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Abstract Researchers in behavioral ecology are increas-
ingly turning to research methods that allow the simulta-
neous evaluation of hypotheses. This approach has great
potential to increase our scientific understanding, but
researchers interested in the approach should be aware of
its long and somewhat contentious history. Also, prior to
implementing multiple hypothesis evaluation, researchers
should be aware of the importance of clearly specifying a
priori hypotheses. This is one of the more difficult
aspects of research based on multiple hypothesis evalu-
ation, and we outline and provide examples of three
approaches for doing so. Finally, multiple hypothesis
evaluation has some limitations important to behavioral
ecologists; we discuss two practical issues behavioral
ecologists are likely to face.
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Introduction

A research program based on the evaluation of multiple
competing hypotheses has a long history (e.g., Chamberlin
1890) and can lead to a rapid increase in our understanding
of organismal behavior by allowing researchers to assess

multiple explanations simultaneously. Researchers are
increasingly attempting to evaluate multiple hypotheses,
and this increase tracks the growth in availability and
understanding of statistical tools for the simultaneous
evaluation of multiple hypotheses (Johnson and Omland
2004). Chief among contemporary tools are model
selection procedures using Akaike’s information criterion
(AIC), in which its wide use in ecology and evolutionary
biology is largely due to influential works by David
Anderson and Kenneth Burnham (Anderson et al. 2000,
2001; Burnham and Anderson 2001; Anderson and
Burnham 2002; Burnham and Anderson 2002, 2004).

Although AIC is the most frequent statistical tool
currently used for the evaluation of multiple hypotheses,
competing hypotheses can also be evaluated using other
information criteria (IC) such as the Schwarz/Bayesian
information criterion or Takeuchi’s information criterion
(Burnham and Anderson 2002; Johnson and Omland
2004). When considering nested hypotheses, likelihood
ratio tests can also be used (Johnson and Omland 2004).
Alternatively, multiple hypotheses can be evaluated based
on whether specific, alternative a priori predictions are
statistically supported (Table 1), an approach that may lead
to more robust inferences (Lipton 2005). Factorial designs,
dynamic models with quantitative predictions, and re-
sponse surface methods also allow the application of
multiple hypothesis evaluation to complex problems
(Hilborn and Stearns 1982). Hilborn and Stearns (1982)
describe these last three methods and how ecologists can
design factorial experiments to assess hypotheses about a
large number of potential causal factors and hypotheses in
a tractable manner.

For questions in behavioral ecology where complex
interactions are possible, critical experiments can be
difficult to design, and the data collected are often
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correlative and observational. When dealing with correl-
ative data and complex questions, model comparisons
based on information criteria may be more tractable than
experiments (Anderson et al. 2000). Using an IC-based
approach, hypotheses are translated into statistical models
and evaluated based on IC values which balance fit to the
data and parsimony. Due to the ability of most statistical
packages to calculate IC values, this approach can be
implemented with relative ease. However, deeper issues
remain including how researchers should go about
developing and evaluating sets of alternative hypotheses
(Burnham et al. 2010; Garamszegi 2010).

Here, we discuss the underlying historical and philo-
sophical bases for a research program using a framework
of multiple hypothesis evaluation. We also discuss the
long history of multiple hypothesis testing, including
historical examples in which the approach has both aided
and hindered the advancement of scientific thought.
Next, we discuss one of the more challenging aspects
of a framework for multiple hypothesis testing, how to
develop candidate hypotheses, and we describe three
approaches for developing hypotheses. Finally, we
discuss some of the conceptual problems and practical
limitations that may arise for behavioral ecologists when
using multiple hypothesis evaluation. We focus on proper
hypothesis specification (versus fishing or data dredging;
Anderson and Burnham 2002), and implicit assumptions
regarding hypothesis sets.

The historical roots of multiple hypothesis evaluation

In “The method of multiple working hypotheses”, T.C.
Chamberlin (1890; see also Chamberlin 1897) developed
the conceptual basis for subsequent methods of model
selection and multimodel inference. Chamberlin asserted
that the promotion of hypotheses unsupported by data
independent of the creation of those hypotheses was
a problematic aspect of contemporary (late nineteenth
century) research. Chamberlin proposed that researchers
instead develop a suite of potential explanations or
hypotheses and then use data to distinguish between the
different explanations. Chamberlin asserted that the evalu-
ation of multiple hypotheses was superior to other
approaches because it encouraged thoroughness and objec-
tivity, and that the approach would result in faster
development and understanding for both basic and practical
research questions.

Ecologists have generally been enthusiastic about using
Chamberlin’s approach as a framework for designing
research, either informally or through model selection
and multimodel inference (Johnson and Omland 2004;
Elliott and Brook 2007). However, some geologists and
historians have been critical of Chamberlin’s influence.
For example, Johnson (1990) considered Chamberlin’s
argument to be based on faulty logic as well as impractical
(but see Railsback 1990). Moreover, Oreskes (1999)
argued that Chamberlin’s influence among American

Table 1 Behavioral ecologists who have employed multiple hypothesis evaluation have most typically done so using either AIC based model
ranking or evaluation of a priori predictions of specific hypotheses

Topic Species # Of hypotheses Method Reference

Adoption behavior Ring-billed gulls 8 Prediction-based Brown (1998)

Anti-predator behavior Deer 5 Prediction-based Bildstein (1983)

Anti-predator behavior Gazelles 11 Prediction-based Caro (1986)

Anti-predator behavior Elk 38 AIC-based model ranking Liley and Creel (2008)

Attraction/sexual selection Flies 4 AIC-based model ranking Stamps et al. (2005)

Attraction/sexual selection Ghost crabs 5 AIC-based model ranking Stamps et al. (2005)

Behavioral syndrome/
personality structure

Kangaroo rats 8 AIC-based model ranking Dochtermann
and Jenkins (2007)

Brood parasitism Warblers All possible AIC-based model ranking Stokke et al. (2008)

Cooperative breeding Tree creepers 4 Prediction-based Doerr and Doerr (2006)

Foraging behavior Kangaroo rats 5 Prediction-based Jenkins et al. (1995)

Habitat selection Mosquitos 2 Prediction-based Kiflawi et al. (2003)

Sexual selection/sociality Goats 4 Prediction-based Calhim et al. (2006)

Sociality Swallows 3 Prediction-based Hoogland
and Sherman (1976)

Sociality/anti-predator behavior Mountain sheep 4 Prediction-based Bleich et al. (1997)

These approaches have been implemented to address at least ten different behavioral ecological questions, and researchers have examined as few
as two mutually exclusive a priori hypotheses (Kiflawi et al. 2003) based on predictions to as many as 38 a priori hypotheses (Liley and Creel
2008) based on AIC values
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geologists contributed to a delay of about 40 years in their
acceptance of Alfred Wegener’s theory of continental drift,
while European geologists accepted the theory much
earlier. Rather than following Chamberlin’s method,
Wegener proposed his theory and then described how it
was compatible with various kinds of existing evidence
(Oreskes 1999; Proctor and Capaldi 2001). Wegener’s
development of the theory of continental drift differed
from Chamberlin’s approach due to its failure to evaluate
multiple hypotheses and by its failure to evaluate a
hypothesis with only independent data. Chamberlin’s
stature in American geology contributed to American
geologists overlooking the fact that there are multiple
ways of doing science. Thus, despite the numerous
benefits of the approaches described in this issue of
Behavioral Ecology and Sociobiology, behavioral ecolo-
gists should remember the lesson of this episode in the
history of geology.

Chamberlin’s (1890) multiple hypothesis approach has
often been conflated with Platt’s (1964) advocacy of
strong inference. While also incorporating a need for
forming a priori hypotheses, Platt’s approach differed from
Chamberlin’s by specifically advocating the development,
evaluation and falsification of mutually exclusive hypotheses.
Platt also argued that the simultaneous evaluation of
mutually exclusive hypotheses contributes to an apparent
greater rate of advancement in molecular biology and
physics than in other fields.

Platt’s argument caused much consternation among ecolo-
gists, illustrated by a special issue of The American Naturalist
(1983) entitled “A round table on research in ecology and
evolutionary biology”. In this round table, Quinn and Dunham
(1983) argued that ecological questions were too complex to
yield to Platt’s version of strong inference, while Simberloff
(1983) suggested that ecology would be better served by
rigorous application of Platt’s approach to the exclusion of
other ways of doing science and Salt (1983) recommended
eclecticism. More recently, Krebs (2000) advocated Platt’s
version of strong inference as a means toward faster progress
in ecology and Wolff (2000) advised graduate students in
applied ecology that application of strong inference in their
research would be a key to success.

There have been several criticisms of Platt’s (1964)
paper, the most comprehensive being that of O’Donohue
and Buchanan (2001). These authors discuss eight objec-
tions to strong inference as described by Platt, ranging from
inaccurate historiography to the faulty assumption that there
is only one correct way to do science. Further, O’Donohue
and Buchanan (2001) suggest that Platt (1964) provides no
substantive evidence that strong inference has been applied
more regularly in the sciences Platt argues advance faster.
For behavioral ecologists, the most important point made
by O’Donohue and Buchanan (2001) is their reminder that

progress in science comes from multiple methods, not just
using multiple alternative hypotheses and critical experi-
ments in a falsificationist approach as described by Platt
(1964). We appreciate eclecticism in science, but agree with
Davis (2006) that Platt (1964) provides important inspira-
tion for scientists to think rigorously and critically about
their work, even when following Platt’s specific recipe for
strong inference isn’t possible or appropriate.

Platt’s paper has only been cited five times and
Chamberlin’s not at all in Behavioral Ecology and
Sociobiology, Animal Behaviour, and Behavioral Ecology
(ISI Web of Science, 8/2009); yet the general approach of
Platt and Chamberlin has been utilized by behavioral
ecologists investigating a wide variety of topics (Table 1).
An early application of multiple hypothesis evaluation in
behavioral ecology comes from Hoogland and Sherman’s
(1976) study of social behavior in bank swallows (Riparia
riparia). Based on a priori predictions, they evaluated three
general alternative hypotheses proposed by Alexander
(1974) for the adaptive value of social living: that sociality
increases foraging efficiency, that sociality decreases
predation risk, and that swallows necessarily live together
due to the localization of a required resource.

Hoogland and Sherman (1976) tested these hypotheses
in competition as described by Platt (1964) and concluded
that bank swallow sociality decreases predation risk.
Hoogland (1981) reprised the approach in research on
prairie dogs (Cynomys leucurus and C. ludovicianus) and
suggested that predation risk was an important cause of the
evolution of sociality for these species. Sherman (1977)
also applied this approach to studies of alarm calling in
Belding’s ground squirrels (Spermophilus beldingi), finding
that predation risk and kin selection were likely causal
factors. These applications of multiple hypothesis evalua-
tion greatly advanced our understanding of the evolution of
sociality, and the three papers have been cited more than
800 times (ISI Web of Science, 8/2009).

One of the most difficult challenges in using strong
inference in evolutionary ecology is the complexity of
causation of behavioral, ecological, and evolutionary
phenomena (Jenkins 2004). For example, hypothesized
causes may not be mutually exclusive. A factor may be
necessary but not sufficient or sufficient, but not necessary
to cause an outcome; these possibilities emphasize the
importance of specifying the role of factors in the
hypotheses being considered. Multiple factors may jointly
contribute to an outcome, in which case, our task is to
estimate the relative importance of factors, not eliminate all
but one from further consideration. Multimodel inference
and model averaging based on information theory
as described by Burnham and Anderson (2002) are
particularly welcome additions to the arsenal of statistical
tools for model selection for dealing with this situation.
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However, discussions of model averaging have focused on
single parameters (e.g., Burnham and Anderson 2002), and
model averaging’s application to interactions requires
additional research.

A form of complex causation especially important in
behavioral biology is the existence of proximate and
ultimate causes of behaviors and other organismal traits.
Mayr (1961) contrasted mechanistic (proximate) and
evolutionary (ultimate) causes of organismal traits, and
Tinbergen (1963) extended this description to four levels of
causation: environmental triggers and neuroendocrine
mechanisms, developmental mechanisms, current utility,
and evolutionary history, with the first two being proximate
causes and the last two being ultimate causes.

In general, hypotheses about causation at different levels
may often be complementary (e.g., Holekamp and Sherman
1989). If complementary hypotheses are treated as alter-
natives in model selection or even multimodel inference,
then results can be misleading or simply wrong. For
example, the assertion that a simple drive for provisioning
by adults leads to cooperative breeding (Jamieson 1989)
ignores the evolutionary pressures that also affect the
expression of cooperative breeding (Emlen et al. 1991).
Multiple hypotheses should only be evaluated in competition
with actual competitors. Therefore, behavioral biologists who
plan to use a multiple hypothesis framework and the methods
discussed in this issue of Behavioral Ecology and Sociobiol-
ogy need to consider the possibility that their hypotheses
expressed as models may not be true competitors.

Developing suites of hypotheses in evolutionary ecology

Despite the advantages of using multiple working hypoth-
eses to structure research, developing hypothesis sets is
not easy (Chamberlin 1890; Anderson and Burnham
2002; Eberhardt 2003; Steidl 2006). The number of
potential statistical models accumulates geometrically with
the number of potential variables even without considering
interactions (2k statistical models are possible with k
variables, excluding interactions). In addition to this large
number of possibilities, the proper consideration of
interacting factors and the proper recognition of levels of
causation complicate the ability to create meaningful sets
of candidate hypotheses. Potential hypotheses should be
consistent with the natural history of study organisms, and
we discuss three methods by which researchers can
develop such hypotheses and the statistical models implied
by these hypotheses. The approaches we advocate are
exploratory analyses and model simplification, the use of
previous research, and considering the predictions of
available theory. An important distinction between these
three methods is that because analyses using hypotheses
derived from previous research or theory can be conducted

as confirmatory analyses, they both avail the ability to
draw more general inferences than those possible with
exploratory analyses.

Developing hypotheses based on exploratory analyses

One useful source of information for formulating hypotheses
sets are data already at hand. Exploratory approaches can lead
to the identification of key parameters (or parameter combi-
nations) which can then be tested with independent data.
Statistical packages that test all possible models can also be
used to generate suites of top models as long as an ecological
justification for their subsequent consideration is clear. It is
important to note, however, that exploratory analyses,
including stepwise modeling or conducting model selection
based on all the statistical models possible, should be used
with caution as general inferences and parameter estimates
cannot be made reliably from exploratory methods (Grace
2006). Inferences from such approaches apply to the data
used in model selection/simplification and cannot be
extended further without confirmatory analyses (Zhang
1992; Chatfield 1995; Anderson et al. 2001). Hypotheses
developed from exploratory analyses can be reexamined with
confirmatory analyses, allowing generalizable inferences.
Confirmatory analyses can be conducted with either inde-
pendently acquired data sets or using data withheld from the
initial analysis (Hurvich and Tsai 1990; Quinn and Keough
2002). However, this approach may be limited due to
logistical constraints on the ability to collect sufficient data
(Quinn and Keough 2002).

Symonds and Johnson (2008) provide an example of
how exploratory analyses can be used to develop suites of
hypotheses which could later be independently tested.
Symonds and Johnson (2008) examined all possible
combinations of the factors affecting species richness and
species evenness in Australian birds. While no strong
support was found for any single hypothesis, strongly
influential parameters were identified. Moreover, several
explanatory hypotheses were identified, each sharing
similar statistical support (Symonds and Johnson 2008).
These hypotheses for the causal patterns leading to
evenness and richness can now be subjected to further
analyses and be tested with independent data.

Similarly, Whittingham et al. (2006) examined nine
habitat characteristics that potentially explain the distribu-
tion of yellowhammers (Emberiza citronella), a passerine in
which populations in Europe are in decline. Whittingham et
al. (2006) fit all possible models (with the exception that
they did not include interactions) to data for yellowhammer
distributions, resulting in over 500 possible models. This
exploratory analysis demonstrated the importance of several
habitat factors which may now be subjected to further
scrutiny. These examples also highlight the need to
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distinguish between the exploratory nature of considering
all the statistical models possible and the greater generality
of inferences availed by confirmatory analyses.

In general, when researchers have sufficient sample
sizes to conduct all-model or stepwise approaches, they
should strongly consider the option of holding some data
aside. This will allow researchers to subsequently
evaluate multiple hypotheses, based on their exploratory
analyses, in a confirmatory manner (Quinn and Keough
2002). However, to allow the greatest generalizability of
inferences, models supported by exploratory analyses
should be evaluated with independently gathered data
(Guthery et al. 2005).

Developing hypotheses based on previous research

Published research with ecologically similar organisms can
also provide researchers with multiple competing hypoth-
eses for consideration. These alternative hypotheses may
each have similar support in the literature, in which case,
the simultaneous evaluation of multiple hypotheses will
allow clearer understanding of ecological and evolutionary
patterns than a case by case evaluation of hypotheses. This
approach is consistent with Fisher’s (1925: Chapter 5)
recommendation that when no single hypothesis of causa-
tion is strongly supported, conclusions be subjected to
repeated independent testing. This approach was also used
in the evaluation of multiple hypotheses for social behavior
by Hoogland and Sherman (1976) and would contribute to
the need for behavioral ecologists to more frequently
replicate results (Kelly 2006).

Jenkins et al. (1995) provide an example of the utility of
multiple hypothesis evaluation in their examination of how
Merriam’s kangaroo rats (Dipodomys merriami) spatially
distribute food stores (seed caches). How D. merriami
distribute seed caches is ecologically important because
kangaroo rats use food stores to survive periods of low or
unpredictable food availability, and different spatial strate-
gies for food storing may play a role in species coexistence
(Jenkins et al. 1995; Price and Mittler 2006). Jenkins et al.
(1995) identified a suite of five causal hypotheses for how
and why D. merriami store food based on studies of food
storing in other species (Table 2).

Each hypothesis was based on previous research and
related to the trade-offs D. merriami may experience. For
example, if, as in magpies (Pica pica; Clarkson et al. 1986),
D. merriami experience considerable competition for food
at primary sources, then it would be beneficial to maximize
harvest rates initially and store food quickly near sources of
production. Alternatively, if caches are lost to individuals
who use cues to detect the presence of competitors (Shaw
1934), then it would be beneficial to store food away from
an individual’s burrow. The five proposed hypotheses

(Table 2) were evaluated not using model selection based
on information theory but rather by specifying mutually
exclusive predictions for each competing hypothesis.
Experimental results were then compared to these a priori
predictions in order to determine which hypothesis was
supported. Jenkins et al. (1995) concluded that D. merriami
initially maximize food acquisition and then move food
stores and remember their locations.

Dochtermann and Jenkins (2007) also used previous
research and the natural history of D. merriami to develop
hypotheses about behavioral syndrome (personality) struc-
ture. Based on the synthetic review of Sih et al. (2004),
eight hypotheses about how four behavioral traits
(food hoarding, intra-individual variation, boldness, and
aggression) might covary were identified. The different
hypotheses of behavioral covariance were translated into
statistical hypotheses using structural equation modeling
and evaluated using AIC-based model selection (see
Figure 1 in Dochtermann and Jenkins 2007). These
hypotheses of syndrome structure ranged from behaviors
all being expressed independently to all behaviors covary-
ing together. Based on this analysis of a priori hypotheses
of how behaviors covary, Dochtermann and Jenkins (2007)
found support for the inference that D. merriami exhibit
personality structure.

These two examples addressed very different research
questions and employed different statistical approaches
(analysis of variance versus structural equation modeling
coupled with AIC-based model comparison). However,
both Jenkins et al. (1995) and Dochtermann and Jenkins
(2007) examined questions for which several hypotheses
had been previously proposed. Distinguishing between
these hypotheses could only be achieved by simultaneously
evaluating multiple hypotheses.

Developing hypotheses based on theory

Behavioral ecological research should be informed by
ecological and evolutionary theory, and ideally, research-
ers will draw on relevant theory when developing suites
of hypotheses. As a branch of evolutionary ecology, this
attention to theory is essential for ensuring that appro-
priate questions are asked and that proper inferences
are drawn. Theory will also often suggest multiple
hypotheses. For example, animals have finite time which
can be allocated to different purposes. Competing
requirements (energy acquisition, finding mates, and
surviving) lead to constraints on how animals can spend
their time. The potential evolutionary pressures faced by
individuals generate predictions as to how time should be
budgeted. Similarly, optimal foraging theory proposes
that organisms should behave differently based on
environmental conditions and resulting trade-offs (e.g.,
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Stephens and Krebs 1986), and life history theory
proposes that organisms face numerous trade-offs in how
energy is allocated between survival and reproduction
(e.g., Roff 2002). These trade-offs result in alternative and
often mutually exclusive hypotheses.

As an example of the utility of theory in developing a
priori hypotheses, Johnson (2002) generated 17 hypotheses
about how selective pressures influence life history traits.
Johnson (2002) examined the role of trade-offs in the
evolution of life history strategies of the live-bearing fish
Brachyrhaphis rhabdophora and evaluated four potential
selective pressures and five life history traits for 27
populations of B. rhabdophora. Johnson’s (2002) hypotheses
were based on available theory regarding the evolution of
life history strategies and represented combinations of
direct and indirect effects. Johnson (2002) translated his
biological hypotheses into structural equation models that
were then evaluated based on AIC values. Johnson (2002)
determined that the direct effects of extrinsic mortality,
density dependence, resource availability, and habitat
stability shape the evolution of life history strategies in
B. rhabdophora.

Limitations of multiple hypothesis evaluation

Like any scientific approach, the use of multiple hypothesis
evaluation has potential limitations that require consider-
ation. Our discussion of the practical problems with
multiple hypothesis evaluation centers on its implementa-
tion when using information criteria.

Anderson and Burnham (2002) outlined several prob-
lems relevant to multiple hypothesis evaluation using

information criteria (specifically AIC values). Here, we
discuss the two problems we consider most relevant to
behavioral ecologists: the inclusion of too many models and
determining whether ecologically relevant models were
included. While these issues were initially discussed within
the context of AIC use, they are general to any approach
based on information criteria, and we encourage readers to
return to the earlier discussion of these and other concerns
in Anderson and Burnham (2002).

The problem of too many models

As discussed earlier, when working within a framework of
multiple hypotheses, it may be possible to generate a large
number of statistical models without consideration of the
biological hypotheses these statistical models represent. For
example, with only four potential causal factors, over 250
possible combinations of variables and their interactions are
possible.

Some current statistical packages allow the generation of
all the statistical models possible with the potential causal
factors (e.g., Spatial Analysis in Macroecology v3.1; the
‘leaps’ package in R and using Proc Reg in SAS). However,
this sort of approach in which models are considered without a
priori justification should be avoided because including a
large number of variables beyond those for which there is a
priori justification is essentially an exploratory analysis. As
discussed earlier, with exploratory analyses extending inter-
pretations beyond the data set analyzed can lead to spurious
inferences (Hurvich and Tsai 1990; Zhang 1992; Chatfield
1995; see Forstmeier and Schielzeth 2010, this issue, for
discussion of additional statistical concerns). Whenever

Table 2 The five hypothesized spatial patterns of seed storage by Merriam’s kangaroo rats (Dipodomys merriami) proposed by Jenkins et al.
(1995)

Hypotheses of seed caching behavior Prediction Referencea

(1) Larder defense: Kangaroo rats store seeds in a single location
to minimize energetic (transportation) costs and predation risk

Seeds are all/mostly stored in a
single location

Daly et al. (1992);
Reichman et al. (1986)

(2) Scatterhoarding near burrow: Kangaroo rats can defend areas
and scatter hoard to minimize larderhoarding costs but keep
energetic costs low and minimize predation risk

Seeds are stored in numerous
locations close to burrows

Shaw (1934); Hawbecker (1940);
Congdon (1974);
Blaustein and Risser (1976)

(3) Scatterhoarding away from burrow: If competitors use burrows
as cues to find seeds, Kangaroo rats will store seeds away
from their burrow. This increases potential costs
of recovering caches.

Seeds are stored in numerous
locations away from burrows

Vanderwall (1994)

(4) Scatterhoarding near food sources: Kangaroo rats rapidly
take seeds from sources to maximize harvest

Seeds are stored close to food sources Clarkson et al. (1986); Jenkins
and Peters (1992)

(5) Memory of caching locations: Kangaroo rats remember
where they store food

Caches will be widely spaced to
minimize the effectiveness of random
search by cache thieves

Tinbergen et al. (1967);
Jacobs and Liman (1991);
Jacobs (1992)

These hypotheses generated specific predictions based on the experimental design (see Jenkins et al. (1995) for additional detail), allowing
Jenkins et al. to distinguish between the different hypotheses based on results of conventional statistical approaches (e.g. ANOVA)
a See Jenkins et al. (1995) for complete bibliographic information
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possible, confirmatory analyses, which could include the
evaluation of multiple a priori hypotheses, are preferred over
exploratory analyses (Grace 2006). Thus, researchers must
refrain from including every conceivable model in analyses
unless these analyses are properly framed as exploratory and
the scope of inferences narrowed.

The problem of too many models is potentially lessened
when researchers are attempting to evaluate hypotheses
based on explicit predictions (as done in Jenkins et al.
1995; see Table 1 for additional examples). In this
approach, hypotheses can only be considered if there is a
theoretical or natural history justification. Further, hypotheses
can only be considered using this approach if they generate
concrete and discrete predictions.

Despite our encouragement to minimize the number of
hypotheses being considered, numerous biological hypotheses
and resulting statistical models may be necessary because
biological systems are complex with interacting mechanisms
and causation operating at multiple levels. In such instances,
exploratory analyses can be used to initially reduce the number
of models being considered, followed by independent testing of
a subset of most supported hypotheses.

Determining whether relevant models were included

One of the key limitations of using multiple hypothesis
evaluation is the implicit assumption that biologically
relevant effects are included in hypothesis sets, and none
of the three approaches discussed for generating hypotheses
guarantees this. Proper knowledge of the natural history of
the organisms being studied is one way to improve the
likelihood that appropriate models and appropriate causal
factors are examined. Nonetheless, model selection
approaches including those based on information criteria
are restricted to the a priori defined model set; a model or
models will be selected as “best” within the set of those
considered regardless of how well it actually describes a
system. Thus, there is the possibility of the selected “best”
model(s) explaining only a small amount of the variation
present, potentially leading to inappropriate inferences.

One way to address this issue is to include some model of
null or random expectations in the model set. If the null model
is supported to a similar degree as other candidate models, this
suggests that none of the candidate models is appropriate and
that unidentified causal factors are of key biological impor-
tance. This approach is employed by population ecologists
who include statistical models that lack any of the potential
causal factors of interest when estimating population sizes,
survival, or other population characteristics.

Another way of dealing with this issue is to use a
measure of explained variation. Depending on the form of
the statistical model corresponding to a hypothesis,
researchers can use the coefficient of determination (R2)

to assess whether an overall model explains a biologically
important proportion of variation. Maddala (1983), Magee
(1990), Cox and Snell (1989) and Nagelkerke (1991)
extended the calculation of R2 to models fit using maximum
likelihood, which can be used when AIC values are
calculated:

R2 ¼ 1�
L bq� �

null

L bq� �
x

0
B@

1
CA

2
n

where L bq� �
null

is the log likelihood of the null model and
L bq� �

x
is the log likelihood of the statistical model

corresponding to a particular biological hypothesis. This
measure can be interpreted in the same manner as
traditionally calculated coefficients of determination.
Cohen’s (1992) discussion of the strength of effect sizes
can then be used as a guide in combination with the
research question being considered for interpreting whether
candidate models explain a biologically substantive pro-
portion of the available variation (but see Abelson 1985).

Concluding remarks

Testing multiple hypotheses based on Chamberlin’s (1890)
framework, using either Platt’s (1964) strong inference
approach or model comparison based on an information
criterion, has considerable potential to advance our under-
standing of the behavioral ecology of animals and of
evolutionary ecology in general. However, researchers
should be cognizant of the history of these approaches, with
the examples of potential difficulties, and should also be
aware of the intense debates the approaches have engen-
dered. For multiple hypothesis testing to increase our
understanding of behavioral ecology, researchers must also
allocate considerable energy to the formulation of a priori
hypotheses. Because of the difficulty of specifying a priori
hypotheses, we have outlined three methods for doing so.
Finally, we have discussed two key problems researchers
should be aware of prior to initiating data collection (or at
least analyses). While statistical advances and the increasing
ease with which researchers can analyze multiple hypotheses
have encouraged increased use of the approach, we caution
researchers to think carefully about their research questions,
their analytical choices and especially their choices of
candidate hypotheses.
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