
Outline for today 

• Random vs fixed effects 

• Two-factor example 

• Why the calculations are different with random effects 

• Unbalanced designs with random effects 

• Examples of experiments with random effects 

• Linear mixed-effects models 

• Example: Estimating repeatability of a measurement 

• Other designs with random effects, briefly 

• Assumptions of linear mixed-effects models 

• An example violating an assumption, with a solution 



What are fixed effects 

Fixed effects are predetermined categories of a variable, of direct interest, and are 
repeatable. An experiment with the same treatment levels could be repeated. 

For example: 

• medical treatments in a clinical trial 
• predetermined doses of a toxin 
• diet or fertilization treatments 
• age groups in a population 
• habitat 
• season 

Any conclusions reached in the study about differences among groups can be 
applied only to the groups included in the study. The results cannot be generalized 
to other treatments, habitats, etc. not included in the study. 



Example of factorial experiment with fixed effects 

Field transplant experiment to investigate how herbivores affect the abundance of 
the red alga, Mazzaella parksii in the intertidal habitat of coastal Washington State 
using (Harley 2004). I analyzed a subset of treatments: 

 herbivory treatment 

intertidal 
zone 

present absent 

low n = 16 plots n = 16 plots 

mid n = 16 plots n = 16 plots 

 

N = 64 plots in a completely randomized design



Factorial experiment with fixed effects 

Response variable: surface area of red alga, Mazzaella parksii in plots. 

Y = b0 + b1X1 + b2X2 + b2 X1X2 
                 



Linear model for factorial experiment with fixed effects 

z <- lm(sqrtarea ~ herbivores * zone) 

The denominator of the F statistic for the treatment effect is MSresidual 

Source SS df MS F P 
zone  89    1 89    89/238= 0.37 0.54 
herbivory 1512 1 1512 1512/238= 6.36 0.01 
zone*herbivory 2617 1 2617 2617/238= 11.0 <0.01 
residual (error) 14271   60 238     

 

The residuals represent the sole source of random variation in the analysis. 

The residual mean square (MSresidual) is the appropriate quantity to use as a 
reference when asking whether treatment mean squares are larger than random 
variation (chance), i.e., whether F ≫ 1. 



What are random effects 

Randomly sampled categories of a variable, representing groups or clusters of 
measurements or units. An experiment with the same treatment levels could not be 
repeated. For example: 

• randomly sampled families made up of siblings 

• randomly sampled subjects measured repeatedly 

• randomly placed transects each of multiple quadrats in a sampling survey 

• field plots each assigned multiple treatments 

• environment chambers each containing many aquariums 

• aquariums containing multiple individuals 

Groups are assumed to be randomly sampled from a population of groups. 
Therefore, conclusions reached about groups can be generalized to this population. 



What are random effects 

In some cases, the random effects are of no interest themselves – a nuisance.  

• field plots each assigned multiple treatments 

• environment chambers containing aquariums 

In other cases, measuring the variance associated with each level of random 
groupings is one purpose of the study. 

• families of siblings (to estimate heritability, etc) 

• subjects measured repeatedly (to estimate repeatability) 

• transects with multiple quadrats (to estimate α- and β-diversity) 

Repeated measurements made on the same group are not independent.  

Modeling random effects properly (using mixed effects models) avoids 
pseudoreplication.



Factorial experiment when one of the factors is random 

Futuyma and Philippi (1987) 

Fall cankerworm, Alsophila pometaria 
http://cfs.nrcan.gc.ca/subsite/glfc-sugarbush/alsophila-pometaria-images  

 

 

 

Caterpillars of the fall cankerworm feed on the leaves of hardwood trees. Adult 
female moths are wingless. Many reproduce clonally, producing only daughters 
genetically identical to themselves.  

Research question: What is the effect of tree species on growth; and how much do 
clones vary in growth?  

(This is a not a question about specific clones but about the population of clones.)



Factorial experiment when one of the factors is random 

Design: Sample 9 female moths from a population in NY. Raise larvae from 9 clones 
on leaves of 4 tree species. Measure individual growth after 15 days.  
Two factors: Tree species (fixed), Clone (random) 

 

Interaction plot: 

Mean growth of caterpillars from 9 
families (clones) raised on four tree 
species.  
N = 326 caterpillars total. 

  



Factorial experiment when one of the factors is random 

Caterpillars from the same clone are not independent. There are 326 caterpillars 
but only 9 clones. In this case the residual mean square (MSresidual) from a linear 
model fit is no longer the appropriate quantity to use as a reference when asking 
whether treatment mean squares are larger than expected by chance. To do so 
would commit pseudoreplication.  

Instead, the variance among clones is 
the key to testing treatment effects.  

(Always report df with F statistics in 
your papers to prove you analyzed 
such data correctly.)  



Factorial experiment when one of the factors is random 

The presence of a random factor represents an additional source of random 
variation: the variation among clones.  

The mean effect of tree species on caterpillar growth is modeled as the mean of 
clone means ± variation among clones. 

  



More reasons why analysis is different with random effects 

1. Unlike fixed groups, the means of the specific random groups (e.g., clones) are 
not of direct interest.  

2. Interest is focused on the variance among the random groups. A goal of the 
Futuyma and Philippi experiment was to estimate these variances, to measure 
the amount of genetic variation in the population. 

3. When a design including random effects is unbalanced, the standard formulas for 
F statistics (as calculated from ANOVA table of fixed effects) are not F-distributed. 
Standard ANOVA table formulas don’t work with unequal sample sizes. Sorry! 

4. With unbalanced designs, mixed models calculate approximate F-statistics and 
degrees of freedom for tests of fixed effects. Results are approximate.  



How to know when you have random effects in your study 

You have random effects: 

• whenever your sampling design is nested: 
quadrats within transects; transects within woodlots; woodlots within districts. 

• whenever your measurements are clustered spatially or temporally within 
randomly sampled units i.e., in blocks, which are typically analyzed as random 
effects.  

• whenever you divide up plots, or families, clones, ponds, etc, and apply 
separate fixed treatments to subplots, or siblings, pond-halves, etc. 

• whenever you take measurements on related individuals. 

• whenever you measure subjects or other sampling units repeatedly. 

  



How to analyze random effects 

Use linear mixed effects models to analyze random effects. 

In R, lm() is for fixed effects only. 

In R, use lmer() in the lme4/lmerTest packages or lme() in the nlme 
package to analyze models containing random effects. These packages model the 
variance structure of random effects explicitly.  

We’ll mostly use lmer() because tests of treatment effects using the Kenward-
Roger or Satterthwaite approximations for degrees of freedom are most accurate 
(available in lmerTest package).	  



Attributes of linear mixed-effects models 

• They are linear models that include both fixed and random effects. 

• They model different error variance for each level of random variation. 

• They do not require the assumption of sphericity (a problem of classic repeated 
measures ANOVA designs when Time is a fixed effect) because they model the 
correlation structure directly through the random effects. 

• Allow for additional correlation structures to model nonindependent errors 
arising from spatial or temporal autocorrelation. 

• Estimation and testing are based on restricted maximum likelihood (REML), 
which can handle unequal sample size. 

• P-values for tests of fixed effects are conservative when designs are unbalanced. 

• Implemented in the lme4/lmerTest and nlme packages in R. 



Example 1: Study of measurement repeatability (simple nested design) 

The walking stick, Timema cristinae, is a wingless herbivorous insect on plants in 
chaparral habitats of California. Nosil and Crespi (2006) measured individuals using 
digital photographs. To evaluate measurement repeatability they took two separate 
photographs of each specimen. After measuring traits on one set of photographs, 
they repeated the measurements on the second set. 

 

 

 

 



Example 1: Study of measurement repeatability (simple nested design) 

Linear mixed model:  Yi = b0 + ui + error     for individual bugs i 

 

Including a random effect means that  
the analysis follows design 

   
 

     1      2 3     4   5    6  7    8  9    10   (measurements) 

Individual bugs are the random groups in this study, with two repeated 
measurements per group. 

Model has two parts, each with its own source of error variance: 
1) Random part: the measurement of individual bug i:  ui ± random error. 
2) Fixed part: the mean of bug means:  b0 ± variation among bugs



Example 1: Study of measurement repeatability (simple nested design) 

library(lmerTest) 

z <- lmer(femurlength ~ 1 + (1|individual)) 

 

Fixed part of the formula: 

femurlength ~ 1 

 

Random part of the formula 

+ (1|individual) 

  



Example 1: Study of measurement repeatability (simple nested design) 

The fixed part of the formula instructs R to fit a fixed constant (intercept) based on 
the fitted values of the random groups (individual bugs) – i.e., the grand mean. 

femurlength ~ 1 

The random part of the 
formula instructs R to fit 
another constant (an intercept) 
to the measurements within 
each individual. This yields a 
fitted value for each individual 
walking stick.  

+ (1|individual) 

  



Example 1: Study of measurement repeatability (simple nested design) 

z <- lmer(femurlength ~ 1 + (1|individual)) 

fitted(z) # yields best linear unbiased predictors (BLUPs) shown in plot: 

R fits them all together, 
rather than in two stages, 
yielding variance 
components and BLUPs. 

The BLUPs are not the 
means for each insect. They 
are “shrunk” towards the 
centre compared with the 
individual insect means.  



Example 1: Study of measurement repeatability (simple nested design) 

VarCorr(z) extracts the variance components (square the standard deviations 
to obtain the variances) 

Groups   Name      Std.Dev. 

 individual  (Intercept)  0.032464  = variability among random groups (individuals) 

 Residual    0.018868  = variability within random groups (usual error) 

 

We can use these quantities to calculate the fraction of variation that is among 
individuals (repeatability): 

repeatability = σ2
among / (σ2

among + σ2
within) 

estimate of repeatability = 0.0324642  / (0.0324642 + 0.0188682)  

                                             = 0.75



Example 1: Study of measurement repeatability (simple nested design) 

Estimate of repeatability = 0.75 

That is, an estimated 75% of the variation among measurements is true variation 
among individual insects in their femur lengths, the rest is measurement error.  



Example 2: “Subjects by treatment” repeated measures design 

Light sensitivity of 5 goldfish to specific wavelengths of light. 

Cronly-Dillon and Muntz (1965) used the optomotor response to measure color 
vision in the goldfish. Each fish was tested at different wavelength in random order. 

A large value indicates that the fish has 
high sensitivity --- it can detect a low light 
intensity. 

Factors: 

Wavelength (fixed, repeated measure) 

Fish (random) 

 
 



Example 3: Split plot design 

 

 

 

 

 

 

 

Factors: 

Predation treatment (fixed), whole ponds 
Competition treatment (fixed), split ponds 
Pond (random)



Assumptions of linear mixed-effects models 

• As with all linear models: Residuals follow a normal distribution with equal 
variance. 

• Groups are randomly sampled from a “population” of groups (i.e., are 
independent and sampled without bias). 

• Group means have a normal distribution. 

• Replicates within groups are also randomly sampled (i.e. independent and 
sampled without bias). Problems can arise when Time is a fixed factor – need to 
model the correlation between adjacent samples, also possible with mixed 
models. 

• No carry-over between repeated measurements on the same subject. 



Example 4: When time is a fixed factor 

• Analyses of growth curves in time.  
• Repeated measures experiments in which the treatment levels are given in the 

same sequence (i.e., not in random order) 

The correlation of a variable with itself across different points in time (or space) is 
called autocorrelation. With time series or longitudinal data, it's the degree to 
which current values of a variable are related to its past values. This can violate the 
assumption of independence of errors, leading to incorrect standard errors and 
unreliable hypothesis tests and confidence intervals. 

Autocorrelation can be addressed by incorporating an autoregressive structure, 
commonly AR(1), into the model. This explicitly models the nonindependence 
between successive observations. 

  



Example 4: When time is a fixed factor 

Growth curves are potentially affected by nonindependent errors. Measurements 
made in adjacent time periods are likely to have correlated residuals. This 
correlation should decline between more distant measurements in time. 

Example from Quinn & Keough (2024) 

Data are number of leaves on each of seven Lactuca serriola plants grown in pots 
over 9 weeks. I’m using the data only for the 75% soil water holding capacity 
treatment. 

 

 
 

 

 

https://plantsam.com/lactuca-serriola/  
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Example 4: When time is a fixed factor 

 

 

 

 

 

 

 

 

Time in weeks is the within-subjects (repeated measures) fixed factor and individual 
plants are the random subjects. Want to estimate growth rate slope (fixed) and 
variance among plants in growth rate slope and intercept (random).    
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Example 4: When time is a fixed factor  

Mixed model with random intercept and slopes (allows growth curves of different 
plants to vary in intercept and slope):  

z <- lmer(nleaves ~ week + (week|plant), data = lactuca) 

Examine autocorrelation between residuals (one curve per plant). Here the 
correlation between residuals is relatively week even for adjacent weeks (1 week 
apart).  

 

 

 

  



Example 4: When time is a fixed factor  

Fit mixed model using AR(1) autocorrelation model, which assumes that the 
correlation between two residuals decays exponentially as the time between 
observations increases. Needs the nlme library because lme4 doesn’t include it. 

library(nlme) 

z <- lme(nleaves ~ week, random = ~week|plant,  
      correlation = corAR1(form = ~week|plant), lactuca) 

The correlation formula is structured as ~time|groups 

summary(z) 
Random effects: 
            StdDev      Corr   
(Intercept) 0.002410178 (Intr) 
week        0.357092983 -0.377 
Residual    4.262789724        
 
Fixed effects:  nleaves ~ week  
                Value Std.Error DF  t-value p-value 
(Intercept) 18.425685 1.5781576 55 11.67544       0 
week         3.285107 0.2999463 55 10.95232       0 	  



Where to get further advice 

I have found Quinn & Keough to be very useful in understanding design and 
assumptions of mixed-effects models. The 2nd edition has online worked examples 
in R. 

Quinn & Keough 2024. 2nd ed. Experimental design and data analysis for biologists. 

 

Online books on mixed-effects models in R (see Books tab at course web site): 

Pinheiro and Bates (2000). Mixed-effects models in S and S-PLUS. 

Zuur et al (2009). Mixed effects models and extensions in ecology with R. 

Article: 

Bates, Douglas, et al. 2015. Fitting Linear Mixed-Effects Models Using lme4. Journal 
of Statistical Software 67: 1-48. 



Discussion paper for next week: 

 

Murtaugh (2007) Simplicity and complexity in data analysis. Ecology 88: 56–62. 

 

Presenters: Finola & Megan 

Moderators: Vivien & _________ 

 


