely sex and size. When using Type 1
sums of squares rather than Type 3 sums of squares it
becomes visible that the conclusion of whether the effect
of sex is significant depends on the order of entering the
predictors into the model, a clear sign of collinearity
problems (Freckleton, 2011). However, collinearity is not
the primary problem here. OLS regression produces
slopes that are downward biased by the statistical noise
in x, and these slopes result in biased estimates for the
predictor sex (and hence wrong inference) as soon as
there is any collinearity between sex and size. Hence,
only when there is absolutely no sexual dimorphism in
size to correct for, which is practically never reached in
a real data set, will the GLM output be unbiased with
regard to the sex effect. The joint problem caused by col-
linearity and statistical noise in x has recently been
examined and discussed by Freckleton (2011).

To really understand the main reason why the first
two GLMs in Table 1 lead to erroneous conclusions, one
has to go back to the assumption of OLS regression that
was violated (noise in x). Therefore, I repeated the first
analysis (Table 1 top, Fig. 2b), but this time noise was
added to the data points only along the y axis (the same
amount as before), but not to the x axis. In other words,
I regressed the y axis from Fig. 2b over the x axis from
Fig. 2a. Importantly, the OLS regression lines now coin-
cide with the lines of isometry around which the data
were set up (Fig. 2d; very minor deviations being due to
noise in data creation). Hence, the reason for the shal-
lower slope in Fig. 2b compared to 2d, lies in the addi-
tion of noise to the values of x. This can easily be seen
from another formula describing the slope of an OLS
regression line: b ¼ cov(xy)/var(x), where cov(xy) is the
covariance between x and y, and var(x) is the variance in
x (Sokal and Rohlf, 1995). Adding statistical noise to the
values of x increases the variance in x and lowers the
regression slope (because of the larger denominator).

The GLM to the data in Fig. 2d shows a non-signifi-
cant sex-by-4th finger length interaction (P ¼ 0.26), so it
cannot tell apart the slight difference in male versus
female slopes (0.985 vs. 1). However, a reduced GLM
(Table 1, bottom) with a common slope for the two sexes
(estimated to be about 0.996) shows a non-significant
intercept (in line with isometry), and a parameter esti-
mate for the main effect of sex that is approximately in-
termediate between the two erroneous earlier estimates.
Hence, apart from the failure to distinguish between
male and female slopes (for which there is not enough
power) the last GLM in Table 1 gives about a fair repre-
sentation of the data created. However, this was only
possible by excluding the noise from the x axis, which
cannot be done in real data sets.

A correct way of analyzing the data in Fig. 2b would
be fitting MA regression lines. MA rather than RMA

lines are appropriate for this artificial data set, since I
added absolutely equal amounts of noise to the data
(rather than proportionally equal amounts). Using the
‘‘smatr’’ package in R (Warton and Ormerod, 2007), I did
this for 10,000 such artificial data sets as in Fig. 2b,
which only differ from each other in sampling noise.
Reassuringly, the average of all slopes and intercepts
coincide quite precisely with the starting parameters for
the isometry lines (intercepts ¼ 0, slopes ¼ 1 and 0.985).
However, across the 10,000 replicates the 95% confi-
dence intervals for the male and female slopes are very
wide. Because means can be estimated more precisely
than slopes, it would be a bad idea to estimate the sex-
ual dimorphism in digit ratio from the male and female
MA slopes. The 95% confidence interval for sexual
dimorphism in digit ratio (male digit ratio/female digit
ratio) estimated by this method ranges from 0.936 to
1.038 (mean ¼ 0.985), despite the considerable sample
size of 1,000 individuals of each sex. In contrast, the
classical method of first calculating the digit ratio of ev-
ery individual and then assessing the sexual dimor-
phism in this trait produces a much narrower confidence
interval across the 10,000 replicates (0.981–0.988).
Hence, because slope estimates are much more sensitive
to sampling noise than estimates of means, one should
not be surprised by the output of a MA or RMA analysis.
In the present example one would always find a non-sig-
nificant difference in slopes, but a highly significant dif-
ference in intercepts (i.e., means when assuming equal
slopes). So, the purpose of this line fitting can only be to
roughly confirm the assumption of isometry, such that
we can continue to use the classical ratio of digit lengths
without having to worry about size being a confounding
factor. It is clearly not desirable to replace this tradi-
tional ratio with residuals from RMA lines, the slopes of
which would vary widely between empirical studies al-
ready due to sampling noise alone. This would be
against all efforts of making research procedures more
standardized. Hence, despite of all criticism of ratios,
digit ratio researchers should stick to their initial trait
of study. Yet for large data sets, it would be worth
reporting the equations of RMA lines.

WHEN TO CHOOSE OLS OR RMA?

The central question about when to implement OLS
versus RMA regression was recently discussed by Smith
(2009). The most critical distinction lies in the distribu-
tion of statistical noise between the x and the y axis.
OLS regression of y over x assumes all noise to be in y
and none in x, and yields the characteristic shallow slope
of byx ¼ r(SDy/SDx). The inverted OLS regression of x
over y assumes the very opposite distribution of noise
and yields the steep inverted slope of bxy ¼ (1/r)(SDy/
SDx). RMA regression assumes that the noise is distrib-
uted over the y and x axes in proportion to their overall
variances (SDy2/SDx2), yielding the intermediate geo-
metric mean slope of b ¼ (SDy/SDx). As mentioned ear-
lier, when the noise in x is much smaller than that in y,
and only due to quantifiable measurement error, then
specific modeling of that error is advisable (Warton
et al., 2006; Freckleton, 2011). Hence, RMA regression is
not a universal cure for cases with some error in x.
Some caution regarding RMA may already be necessary
for the brain mass example (Fig. 1), since the amounts
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of biological noise in x and y cannot be known. However,
the intermediate RMA solution is clearly more sensible
than either of the two OLS solutions (the regular and
the inverted), which delineate the range of all possible
solutions in dependence on the relative distribution of
errors. The most pragmatic approach is to decide upon
whether one seeks a single regression line that best
describes the symmetrical relationship between two
traits (RMA) or whether one considers the relationship
between x and y to be asymmetrical (y depending on x,
OLS). For two morphological traits, y does not depend
on x, but rather the two are correlated because they
share genetic and environmental effects that affect both
of them in a correlated way. In contrast, OLS is appro-
priate for cases where x is causal to y.

THE BEHAVIOR OF RESIDUALS AND RATIOS

Another important issue to mention regards the
behavior of residuals derived from OLS versus RMA
regressions. For simplicity, I will focus only on residuals
measured parallel to the y axis (otherwise see Warton
et al., 2006; Smith, 2009). To explore this, I look at resid-
uals from the female data set in Fig. 2b. Although resid-
uals from the OLS regression line—by definition—show
no remaining correlation with the x axis (r ¼ 0), RMA
residuals show a remaining negative correlation with x
(r ¼ �0.23), just like the classical measure of digit ratio
shows such a negative correlation with x, that is, the
ratio’s denominator (r ¼ �0.23). It is this correlation
that lead to a lot of criticism against the use of ratios.

What seems to be the strength of OLS methodology
turns into a weakness when considering the remaining
correlation with the ‘‘true’’ size differences. In real life,
‘‘true size’’ (here meaning the underlying cause of covari-
ance between x and y) is a latent variable that cannot be
measured, but in our simulation it is represented by the
x axis of Fig. 2a, that is, size differences that are shared
between x and y (making them correlated) before adding
uncorrelated noise to x and y. Problematically, OLS
residuals still show a considerable correlation with the
noise-free measure of size of the 4th finger, that is, the x
axis of Fig. 2a (r ¼ 0.26), whereas RMA residuals and
digit ratio practically do not (both r ¼ 0.04). It is the
noise in the x-variable and the subsequently shallower
OLS regression line that lead to a systematic under-cor-
rection for real size differences.

These differences in behavior between OLS and RMA
residuals become even more extreme, as the correlation
between y and x becomes weaker. I give a final example
from the study of relative tarsus length in birds to illus-
trate this. In my captive population of zebra finches, tar-
sus length is only moderately positively correlated with
the cube root of body mass (r ¼ 0.40, N ¼ 988). Hence,
RMA residuals of tarsus length over cube root of body
mass (or ratios of tarsus divided by cube root of mass)
show a disturbingly strong negative correlation with this
measure of size (r ¼ �0.55, and r ¼ �0.54, respectively),
whereas OLS residuals by definition do not (r ¼ 0). How-
ever when tested against another aspect of size, such as
wing length, the previously obtained OLS residuals of
tarsus length prove to be not quite size independent
(correlation with wing length r ¼ 0.19, P < 10�8)
whereas RMA residuals and ratios are (r ¼ 0.005, and r
¼ 0.009, respectively). Hence, while OLS regression

looks cosmetically fine (no residual correlation with cube
root of body mass) it systematically underestimates gen-
eral size effects on tarsus length, yielding tarsus resid-
uals that are inadequately corrected for size, which can
lead to serious misinterpretations (Green, 2001; Peig
and Green, 2010).

CONCLUSION

Following a series of articles criticizing the use of
ratios (e.g., Packard and Boardman, 1988; Ranta et al.,
1994) it may have appeared to many researchers that
fitting all relevant predictors into a single GLM would
provide a solution of universal validity. However, GLMs
can be misleading in the study of allometry and probably
quite a few other situations. Caution is required when-
ever there is considerable statistical noise in the predic-
tor variable. This is frequently the case, but the
conditions under which conclusions become truly errone-
ous are a bit more specific. In the present example,
GLMs were misleading because the two competing ex-
planatory variables (sex and the size covariate) were cor-
related (collinearity). Hence, only when the groups to be
compared differ in the size covariate, which however
will typically be the case, will the group effect be esti-
mated wrongly. More generally, it seems advisable to
always visually examine the respective scatter plots, and
to bear in mind the shallow slopes of OLS regressions.
RMA regressions do not provide a universal cure to all
cases with some error variation in x, but they are the
most sensible solution for all cases where x and y prob-
ably contain similar proportions of biological noise, as in
studies of allometry.
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