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Biomathematics 301 Midterm 2008 

Name:____________________      Signature:_______________________  

Question 1 [20 points]:  In an earlier homework assignment, you modeled the number of purine 

nucleotides (adenine and guanine) and pyrimidine nucleotides (cytosine and thymine) over time in the 

presence of mutation.  Here we consider the continuous time model based on the flow diagram:  

 

 

 

 

(a) Modify the flow diagram to account for gene duplications that copy nucleotides of each type at a rate 

γ, causing the genome to grow in size.  Add arrows with flow rates.  [Assume that purines and 

pyrimidines are copied in proportion to their current levels.] 

(b) Write down differential equations for your altered model to account for these duplications: 
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dR
dt

= 
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dY
dt

=  
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Question 2 [50 points]:  The savannahs of Kenya are dotted by a 

single species of acacia tree, Acacia drepanolobium, which are 

protected from browsing by ants.  The acacia trees provide 

nourishment (sugar solution at nectaries) and housing (enlarged 

hollow thorns called “domatia”) for the ants, and a single tree can 

support hundreds of thousands of ants.  Each tree is inhabited by a 

single species of ant, but different trees can house different ant 

species.  In this question, we explore what processes could maintain 

coexistence of two ant species within the savannah. (Photo: Todd Palmer) 

We start by assuming that a tree inhabited by species 1 becomes vacant with probability e1 per time step 

and a tree inhabited by species 2 becomes vacant with probability e2.  Can both ant species co-exist if 

species 1 is more likely to be lost from a tree (e1 > e2) but is more likely to colonize a tree (by a factor 

α)?  This question can be addressed using a recursion for the proportion of trees inhabited by species 1: 

  

  

� 

p[t + 1] = p[t] 1− e1( )
Species 1 persists on tree

     
+ p[t] e1 + 1− p[t]( ) e2( )

Vacated trees

         

α p[t]
α p[t] + 1− p[t]( )

Colonized by species 1
         

. (1) 

We will assume throughout that 

� 

α >1 and 

� 

0 < e2 < e1 <1. 

 (a)  What are all of the possible equilibria of this model?  Show your work.  
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(b)  Imagine that only one species is initially present and the other species is introduced.  To determine 

whether the other ant species can invade, you perform a stability analysis of equation (1) and find that: 

  

� 

df
dp p=0

=1− e1 + α e2  (2a) 

  

� 

df
dp p=1

=1+ e1
α

− e2 (2b) 

where f is the recursion equation (1) and p is the fraction of trees inhabited by species 1.  

When can species 1 invade if it is initially rare?  [Specify when the equilibrium p = 0 is locally stable or 

unstable and whether or not you expect oscillatory behavior.  Simplify as much as possible.] 

 

 

 

 

Verbal interpretation: 

 

When can species 2 invade if it is initially rare?  [Specify when the equilibrium p = 1 is locally stable or 

unstable and whether or not you expect oscillatory behavior.  Simplify as much as possible.] 

 

 

 

 

Verbal interpretation: 
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(c)  Is it possible to maintain two ant species in the savannah if one species is more likely to vacate trees 

but is also more likely to colonize vacant trees?  [Justify your results in the context of the previous 

sections, as appropriate.] 

 

 

(d) When branches from two trees cross, the ants from one tree displace ants from the other tree, literally 

fighting to the death.  Equation (1) was altered to consider whether it was easier or harder to maintain 

both species with this direct competition.  Depending on the case considered, plots of p[t+1] versus p[t] 

had the following shapes (solid curves;  diagonal dashed lines are provided for comparison).  Label all 

stable equilibria with an S and all unstable equilibria with a U. 

 

Case 1:  Species 1 more often wins battles but is more 

prone to vacating isolated trees (

� 

e1 > e2) [with equal 

colonization ability; 

� 

α =1] 

 

 

Case 2: Species 1 less often wins battles but is more 

likely to colonize vacant trees (

� 

α >1) [with equal 

probability of loss from trees; 

� 

e1 = e2] 

 

 

Based on the above graphs, circle the correct answers: 

True or False:  A trade-off between competitive ability and persistence on isolated trees [Case 1] can 

maintain both species in this simple model. 

True or False:  A trade-off between competitive ability and colonization ability [Case 2] can maintain 

both species in this simple model.
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Question 4 [20 points]:  Habitat degradation can cause the growth of a population to decline over time.  

Here we modify the exponential growth model in continuous time to allow the growth factor, r, to 

decline exponentially over time at rate δ from r0 at time t = 0:  

  

� 

dn
dt

= r0 e
−δ t n  (3) 

(a)  Name one check that you could perform on equation (3) and perform it.  Does (3) pass your check? 

 

 

(b)  Begin to perform a separation of variables by rewriting equation (3) with the variables separated: 

  

� 

∫ = ∫   

(c)  Integrate both sides of your answer to part (b).  [You can stop right after integrating both sides, you 

do not have to solve for n explicitly.] 

    

 

 

 

 

Question 5 [10 points]:  Match up the following Mathematica inputs to outputs for the case where 

f[x_] = x^2/3 (note that one of the inputs contains an error): 

INPUT: OUTPUT: 

Table[N[f[x]], {x, 0, 2}] {f, f, f} 

Table[f[x], {x, 0, 2}] {0, 1/3, 4/3} 

Table[Evaluate[D[f[x], x]], {x, 0, 2}] {0, 2/3, 4/3} 

 

Table[Evaluate[D[f(x), x]], {x, 0, 2}] {0., 0.333333, 1.33333} 

 


