Introduction to multivariate analysis

Outline
Why do a multivariate analysis
' Ordination, classification, model fitting

' Principal component analysis

| Species presence/absence data
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{| Discriminant analysis, quickly
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 Distance data



Data areusually multivariate

Typicallywe measuranultiple variables on the populations, species, and
ecosystems that we study.

This creates a challenge: how toleasy and analyze measurementsaifthose
variables.

We reed ways to make it easier to filde important patterns and relationships
among the many variables.



Ordinationis usuallywhat we want

Arrange sampling units along gradients or according to combinations of variables

{ To visualize complex data in few dimensions
1 To findmeaningfulcombinations

of the originalvariablesthat can o ’
be used in subsequent analyses ’
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Ordination, Classification, Model fitting

Multivariate methods are used for
{ Ordination: arrange sampling units aloogmposite variables
1 Classification: place sampling units into groups

1 Model fitting: multivariate analysis of variance; multiglegression
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straightforward multivariate method.



Principal Componenfnalysis
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Principal Componenfnalysis

mydata Data frameof meansfor 14 specie®f 5 traits

VARIABLES (traits)
wingL tarsusL culmenL beakD gonysW

C.heliobates
C.pallida
C.parvulus
C.pauper
C.psittacula
UNITYspecies] Certhidea.fusca
Certhidea.olivaces
G.conirostris
G.difficilis
G.fortis
G.fuliginosa
G.magnirostris
G.scandens
Pinaroloxias
Platyspiza

68.79

71.2
62.28
68.89
69.34
59.02
52.48
77.47
68.31
69.69
62.36
81.79

70.9
65.93
83.43

21.35
21.96
19.55
20.82
21.11
20.04

19.1
19.77
18.15
18.08
16.55
20.88
18.71
19.69
26.24

10.45
11.36
7.2
8.91
9.25
8.57
7.3
14.22
9.75
11.1
8.13
15.25
13.76
10.09
10.26

6.75
7.51
6.51
7.95
9.34
4.56
3.17
12.35
7.47
10.62
6.97
16.84
8.54
4.7
10.37

6.78
7.02
6.13
7.11
8.06
5.04
4.11
10.59
6.89
0.22
6.33
14.53
7.67
5.1
9.81



Principal ComponenAnalysis
The data have only 5 variables but visualizing them still represents a challenge.
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Principal ComponenAnalysis
Howto visualize multivariate data?
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which display multivariate =3
data in the shape of a
human face. The individual

parts of the face represent

values of the variables by 6
their shape, size, placemer -

and orientation. Humans C pallida"

are good at distinguishing
faces.
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Principal Componenfnalysis
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Principal componentnalysis

9 Sy 1 K2 dsHdizind SifieBonof datain only 2 dimensions distances
between species arapproximatelypreserved. Points close together indicate
species that are similar. Points far apart indicate species thamnaire different.

Second principal component

First principal component



Principal componentnalysis

Even though they are composite variables, the axes in this case are interpretable.
The first axis arrangdle species according to differences in overall bgiak

deeper, longer, wider beaks
<




Principal componentnalysis

The second axis arrang®e species according to differences in beak length
(relative to overall beak size). It represents an axis of lshake
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Principal omponentanalysisc how it works

What does PCA darhemethodamounts to nothing more than a rotation of the
axes allowing you to viewnuchof the data in a small number of dimensioi®
see thisimagine justwo traits were measured instead ofd®® L Qtfassforin€dll
the variables to put on a similar scale.
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Principal component analysis how it works

Principal components analysis just rotates the original scatter of points so that new
axes are uncorrelated.
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Principal component analysis how it works

Because it is nothing more than a rotation of the axes, the distances between pairs
of points Gpecie$are urchangedoy the transformationprovided that althe PC
axes argetained-.

Second principal axis

First principal axis

* Warning: in sometatsprograms the default procedure is to standardize the varianiesgd O 2 NNB € | (inst@ag of Y I § I

the covariance matrixbefore carrying out the analysis. Use the correlation mainiy if variabledacka common scale.
Euclidean distances will then be based on standardized data, not the original measurements.



Principal componentnalysisc how it works

The computations behind the scenes involiescribinghe data by theassociatios
between the variables (as illustrated by
the ellipse)

The elements of the covariance matri; 5, |
X1 X2
1| var(x) cov(x,x)
X2| cov(X,x2) var(x)

= 2.3 7
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Forthe two finch variables

beakD (beak depth

culmenL beakD
culmenl 0.0518 0.0698
beakD 0.0698 0.1741
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Principal componentnalysis

The covariance matrix of the neasomposite variables has varianaasthe
diagonal and zeros off the diagonfdhe omponent axe$fhave zero covariamec

pcl pc2
pcl 0.192 0
pc2 0 0.019

These variances are called tegenvalues

IS

They sum to the same total as
the sum of thevariancef the
original traits.

Second principal ax

First principal axis



Principal componentnalysis

The vectors that contain the constants for transforming the original variables into
the principal components are called teggenvectors

eigernvecl eigenvec?
culmenL 0.413 -0.911
beakD 0.911 0.413
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Principal componentnalysis ll b
eigenvecl eigenvecz T ,,
culmenL 0.413 -0.911

beakD 0.911 0.413

beakD (beak depth)
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The constants are callddadingsbecause theyndicate thecontribution of each
variable to the principal component.

pclcan beinterpreted astbeak sizé because bottbeaktraits make contributions
having the same sigi@epth contributes more than length). The axis separates big
beaked birds at one extreme from smhéaked birds at the other.

pc2is interpreted abeak shapébecause beak depth loads positively but beak
length negatively. It separates short deep beaks atem&from long shallow beaks
at the other.



Principal component analysis
We can stilivisualize this process with 3 variables instead of 2 (it gets hard to
visualize with more than 3 variables)

3D example



http://setosa.io/ev/principal-component-analysis/

Principal componentnalysis

The idea is the same with or any number of variables. The plot belowfishe

first two PC axeBomthePCr v f éaAa 2F |ttt p O NRIF oOf
species. The only difference is that when we look at only the first two principal
O2YLRYSy(ia ¢ %ltie Niffeseiizés adidadstiheyscies.
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Principal componentnalysis
Theeigenvalues tell you how much of the total variation is captured by the first two
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Principal componentnalysis
The eigenvectors indicate the loadings
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PC3 is mainly one trait, tarsus length

900X

PC1 PC: PC: PC4 PCE
wingL -0.195 0.062-0.335 0.577 0.716
tarsusL -0.052 -0.043 -0.919 -0.071 -0.383
culmenL -0.326 0.932 0.039 0.002-0.153
beakD -0.733-0.330 0.193 0.395 -0.400
gonysW -0.562 -0.127 -0.073-0.711 0.397




Principal component analysis

Example2: 197146 traits inML.387 individual humans sampled from Europe
Data are loci (nucleotides) in theiman genome. t
At every locus, individuals of genotypes
AA, Aa and aa are scored as 0, 1 and 2.
The covariance matrix Is
197146 x 19714t size

PC1 and PC2 asBown
Points are individuals.
Colors are countries.
Circles are country means.

«—— PCt

Individuals cluster by country.

Novembre et al (2008)ature




Principal component analysis

Example 2: 197146 traits in 1387 individual humans sampled from Europe.
The authorgotated the \
above figure to the
configuration shown, and
placed it next to a map of
Europe.A strongcorrespon
dence was observed
between position of
iIndividualsalongPC1 and
PC2 and geographical

map position, revealing how
land configuration
Influenced gene flow
between countries.
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Discriminant function analysisguickly

Discriminanfunctionanalysigs for classification rather than ordination.

It finds axes that maximally separate two or mamreviously identified groupdt
finds axes that maximize variation among groups relative to variation between
groups.These axes can thdre used to classify new observations into game
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Discriminant function analysis

Principalcomponentanalysisis blind togroups, and only finds the directions of
maximum total variance,
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Discriminant function analysis

Discriminant function analysis explicitly finds the axes that best separate the
groups. IR 2 S &gthidisimply by finding the direction of the biggest difference
between means.




