Appendix: Stability of equilibria in a symmetrical system

The evolutionary stability of the generalist phenotype with x = 1/2 in a single species system with equal maximum attack rates can be determined analytically for the scenario described in the text, given the type of trade-off function, f(x), described in the text.  Fitness is the expected geometric mean of the per capita growth rate.  In general, this depends on the joint stochastic distribution of x and N.  However, in the case of the generalist equilibrium in a symmetrical system with slow evolutionary responses (v sufficiently small), the variances of x and N are both small, and the mean fitness can be approximated by the product of the annual rates of increase over a two year period consisting of one year of each type:
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(A-1)

where Am is the maximum competitive ability, and xM and xR are mutant and resident phenotypes. Taking the derivative of the above expression with respect to xM, substituting xM = xR, and setting the result to zero gives the conditions for an evolutionary equilibrium in a system with a relatively small additive genetic variance (Iwasa et al. 1991; Geritz et al. 1998; reviewed in Abrams 2001).  The assumption that f(x) = f(1 ( x) at x = 1/2 ensures that this is an evolutionary equilibrium when N is such that expression (A-1) is equal to one.  The equilibrium is set by the condition (s + (Af(1/2)/[( + Af(1/2)N] = 1, or Neq = [(Af(1/2) ( (1 ( s)(]/((1 ( s)Af(1/2)).  The stability of the evolutionary dynamics can be evaluated by determining whether the value of the evolutionary recursion (the right hand side of eq (2) in the text, using expression, eq (A-1), for fitness) is a decreasing function of x at x = 1/2.  This condition is satisfied if:
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(A-2)

Inequality (3) in the text is a re-arrangement of inequality (A-2).  If the half saturation constant, (, is zero, the condition is always satisfied when the trade-off is weak (f'' < 0).  If the trade-off is described by a power function, the last factor in the second term (f'2 - ff'') is always positive; this means that the equilibrium at x = 1/2 is always locally stable when ( = 0 (reproduction always reaches saturation level) and f is a power function.  It the trade-off is linear (f'' = 0), the condition given above is also satisfied (regardless of () because a positive consumer density requires that A(f > ((1 - s).  The generalist is not an evolutionary attractor when ( is large enough and the second derivative of f is positive and large enough (i.e., the trade-off is sufficiently strong).


The general condition given by eq (A-2) is complicated for the binomial trade-off function, but is easy to evaluate numerically.  For a pure power function, the condition for local stability of the generalist state is:
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(A-3)

This implicitly defines a maximum m consistent with stability; for the example used extensively in the text (A = 1, ( = 3, ( = 1, s = 0.85), this yields a maximum m = 2.9586.  Figure 2A in the text shows how a nonzero linear term alters the local stability of the generalist state in this example.  Although there is little change in the maximum m with increasing q when q is relatively small, a sufficiently large q makes the generalist locally stable for all m.


The equilibrium at x = 1/2 is a branching point in a system with two initially identical species if it is an attractor (i.e., locally stable under eqs (4) or their equivalent for a general f) and selection is disruptive at that point.  The condition for disruptive selection is that (2W/(xM2 > 0 where W is the 2-year fitness given by eq (A-1) evaluated at xM = xR and N = Neq; here this condition becomes:
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(A-4)

This requires that f''(1/2) be larger than some positive magnitude that is determined by s and f.  If f'' < 0 (weak trade-off), disruptive selection cannot occur.   If the trade-off is strong (f'' > 0) and f is a power function with exponent m, the above inequality implies that x =1/2 is a branching point (Geritz et al. 1998) for m > 1/s.  Recall that this result requires that v be sufficiently small that variation in both population and trait value are relatively small.  Because these results are based on the approximation of constant population densities (which is valid for very small v), and apply to trait values that differ infinitesimally from the equilibrium, they overstate the range of exponents where a generalist is likely to persist in a single species.  When q > 0, equation (A-4) may be used to numerically determine the minimum m required for branching as a function of q and s.

The fact that x = 1/2 is a locally stable equilibrium for a symmetrical system does not imply that it is globally stable.  Specialist equilibria (x = 0 or 1) may also be locally stable.  A rigorous treatment of the condition for stability of either specialist state (x = 0 or x = 1) in a single species system requires treatment of the variation in population size that results from the environmental stochasticity.  However, systems with relatively high survivorship (and therefore relatively low variance in population size) are again well-approximated by analyzing a two-year fitness expression based on one year of each type, similar to the approach above.  In this case, with strict alternation of environment types, the population size declines from N to sN in the bad year.  This leads to the following modification of the two-year fitness expression in the case of a symmetrical system (A1 = A2 = A and xR = 0 (the results are equivalent for xR = 1):
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(A-5)

 Under our assumptions that f(0) = 0 and f(1) = 1, the x = 0 specialist point is locally stable if the derivative of the above 2-year fitness with respect to xM is negative when xM is close to zero. The equilibrium population measured at the beginning of a type-1 year is:
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(A-6)

The derivative of mutant fitness at a resident phenotype x = (, (( only slightly greater than zero) is then negative if
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(A-7)

If q > 0 and m > 1, inequality (A-7) can be evaluated at ( = 0, yielding the following expression for the local stability of both specialist states in the symmetrical system:
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(A-8)

If m is close to 1 and q is small, f'(() is very sensitive to (, so inequality (A-8) may be a slight underestimate of the effective minimum m for specialist stability.   The relationship between q and the threshold values of m (with other parameters at baseline values) is illustrated in Fig. 3A.  Because f' can becomes arbitrarily large near x = 0 under a pure power function trade-off, whether x evolves towards a complete specialist depends sensitively on how close it is initially.  If x = (, x returns towards 0 when:
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(A-9)

In the primary example explored in the text (q = 0; s = 0.85; ( = 1, A  = 1, ( = 3), this formula predicts that an initial trait x = 10-10 will evolve back towards x = 0 if m > 1.1104.   This approximate criterion works well in the stochastic simulations, where m = 1.11 almost always causes evolution towards the generalist while m = 1.12 almost always causes evolution to the specialist state.  Similarly, the deterministic criterion predicts evolution to the specialist from a starting value of x = 0.01 when m > 1.5522).  Stochastic simulations yield a critical exponent of approximately m = 1.56 when v = 0.002, and m = 1.57 when v = 0.02 for an initial x = 0.01.  Thus, the effective range of exponents over which alternative states exist (1.57 < m < 2.6 for the parameters in Figure 2) is somewhat narrower than the local stability analysis of the deterministic model suggests (eq. A-2), largely due to a decrease in the upper rather than the lower limit.  The difference in the upper limits of m between deterministic and stochastic systems is primarily a function of the small domain of attraction of the generalist equilibrium.  Larger genetic variance (larger v) increasez the variation in both x and N, and result in escape from the generalist state for a larger range of m values. 

A system with complete utilization of resources at all N (i.e., ( = 0), does not exhibit population fluctuations, because the birth rate is independent of competitive performance.  The above analysis shows that x = 0 and x = 1 are locally unstable and x = 1/2 is locally stable in this case.
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