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Confidence intervals are a more useful
complement to nonsignificant tests than are
power calculations
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Many leading journals, including Behavioral Ecology, emphasize
the importance of considering the power of statistical tests in
the light of nonsignificant results. However, there is consider-
able scope for misinterpretation of what this advice actually
implies. The common conception among biologists is that
a nonsignificant result with low power is not to be relied on,
but a nonsignificant result with high power is strong support
for the null hypothesis. Here we will draw on a recent paper by
Hoenig and Heisey (2001) to explain why use of (post hoc)
power analysis actually provides no more information than
does the p value itself.

Imagine we are interested in knowing whether the type of
bean on which a beetle larva develops affects the size of the
beetle as an adult. We raise 10 beetle larvae on black-eyed
beans and 10 on mung beans, and we measure their size as
adults. The mean size of beetle raised on black-eyed beans is
5.32 mg (6 0.33 SD); on mung beans, 4.95 mg (6 0.56 SD). A
t test to compare the mean size of the two groups of beetles
yields a nonsignificant p value (p 5 0.09); what can we con-
clude?
The reasoning behind recommending a power calculation

to help us draw conclusions is that a nonsignificant outcome
can occur for two very different reasons: (1) the null hy-
pothesis of no effect is actually true; for example, there really
is no difference in the size of beetles raised on the two hosts;
and (2) the null hypothesis of no effect is actually false, but
a combination of some or all of small effect size, high within-
population variability, and small sample sizes prevent the test
from being able to detect this effect (e.g., the species of host
bean does affect the size of beetles, but we failed to detect this
because our sample size was too low). This is what is referred
to by statisticians as a type 2 error.
The argument behind recommending a power calculation

is that if we get a nonsignificant result but have low power, we
cannot discriminate between these two alternatives. In con-
trast, if we get a nonsignificant result but have high power,
then this suggests that the null hypothesis of no-effect really is
true.
A power calculation performed on this experiment (and

provided by some statistical packages such as SPSS) gives the
so-called observed power. That is, it is the probability of
rejecting the null hypothesis, assuming that the effect size
measured from the samples is the true effect size and the
variabilities measured in the samples are identical to the
variabilities of the populations from which they are drawn.
Using our example, this means that we assume that the real
effect of host bean is to change beetle size by 0.37 mg (5.322
4.95 mg) and that the true SD of the populations is 0.46 (the
pooled SD of the two samples). These assumptions may not be

true, but they are adopted for reasons of convenience if we
have no other information on the actual properties of the two
populations. We can then calculate the observed power, which
in this case is 0.40. Does this estimate of the power of our
experiment allow us to conclude anything new?
Hoenig and Heisey (2001) demonstrate that the calculated

p value and observed power (often labeled B) are inextricably
linked. Indeed, there is a one-to-one correspondence between
the p and B values for a given statistical test. Hence, if we
already have the p value, calculating B is pointless as it
provides no further information. As Hoenig and Heisey put it,
‘‘computing the observed power after observing the p value
should cause nothing to change about our interpretation of
the p value. . . . Higher observed power does not imply
stronger evidence for a null hypothesis that is not rejected’’
(20–21).
So is there nothing extra that we can learn from a post-hoc

power analysis? A second way in which power analysis has been
frequently used is to determine what is called the detectable
effect size. This can be defined as the size that the biological
effect would have to be if we are to have a reasonable chance
of detecting it with our experimental design. Thus, with the
above experiment, we only have a power of 0.40 to detect the
observed effect (of a 0.37-mg difference owing to bean type).
However, if host bean actually had an effect of 0.62 mg, our
experiment would have had a much greater power of 0.81.
What do we define as a reasonable chance of detecting
a difference? Clearly, this will depend on the purpose of the
study, but by convention, a power of about 0.80 is regarded as
acceptable for most purposes (see Cohen, 1988). Thus, we can
regard 0.62 mg as the detectable effect size of our experiment;
if the effect of bean type was equal or greater than this
detectable effect size, we would expect to able to detect it 80%
of the time with an experiment like the one we performed.
This detectable effect size is often then used as a measure of
our confidence that the null hypothesis is actually true; the
closer the detectable effect size is to zero, the more confident
we can be that the true effect size really is zero.
Again, Hoenig and Heisey (2001) point out that this kind

of logic can lead to a fundamental paradox that makes infer-
ence drawn in this way invalid. To see why, imagine we repeat
the experiment described above. Our new experiment has the
same sample sizes, and the two groups of beetles have exactly
the same mean values as in the first experiment. The only
difference is that this time we obtain a p value of 0.21
(compared with 0.09 in the first experiment). What can we
conclude from our two experiments? Because the p value is
the probability that the null hypothesis is actually true given
this data, the first experiment gives us more confidence that
the null hypothesis is false than does the second (although in
neither case does the p value become so low that we would
reject the null hypothesis with any confidence).
Now suppose that we determine the detectable effect size

for this second experiment. The fact that the sample sizes and
effect sizes are unchanged, but the p value is higher in the
second experiment implies that the variation in the second
experiment is also higher than in the first, and so its
minimum detectable effect size will be greater (i.e., the effect
would have to be larger for us to have confidence in detecting
it). Because the detectable effect size of the first experiment is
closer to zero than the second, this suggests that we have more
confidence from the first experiment that the null hypothesis
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is actually true than from the second. This is exactly the
opposite conclusion to that drawn from the p values. Thus,
using the detectable effect size of an experiment that pro-
duces a nonsignificant result to infer something about the
probability that the null hypothesis is indeed true is a flawed
endeavor.
Detectable effect sizes have also been used to give some idea

of the maximum biological effect that can be supported by
the data. The argument goes, ‘‘because my experiment had
a detectable effect size of 0.62 mg, I can be confident that
although there may be some effect of host bean, it is smaller
than 0.62 mg, otherwise I would have detected it’’. Such
figures are also often compared with a priori expectations of
the size of a biologically interesting or important effect size.
However, even this use of power analysis is generally not
helpful and runs into the same problems discussed above. If
our suggestion below with regard to confidence intervals is
adopted, such analysis is also not necessary.
Is there something we can use instead of observed power to

get any idea of how we should interpret nonsignificant results?
We would recommend quoting a confidence interval for the
effect size, whether or not the p value was above or below 0.05.
As has been argued so many times (see Johnson, 1999), the
strong dichotomy in some people’s minds between ‘‘signifi-
cant’’ p values below 0.05 and ‘‘nonsignificant’’ ones above
0.05 is false. What we are interested in is the description
of the possible effect sizes that are supported by the data that
we have, and the possible effect sizes that are not supported.
Confidence intervals are most simple and efficient way to
convey this.
How does a confidence interval help us to interpret non-

significant results? If the test was nonsignificant, then the con-
fidence interval for effect size will span zero. However the
breadth of that confidence interval gives an indication of the
likelihood of the real effect size being zero (or at least very
small). We return to our example t tests. Imagine that one of
us tested the difference in weight between beetles raised in
black-eye and mung beans by using a t test and found a p value
above 0.05 and a 95% confidence interval for the weight
difference of (20.07–0.81 mg). Imagine now that the other of
us performed a similar experiment and calculation and got
a nonsignificant p value and a 95% confidence interval of
(20.59–1.33 mg). The first confidence interval is narrower
and more consistent with the null hypothesis of no effect
actually being true than the second.
If this seems a little too touchy-feely, then this idea can be

formalized. However, this requires us to introduce equiva-
lence testing. In this case, we have a null hypothesis that the
effect size is actually greater than some defined value �.
Schuirmann (1987) argues that if a 122a confidence interval
lies entirely between 2� and �, then we can reject the null
hypothesis at the a level. For the examples above, we are
dealing with 95% confidence intervals, so a 5 0.025. Hence,
for the first confidence interval of (20.07–0.81 mg), we can
reject the hypothesis that the difference in weight caused by
rearing conditions is greater than 0.81 mg at the 2.5% level.
For the other confidence interval, we can reject the hypothesis
that larval bean makes a difference of greater than 1.33 mg at
the 2.5% level. Thus, the confidence limit of largest in mag-
nitude gives us an estimate of the maximum effect size that is
supported by our data.
The reservations about the use of post-hoc power analysis

do not of course apply to the other use of power analysis—to
determine the optimal size and design of a planned study
(Cohen, 1988; Lipsey, 1990). For this purpose, power analysis
is still a powerful tool, and we recommend that its use in this
role be encouraged.
Hence, our general advice is that we should adopt con-

fidence intervals for effect sizes more widely, to encourage us
to think more about the range of effect sizes that are sup-
ported by the data and those that are not and think less about
p values.
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