Example Midterm Question: Match up the following Mathematica inputs to outputs (note that the inputs may or may not contain errors):

INPUT:
OUTPUT:
$\int \sin [\mathrm{x}] d \mathrm{x}$ [Third one, note that lower case sin is not

```
D[Sin[x], x]
```

Integrate[sin[x], $x]$
$\mathrm{D}[\operatorname{Sin}(\mathrm{x}), \mathrm{x}]$

Integrate[Sin[x], x]
evaluated as the sine function]
$-\cos [x][F i f t h$ one]
$\frac{\operatorname{Sin} x^{2}}{n}$ [First one, note that $\operatorname{Sin}(x)$ is interpreted as Sin times x, because square brackets aren't used]
$\operatorname{Cos}[\mathrm{x}]$ [Second one]
Sin [Fourth one, note that $\operatorname{Sin}(x)$ is interpreted as Sin times x, because square brackets aren't used]

Example Midterm Question: Match up the following Mathematica inputs to outputs (note that the inputs may or may not contain errors):

INPUT:
OUTPUT:
Solve::eqf: $2-3 x+x^{\wedge} 2$ is not a well-formed equation

Integrate[2-3x+x^2, $x]$

```
Solve[2 - 3 x + x^2, x]
```

Integrate[2-3x+m^2, $\{x, 0,1\}]$

Solve $\left[2-3 x+x^{\wedge} 2=0, x\right]$
$D\left[2-3 x+x^{\wedge} 2\right]$
[Second one, note the lack of " $==0$ "]
$2-3 x+x^{2}$ [Fifth one, note the lack of " x " at the end to indicate which derivative should be taken]

$$
2 x-\frac{3 x^{2}}{2}+\frac{x^{3}}{3}[\text { First one }]
$$

$\frac{5}{6}$ [Third one]
$\{\{x \rightarrow 1\},\{x \rightarrow 2\}\}$ [Fourth one]

Example Final Question: Figure out what the following Mathematica simulation does by reading the code and deducing what sort of process is being modeled.

\section*{\ll Statistics`ContinuousDistributions`}

?UniformDistribution

UniformDistribution[min, max] represents the uniform distribution on the interval \{min, max\}

Clear[num]

num [t_,a_,b_,n0_]:= num[t,a,b,n0] = num[t-1,a,b,n0]*Random[UniformDistribution[a,b]] num [0,a_,b_,n0_] := n0
(a) This model is (circle one each):

Discrete time	or	continuous time
Deterministic	or	stochastic

(b) This model is a variant of which model studied in class (circle one):

Exponential growth or Logistic growth or Haploid selection or Spread of disease
(c) Describe a research question that you could address using this simulation program?

A population is growing in an environment where the resources fluctuate from year to year, causing the number of surviving offspring per parent, R, to fluctuate randomly.

Sample questions: How will the population size grow over time? What is the risk that the population will go extinct within a certain time frame? On average, will the population tend to be smaller or larger than the equivalent deterministic model?

Example Final Question: A fellow student has written Mathematica code to run a simulation, but is getting very frustrated because Mathematica fails to produce a plot. The following codes include three incorrect versions and one correct version. In each case, state whether or not the code would work and, for the codes that do not work, point out the error:
(a) $\mathbf{x}\left[\mathbf{t}_{-}, \mathbf{a}_{-}, \mathbf{b}_{-}\right]:=\mathbf{x}[\mathbf{t}, \mathbf{a}, \mathrm{b}]=\mathbf{x}[\mathbf{t}-1, \mathbf{a}, \mathrm{~b}]+\mathbf{a}[\mathbf{t}-1, \mathrm{a}, \mathrm{b}] /(1+\mathbf{x}[\mathbf{t}-1, \mathrm{a}, \mathrm{b}] \mathrm{b})$
$\mathrm{x}\left[0, \mathrm{a}_{-}, \mathrm{b}_{-}\right]=\mathbf{1 . 0}$

ListPlot[Table[$\mathbf{x [t , a , b] , \{ t , 0 , 2 0 0 \} |]}$
This won't work because the values of a and b are not specified.
(b) $\quad \mathbf{x}\left[t_{-}, a_{-}, b_{-}\right]:=x[t, a, b]=x[t-1, a, b]+a x[t-1, a, b] /(1+x[t-1, a, b] b)$
$\mathrm{x}\left[0, \mathrm{a}_{-}, \mathrm{b} _\right]=\mathbf{1 . 0}$

ListPlot[Table[$\mathbf{x [t , ~ 0 . 1 , ~ 1 0 0] ~ , ~}\{\mathbf{t , 0 , 2 0 0 \}}]$]
This should work.
(c)

$$
\begin{aligned}
& x\left[t_{-}, a_{-}, b_{-}\right]:=x[t, a, b]=x[t, a, b]+a x[t, a, b] /(1+x[t, a, b] b) \\
& x\left[0, a_{-}, b_{-}\right]=1.0
\end{aligned}
$$

ListPlot[Table[$\mathbf{x [t , ~ 0 . 1 , ~ 1 0 0] , ~ \{ t , ~ 0 , ~ 2 0 0 \}]] ~}$
This won't work because $x[t]$ on the left is mapped back to $x[t]$ on the right (should be $t-1$ on the right).

$\mathbf{x}\left[\mathbf{0}, \mathbf{a}, \mathbf{b}_{-}\right]==1.0$

ListPlot[Table[$\mathbf{x [t , 0 . 1 , 1 0 0] , \{ t , ~ 0 , 2 0 0 \}]]}$
This won't work because the " $=="$ in the equation for x at time 0 will not set the value to $1.0("=="$ is used for testing if the left and right are equal, not for setting the left to the right side)

