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Abstract:  

One common method of minimizing errors in large DNA sequence datasets is to drop variable 

sites with a minor allele frequency below some specified threshold. Though widespread, this 

procedure has the potential to alter downstream population genetic inferences and has received 

relatively little rigorous analysis. Here we use simulations and an empirical SNP dataset to 

demonstrate the impacts of minor allele frequency (MAF) thresholds on inference of population 

structure – often the first step in analysis of population genomic data. We find that model-based 
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inference of population structure is confounded when singletons are included in the alignment, and 

that both model-based and multivariate analyses infer less distinct clusters when more stringent MAF 

cutoffs are applied. We propose that this behavior is caused by the combination of a drop in the total 

size of the data matrix and by correlations between allele frequencies and mutational age. We 

recommend a set of best practices for applying MAF filters in studies seeking to describe population 

structure with genomic data.  

 

Introduction:  

The distribution of genetic variation within and among individuals is crucial to understanding 

the organization of biological diversity and its underlying causes. Across the genome, variation in 

mutational age, the effects of different evolutionary processes, and the influence of historical events 

can result in different classes of genetic variants characterized by their relative frequency in a given 

population (Slatkin, 1985, Kimura & Ohta, 1973, Griffiths & Tavaré, 1998, Mathieson & McVean, 

2014). An excess of common alleles may reflect the signature of population bottlenecks (Marth, 

Czabarka, Murvai, & Sherry, 2004), purifying selection (Fay, Wyckoff, & Wu, 2001), or the absence 

of population subdivision (Pritchard, Stephens, & Donnelly, 2000). Alternatively, high frequencies of 

rare alleles can provide evidence of population expansion (Marth et al. 2004), detailed information on 

mutation rates and gene flow (Slatkin, 1985), and reveal geographically localized population 

subdivision (Barton & Slatkin, 1986, Gompert et al., 2014).  

Because the distribution of allele frequencies across sites (also known as the site frequency 

spectrum, or SFS) reflects the unique combination of these varied factors, downstream analyses are 

sensitive to the influence of sampling methodologies that alter the SFS. Yet despite the explosive 

recent growth of population genetics provided by the advent of affordable reduced-representation 

genome sequencing for nonmodel organisms, there remain significant gaps in our knowledge of how 

data collection biases and filtering steps that preferentially shape the SFS affect population genetic 

inference.  

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

These biases may originate either in wet lab or bioinformatic treatments. Prior to sequencing, 

the SFS may be shaped by ascertainment bias in library preparation: RADseq-style methods introduce 

genealogical biases (Arnold, Corbett-Detig, Hartl, & Bomblies, 2013) and nonrandom patterns of 

missing data (Gautier et al. 2012) due to reliance on the presence of restriction cut sites; hybridization 

capture with ultraconserved element (UCE) probesets necessarily involves targeting sites highly 

conserved across evolutionarily distant taxa (Faircloth et al., 2012); and SNP arrays (or “chips”) 

which explicitly screen for variation at a particular frequency cutoff . During sequencing itself, 

relatively high error rates are accepted in individual reads, under the assumption they will be 

corrected during bioinformatic processing steps (Nielsen, Korneliussen, Albrechtsen, Li, & Wang, 

2012). However, the absence of standard bioinformatic pipelines in ecology and evolutionary biology 

is itself a source of uncertainty (Shafer et al., 2016) because specific methodologies and parameter 

choices may dramatically affect the composition of data matrices. 

 

For organisms lacking a suitable reference genome, de novo sequence assemblies may 

introduce substantial errors that affect both the SFS and inference of population genetic structure 

(Shafer et al., 2016). During read-mapping, SNP variation can result in higher rates of successful 

alignments in reads sharing the reference allele (Degner et al., 2009). Parameters used during variant 

detection can also play a significant role in determining the number and distribution of single 

nucleotide polymorphisms or SNPs (Neilsen et al., 2012), the most frequently used marker type in 

modern population genetics. In particular, minor allele frequency (MAF) thresholds directly influence 

the SFS by imposing a cutoff on the minimum allele frequency allowed to incorporate a specific 

genetic variant. But despite its potential importance, the two most popular comprehensive 

bioinformatic pipelines for RADseq data alternatively include (Catchen, Hohenlohe, Bassham, 

Amores, & Cresko, 2013) or exclude (Eaton, 2014) the option to set minor allele frequency thresholds 

during variant calling, with the result that among empirical studies MAF thresholds are only 

sometimes reported (e.g., Winger, 2017, Blanco-Bercial & Bucklin, 2016).  
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One potential consequence of ambiguous MAF choice is variation in the ability to detect 

population subdivision (or structure), a fundamental goal of many population genetic studies. 

Previous empirical work suggests analyses of population structure are sensitive to filtering by allele 

frequency class. For example, estimates of Wright’s fixation index FST--commonly employed to 

quantify population subdivision--are strongly restricted by the site frequency spectrum (Jakobsson, 

Edge, & Rosenberg, 2013). Similarly, studies using more geographically explicit test statistics 

(Mathieson & McVean 2014) and / or clustering methods (Gompert et al., 2012) inferred significantly 

different patterns and levels of population genetic structure when alternately using only common and 

rare variants. These results highlight the need for a detailed investigation of the behavior of these 

methods using commonly applied MAF filters.  

 

Clustering methods are particularly widespread in population genetic studies of non-model 

organisms where researchers generally lack a priori knowledge of population structure. They 

generally fall into one of two categories: model-based (or parametric) approaches, and nonparamatric 

approaches. Model-based methods, exemplified by the influential program structure (Pritchard, 

Stephens, & Donnelly, 2000), typically assume a hypothetical K populations characterized by a set of 

alleles with frequency p at locus l,  and seek to probabilistically assign individuals to each of these 

populations given their genotypes. When allowing for admixture, an additional parameter Q models 

the proportion of each individual’s genome that originated from a given population. While other 

programs differ from structure in using variational inference (fastStructure; Raj, Stephens, & 

Pritchard, 2014) or a maximum likelihood framework (ADMIXTURE; Alexander, Novembre, & 

Lange, 2009; FRAPPE; Tang, Coram, Wang, Zhu, & Risch, 2005), they are united in proposing an 

explicit causal model for input data, assuming linkage equilibrium between loci and Hardy Weinberg 

equilibrium between alleles. In contrast, nonparametric methods such as principal components 

analysis and K-means clustering (Jombart, Devillard, & Balloux, 2010; Novembre et al., 2008) first 

reduce the dimensionality of an allele frequency matrix and then seek to identify groups of individuals 

that minimize an objective function without explicitly modelling the attributes of genetic data. 
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Because of these differences, parametric and nonparametric approaches may show different 

sensitivities to SFS generated through biased data collection methods. It’s possible these sensitivities 

also reflect the influence of the type of datasets available during each program’s initial development: 

for example, as structure’s underlying algorithm was tested prior to widespread adoption of high 

throughput sequencing methods and initially applied on microsatellite data screened for appropriate 

frequency distributions (Pritchard et al., 2000, Li, Korol, Fahima, Beiles, & Nevo, 2002), the 

characteristics of unfiltered modern SNP datasets may present unanticipated challenges to accurate 

population genetic inference.  

 

 Here, we build on previous studies of the relationship between population subdivision and 

allele frequencies (Gompert et al., 2012; Jakobsson et al., 2013, Mathieson & McVean 2014) to 

systematically assess the influence of minor allele frequency (MAF) thresholds on inference of 

population structure. We evaluate the ability of model-based and nonparametric clustering methods to 

describe population structure in both simulated and empirical genomic datasets using diallelic SNPs 

and find that structure is confounded by singletons and both approaches are sensitive to variation in 

MAF thresholds. We propose a simple hypothesis to explain this behavior and recommend a set of 

best practices for researchers seeking to describe population structure using multilocus datasets.  

 

 

Methods:  

Simulated Data: We simulated genome-wide SNP datasets under a custom demographic 

model in fastsimcoal2 version 2.5.2.21 (Excoffier, Dupanloup, Huerta-Sánchez, Sousa, & Foll, 2013) 

in order to assess the impacts of MAF filtering on population structure inference in the absence of 

sequencing or assembly error. Model parameters were chosen to reflect a plausible demographic 

history for our empirical case (see below), with one population experiencing successive splits 60,000 

and 40,000 generations in the past after which all populations increase in size exponentially, reaching 

a final Ne of 50,000 for the “outgroup” lineage and 500,000 for the remaining populations (Figure 

1A). Migration is allowed among all populations after the final divergence event with a rate of 
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m=5x10-5. We included a mutation rate parameter of 2x10-6 in simulated data--equivalent to selecting 

a single SNP from a 200bp region in an organism with an average genome-wide mutation rate of 

1x10-8 (see fastsimcoal2 user manual). Missing data--a common feature of reduced-representation 

library SNP datasets--was simulated by randomly dropping 25% of the alleles at each simulated locus.  

 

We generated 10 independent simulations using the same starting parameter values and 

replicated analyses 10 times for each dataset. Each simulation was initialized with 5,000 loci across 

10 individuals in each of the 3 populations. After converting fastsimcoal2 output to structure’s input 

file format, we used a custom R script to apply the following MAF cutoffs to all populations in our 

simulated data: 1/60, 2/60, 3/60, 4/60, 5/60, 8/60, 11/60, and 15/60.  

 

To test whether variation in inferred admixture levels was caused by MAF thresholds 

specifically rather than a drop in the total size of the data matrix after filtering, we reran the above 

simulations but initialized with 40,000 loci and then randomly downsampled all alignments to 1000 

sites after applying MAF cutoffs.   

 

Empirical Data: We collected genome-wide SNP data from 40 individuals of the widespread 

North American passerine Regulus satrapa, the Golden Crowned Kinglet. Our geographic sampling 

aimed to represent three areas of the species’ breeding range a previous study with mitochondrial 

DNA suggested were distinct populations (Klicka, unpublished): subspecies satrapa in the Eastern US 

/ Canada; subspecies olivaceous / apache in the coastal and Rocky Mountain US / Canada, 

respectively; and subspecies azteca in the Sierra Madre del Sur and Transvolcanic Belt of Mexico 

(Figure 1B). We extracted whole genomic DNA using Qiagen DNEasy extraction kits and prepared 

reduced-representation libraries via the ddRADseq protocol (Peterson, Weber, Kay, Fisher, & 

Hoekstra, 2012) using the digestion enzymes Sbf1 and Msp1 and a size-selection window of 415-515 

bp. We sequenced the resulting libraries for 50 bp single-end reads on an Illumina HiSeq 2500.  
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We assembled reads into sequence alignments de novo using the program ipyrad version 

0.7.11 (https://github.com/dereneaton/ipyrad). We set a similarity threshold of 0.88 for clustering 

reads within and between individuals, a minimum coverage depth of 6 per individual, and a maximum 

depth of 10,000. We filtered out loci sharing a heterozygous site in 50% of samples as probable 

clusters of paralogs with a fixed difference. (We define “locus” in the context of ddRADseq data as a 

cluster of sequence reads putatively representing the same 50-bp region downstream of an Sbf1 cut 

site.) Because missing data can have a strong influence on population genetic inference (Arnold et al., 

2013, Gautier et al., 2013) and preliminary exploration suggested anomalous clustering behavior, we 

removed 7 individuals from our dataset prior to all downstream analysis. Of these final 33 samples, 

we required each locus to be sequenced in at least half of samples and randomly selected one SNP per 

locus. We then applied the same set of MAF cutoffs as used in our simulation study to all populations 

(1/60 to 15/60). 

 

Population Structure Analyses. We ran 10 replicate clustering analyses using structure 

version 2.3.4 for all MAF filters of simulated (n=80) and empirical data (n=8) using the correlated 

allele frequency model with admixture for 250,000 generations each, setting K=3 and discarding the 

initial 10,000 generations as burn-in. All runs were initialized using a random seed value drawn from 

a uniform distribution with range (0 – 10,000). No prior population assignment information was 

included in the model. All other settings were left at default values.  

 

Principal components analysis, K-means clustering and discriminant analysis of principal 

components (DAPC) were conducted using the R package adegenet version 2.1.0 (Jombart et al., 

2010) and the MAF-filtered structure files as input. Missing data was replaced with the mean values 

across the full sample before running PCAs. All PCs were retained for K-means clustering, as 

recommended by the adegenet documentation 

(https://github.com/thibautjombart/adegenet/wiki/Tutorials), which we performed with a fixed value 

of K=3 on the basis of the apparent level of subdivision in preliminary mtDNA data (Klicka et al., 

unpublished). DAPCs were initialized using the K-means clustering solution and tested by training the 
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model on half the individuals in each population, then predicting the population assignment of the 

remaining individuals. We retained 3 PCs and 2 discriminant axes after manually examining several 

runs with both simulated and empirical data. PCA and K-means analyses were repeated 10 times per 

input dataset, and DAPC cross validations were repeated 10 times per K-means replicate.  

 

In practice most clustering solutions are assessed visually by comparing bar plots of structure 

output or scatter plots of PCs 1 and 2. In order to quantitatively compare clustering results across 

methods and MAF cutoffs, we estimated two summary statistics: the proportion of correct population 

assignments, and the ratio of distances between individuals within populations to those between all 

individuals (we refer to this as “    ” in analogy to     and     ). The proportion of correct population 

assignments was estimated by assigning each individual to a single cluster (for structure results 

individuals were assigned to the cluster with the highest q value), swapping cluster labels to account 

for stochastic label switching during inference, and comparing inferred and true population 

assignments. Within-to-total population distance ratios were calculated as: 

 

        
 

 
 

  
    

  
   

 

 

where k is the population index, i and j are the indices of individuals, and   
 is the mean Euclidean 

distance between individuals in a k-dimensional space described by the first k principal components or 

the columns of the q matrix returned by structure. More simply, this ratio is the average distance 

between individuals in the same population over the average distance between all individuals. High 

values indicate that inferred clusters are discrete, while low values indicate that clusters overlap–-

either reflecting uncertainty in individual assignments or admixture among populations. We fit linear 

mixed models in R version 3.5.1 (R Core Team, 2018) to evaluate the relationship between MAF 

cutoffs and the values of assignment accuracy and PCst, using simulation number as a random effect 

to account for the nonindependence of replicated analyses on the same dataset.  
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Results: 

Simulations and sequence assembly. Following MAF filtering, our simulated datasets retained 

an average range of 3942 (for MAF=1) to 242 (for MAF=15) loci. Constant-length datasets were 

always subsampled to 1000bp. For our Regulus satrapa ddRAD libraries, Illumina sequencing 

returned an average of 781,011 quality-filtered reads per sample. Clustering within individuals 

identified 35,722 putative loci per sample, with an average depth of coverage of 22x. After clustering 

across individuals and applying paralog and depth-of-coverage filters, we retained an average of 4286 

loci per sample. Prior to applying MAF filters and removing individuals for excess missing data, our 

alignment included 3898 unlinked diallelic SNPs from sequenced in at least 30 of the original 40 

samples. Our final MAF-filtered datasets ranged from 3419 (MAF=1) – 431 (MAF=20) loci.  

 

Parametric clustering. The ability to detect population subdivision in both simulated and 

empirical datasets varied widely across MAF thresholds using the model-based method structure 

(Figure 2). In both constant and variable-length datasets, including singletons caused structure to 

assign all individuals to the same majority ancestry cluster. For variable-length simulated datasets, 

after excluding alignments with singletons, higher MAF thresholds are also associated with lower 

population discrimination (PCst ~ minor_allele_count * sim_num; P<2e-16, R2=0.207, df=696; 

Figure S1) and assignment accuracy (accuracy ~ minor_allele_count * sim_num; P<2e-16, R2=0.195, 

df=696; Figure S1). The association between high MAF cutoffs and population discrimination is 

reversed in constant-length datasets – more stringently filtered datasets infer more discrete clusters –

though the effect is much weaker (PCst ~ minor_allele_count * sim_num: P<2e-16, R2=0.098, df=696; 

accuracy ~ minor_allele_count * sim_num: P<0.005, R2=0.01, df=696; Figures S1, S2). 

 

Nonparametric clustering. In contrast to structure, both K-means clustering accuracy and PCst 

were robust to inclusion of singletons. However, both measures were highly sensitive to MAF 

thresholds in simulated data (Figure 3). Both PCst and K-means assignment accuracy decline as the 

MAF threshold is increased (PCst ~ minor_allele_count * sim_num; P<2e-16, R2=0.642, df=796; 

kmeans_accuracy ~ minor_allele_count * sim_num; P<2e-16, R2=0.409, df=796; Figure S3). As with 
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structure these relationships are reversed but weaker when alignment length is held constant (PCst ~ 

minor_allele_count * sim_num; P<2e-16, R2=0.246, df=796; kmeans_accuracy ~ minor_allele_count 

* sim_num; P<2e-16, R2=0.116, df=796; Figure S3), though the relationship remains negative across 

MAF cutoffs in the range of 1/60 – 3/60 (Figure S4). For empirical data, both methods achieved near-

perfect assignment accuracy under all MAF cutoffs (Figure 3).  

 

Discussion:  

Inference of population structure is sensitive to MAF. Our results demonstrate that inference 

of population structure can be strongly influenced by choice of MAF threshold with both model-based 

and multivariate approaches. Structure fails to detect even moderate population subdivision (Fst  

0.05) when singletons are included in the alignment, and both methods generally infer increasing 

levels of admixture as the minimum MAF of sites included in the alignment is increased. These trends 

do not occur when alignment length is held constant, suggesting that most of the effect is driven by a 

drop in the total size of the data matrix after filtering by MAF. In practice this will occur in most 

empirical datasets when genotypes are estimated from sequencing data. For chip-based approaches in 

which SNPs are first screened for variation at some cutoff, our analysis suggests that clustering results 

should be relatively robust to implicit MAF cutoffs applied during chip design. This is a particularly 

important concern for ancient DNA studies, which frequently collect data with these methods (e.g. 

Rasmussen et al. 2011).  

 

Two factors may explain the pattern of increased admixture in more stringently filtered 

datasets: variation in the total size of the data matrix, and the distribution of mutations on a coalescent 

tree. In simulated datasets with varying size (as in nearly all empirical cases), increasing the MAF 

cutoff decreases the total size of the data matrix and leads to much higher estimates of individual 

admixture. This is in part an interpretive issue, as the strong effect of the size of the data matrix 

suggests that the high q-matrix values reflect uncertainty in individual assignments rather than higher 

admixture levels. However, because parametric approaches are typically interpreted in light of their 

generative model, many users are likely to see this pattern as evidence of higher gene flow.  
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A secondary cause of increased admixture in more stringently filtered datasets is the time 

distribution of mutations in a coalescent tree. Under a standard coalescent model the expected number 

of sites with a derived allele present in i samples (    is the total length of branches subtending i 

descendents (   , multiplied by the expected number of mutations per unit time (
 

 
 : 

 

      
 

 
        (Wakely 2009, Equation 4.15) 

 

Low-frequency alleles represent mutations that occurred on branches with few descendants, and these 

branches are typically found close to the present (Figure 4; see Appendix 1 for simulation details). 

They therefore contain a disproportionate amount of information about recent events.  Removing 

them is similar to drawing a horizontal line across a coalescent tree and dropping mutations that occur 

beyond that line. In the absence of recent pulses of gene flow (where ancient alleles from a donor are 

rare in the recipient and thus confound the relationship between frequency and mutation age), this 

“pruning” process causes populations to appear less differentiated as the MAF threshold increases, 

seen in PCA output as reduced distance between clusters and in structure output as increased 

admixture within individuals (though some would argue that this is simply a misinterpretation of 

structure’s output, e.g. Lawson, van Dorp, & Falush, 2018). In the presence of recent pulses of gene 

flow, the true signal of admixture is instead replaced with inferred admixture (or reduced distance 

between clusters) as a function of a loss in information content, to uncertain effect. 

 

Model-based analyses’ failure to recover a clear signal of population subdivision when 

singletons are included in the alignment is more difficult to explain. The issue appears to be related to 

overfitting as a result of either a high frequency of uninformative singletons or a high frequency of 

uninformative common alleles (Alexander & Lange, 2011). As a verbal model, this is intuitive: an 

allele found at a frequency of 1/2N lacks information on broader patterns of population structure 

because it only serves to distinguish a single individual from all others, while a common allele found 

may be uninformative because of the absence of differences in its frequency across populations. We 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

hypothesize under structure’s algorithm, a population k1 is assigned an a site frequency spectrum 

averaging out true population specific-frequencies of common alleles, resulting in the broad band of 

majority ancestry visible in Figure 2. Subsequently, populations k2...kn are assigned site frequency 

spectra characterized by high frequencies of singletons or other rare alleles, resulting in the additional 

bands of minority ancestry shared across all individuals. With our simulated data, rare but non-

singleton alleles reflect fine population structure and thus harm inference when excluded; with our 

empirical data, these rare alleles are uninformative and serve only as noise to obscure the common 

allele frequency distributions reflecting true population history.  

 

This hypothesis is consistent with a pathology related structure’s inability to model mutation 

of modern alleles, previously identified as a potential obstacle to accurate inference of population 

structure under certain histories (Shringapure & Xing 2009). Because structure assumes each unique 

allele in the input dataset has a distinct frequency in its parent population, recent mutations-- e.g., 

derived alleles--are erroneously treated as representative of a separate population-specific allele 

frequency profile rather than as descendants of ancestral copies. If a sufficient number of singletons 

are present in the dataset, the noise from these false allele frequency profiles may mask the signal 

from alleles indicative of “true” populations. Though most multivariate analyses were robust to 

inclusion of singletons, a similar pattern of low accuracy and population discrimination was observed 

in PCA when alignment length was held constant--likely because low-frequency alleles hold less 

information about inter-group differences than moderate-frequency alleles, and low-frequency alleles 

will be a larger proportion of the total data matrix in this case.   

 

Recommendations for setting MAF thresholds in population genetic studies.  

Our results suggest that SFS distributions that can cause structure and other model-based 

programs to erroneously fail to detect structure may be generated by either normal demographic 

processes (e.g., exponential population growth with relatively recent divergence, as in our simulated 

example) or by assembly errors (potentially present in our empirical example, and well documented in 

other de novo RADseq datasets, e.g. Shafer et al., 2016). As a consequence, a broad set of empirical 
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studies may be affected. We recommend researchers using model-based programs to describe 

population structure observe the following best practices: 1) duplicate analyses with nonparametric 

methods such as PCA and DAPC with cross validation; 2) exclude singletons; and 3) compare 

alignments with multiple assembly parameters. When seeking to exclude only singletons in 

alignments with missing data (a ubiquitous problem for reduced-representation library preparation 

methods), it is preferable to filter by the count (rather than frequency) of the minor allele, because 

variation in the amount of missing data across an alignment will cause a static frequency cutoff to 

remove different SFS classes at different sites. The scripts used to filter structure input files for this 

manuscript are available at https://github.com/cjbattey/LinckBattey2017_MAF_clustering. 

 

Population genetics of Regulus satrapa. Though describing population structure and 

phylogeographic patterns of the Golden-crowned Kinglet was not the primarily goal of our study and 

will be elaborated on elsewhere, our data provide novel evidence for deep splits across the range of 

the species, corroborating previous mtDNA evidence (Klicka, unpublished). Curiously, the results of 

our model-based population structure inference suggest not only singletons but all rare alleles (MAF 

<= 8/80) have a high noise to signal ratio, while common alleles (MAF => 10/80) accurately reflect 

expected relationships. This pattern may be driven by either purifying selection eliminating 

geographically localized variants (Nelson et al. 2012, Jackson et al. 2015), a population bottleneck 

(Nei, Maruyama, & Chakraborty, 1975; Gattepaille, Jakobsson, & Blum,2013), a burst of recent 

migration following exponential population growth (Slatkin, 1985), or assembly artifacts resulting in 

a high proportion of uninformative / erroneous sites (Shafer at al., 2016). While all scenarios are 

likely contributing to some extent, studies of genetic variation in similar taxa provide support for post-

Pleistocene expansion and gene flow among populations separated by ice sheets (Spellman & Klicka 

2006), processes that may result in similar SFS distributions to our example.  
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Future directions. With simulated and empirical cases reflecting similar (if non-identical) site 

frequency spectra, our focus was on a necessarily narrow range of demographic scenarios and a 

relatively narrow range of SFS distributions. Future examinations of the sensitivity of population 

genetic inference to MAF thresholds with datasets simulated under a diversity of evolutionary 

histories may shed light on the biological processes generating problematic SFS, and lead to the 

development of more robust model-based programs. While other parametric population structure 

inference programs share structure’s underlying model and we believe the broad patterns reported 

here will be similarly reflected, differences in implementation (e.g., MCMC mixing) may shape 

specific sensitivities. A broader survey of model-based population structure inference methods will 

help clarify which approaches are best suited to NGS data, and lead to the development of more 

robust software for describing the fundamental units of biological organization.  

 

Data Availability and Supplemental Material: 

Supplemental figures are available online. Simulation results are available from the Dryad 

Digital Repository, DOI 10.5061/dryad.hr1hh75. Raw sequence data are available from the NCBI 

SRA, accession PRJNA514868. Code used in the study is available via GitHub: 

https://github.com/cjbattey/LinckBattey2017_MAF_clustering 
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Figures: 

 

Figure 1: (A) The demographic model used in simulating SNP datasets. (B) Sampling localities and 

sizes for Regulus satrapa, with a priori population assignments. 

 

Figure 2: The influence of minor allele count on structure’s assignment accuracy under the admixture 

model, and PCst for simulated and empirical datasets. 

 

Figure 3: The influence of minor allele count K-means assignment and PCst for simulated and 

empirical datasets. On PCA plots, x-axis values are PC1 and y-axis values are PC2. 

 

Figure 4: Time distribution of mutations with varying derived allele counts.  
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