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Inbreeding depression refers to the reduction of fitness that results from mat-

ings between relatives. Evidence for reduced fitness in inbred individuals is

widespread, but the strength of inbreeding depression varies widely both

within and among taxa. Environmental conditions can mediate this vari-

ation in the strength of inbreeding depression, with environmental stress

exacerbating the negative consequences of inbreeding. Parents can modify

the environment experienced by offspring, and have thus the potential to

mitigate the negative consequences of inbreeding. While such parental

effects have recently been demonstrated during the postnatal period, the

role of prenatal parental effects in influencing the expression of inbreeding

depression remains unexplored. To address this gap, we performed matings

between full-sibs or unrelated individuals in replicated lines of Japanese

quail (Coturnix japonica) experimentally selected for high and low maternal

egg provisioning. We show that in the low maternal investment lines hatch-

ing success was strongly reduced when parents were related. In the high

maternal investment lines, however, this negative effect of inbreeding

on hatching success was absent, demonstrating that prenatal maternal

provisioning can alleviate the negative fitness consequences of inbreeding.
1. Introduction
Inbreeding depression occurs when matings between relatives result in

decreased offspring fitness. This reduction in fitness is likely due to an increase

in homozygosity that exposes deleterious recessive alleles to selection [1]. This

phenomenon has been observed across many taxa [2,3], but the degree to which

an individual experiences decreased fitness at a given level of inbreeding varies

between species and populations.

Some of this variation is explained by differences in genetic load, the

reduction in the mean fitness of a population from that of a theoretically opti-

mal genotype [1,3]. However, there is increasing evidence that environmental

conditions can also influence the degree of inbreeding depression experienced

by an individual [4–6]. In a benign environment, the deleterious effects of

inbreeding may not be expressed, but when exposed to environmental stressors

such as heat, drought or food limitation inbreeding depression can increase

with the magnitude of the stressor [2,7–9].

The environment an individual experiences during the first stages of life is

provided by the parents in most taxa, and this early life environment can have

long-lasting effects on offspring phenotype and fitness [10,11]. At the same

time, inbreeding depression is particularly strong during early life stages [12].

Parents thus have the potential to mitigate the negative consequences of

inbreeding by increasing their investment in parental care, and thereby

providing a more favourable early life environment for the offspring

[13,14]. In line with this idea, a recent study in burying beetles (Nicrophorus
vespilloides) showed that postnatal parental care can buffer the negative effects

of inbreeding [15].
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However, parents influence not only the offspring’s post-

natal environment but also the conditions experienced before

birth. This prenatal environment is provided by the mother in

most taxa. While it is well documented that inbreeding

negatively affects early development and hatching success

[16–19], the role of the prenatal environment in influencing

the expression of inbreeding depression has not been

experimentally tested.

To address this gap, we performed experimental matings

between full-sibs and unrelated individuals in replicated lines

of Japanese quail (Coturnix japonica) experimentally selected

for high and low maternal egg provisioning (high and low

maternal investment lines). This 2 � 2 design allowed us to

test experimentally if prenatal maternal provisioning can

buffer the negative effects of inbreeding on hatching success.

We predict that if mothers can mitigate the negative

consequences of inbreeding by providing a favourable pre-

natal environment for their offspring, inbreeding depression

will be pronounced in the low maternal investment lines

but absent, or strongly reduced, in the maternal high

investment lines.
2. Material and methods
(a) Artificial selection lines for divergent maternal egg

provisioning
We established replicated selection lines for high and low

maternal egg provisioning in a population of Japanese quail

(Coturnix japonica) maintained at the University of Zurich, Swit-

zerland [20]. The founder population for this study consisted

of 91 females and 98 males. It was obtained from a commercial

quail egg farm located in the southeast of Switzerland, where

birds from two different origins were maintained in two separate

populations. These populations had been maintained since 1998

at the farm before our selection experiment began in 2012, and

no (intentional) artificial selection had been imposed on the

birds during this time. Although no pedigree was available for

the founders, large populations were maintained on the farm

and efforts were made to avoid inbreeding. To further increase

genetic diversity in our study population, we crossed birds

from the two origins and used these crosses as the starting

population for the selection experiment (see [20] for more details).

In the first generation of the selection experiment, eggs from

the 25% of females producing the largest and smallest eggs rela-

tive to their body size were incubated to create the high and low

investment lines, respectively. In subsequent generations, we

selected the most extreme 50% of females within each line. We

repeated this procedure with two independent starting popu-

lations to create two independent replicates per line [20].

During the selection procedure, matings between relatives were

prevented and as a result the inbreeding coefficient ( f ) of the

parental generation used in this experiment (see below) was

low (less than 0.058, based on six generations of complete

pedigree data).

We observed a strong response to selection on egg size, as

well as a positively correlated response in dried egg components

(i.e. fat and protein), but not in the number of eggs laid [20]. The

lack of an egg size/number trade-off was surprising, but appears

to be not uncommon (reviewed and discussed in [20]), and we

are currently exploring alternative costs associated with

increased maternal offspring provisioning in our population.

Forty males and 40 females from the sixth generation of these

divergently selected lines were used for this experiment (mean

egg mass (mean+ s.d.) of females from the high investment
lines: 12.391+0.892 g; mean egg mass of females from the low

investment lines: 11.390+0.698 g (line: F1,37 ¼ 15.473, p , 0.001;

inbreeding status: F1,37 ¼ 0.599, p ¼ 0.444; line � inbreeding

status: F1,36 ¼ 0.156, p ¼ 0.695; N ¼ 40)). Females were kept sep-

arately from males before the experiment to ensure that they had

not mated before.

(b) Experimental inbreeding
Individuals from the high and low investment lines were

assigned to breed either with a full sibling (inbreeding) or an

unrelated partner from the same line replicate (outbreeding),

resulting in 40 breeding pairs that were paired up simul-

taneously: 10 high investment line inbreeding (HI) pairs, 10

high investment line outbreeding (HO) pairs, 10 low investment

line inbreeding (LI) pairs and 10 low investment line outbreeding

(LO) pairs. We measured the birds’ body size (i.e. tarsus length)

at the beginning of the breeding experiment to the nearest

0.1 mm. There was a significant difference in body size between

females from the H and L lines (F1,37 ¼ 10.997, p ¼ 0.002; see also

[20]), but not between females that were paired to a related or

unrelated partner (F1,37 ¼ 0.002, p ¼ 0.968; interaction line �
inbreeding status: F1,36 ¼ 3.070, p ¼ 0.088). To control for these

line differences in body size, female tarsus length was included

as a covariate in the statistical analyses (see below).

All birds received ad libitum food, water and grit. Breeding

cages (122 � 50 � 50 cm) were lined with sawdust, and con-

tained a house and a sand bath. The facility was maintained

on a 16 L : 8 D cycle and at a temperature of approximately

208C. Eggs were collected over a period of 15 days. During this

entire period, breeding pairs were housed together in the breed-

ing cages. Males and females were in breeding condition when

entering the cages and all couples copulated immediately after

being released into the cages.

We calculated the inbreeding coefficient ( f ) for the offspring

of all these pairings: offspring produced by outbreeding pairs

had an inbreeding coefficient 0.002 , f , 0.02, while those

produced by inbreeding pairs had an f � 0.25.

(c) Hatching success
Eggs were collected daily between 08.00 and 11.00 h, weighed to

the nearest 0.01 g and stored for up to 5 days at 128C until incu-

bation. Incubation occurred in three batches (batch 1: eggs from

day 1 to 5, batch 2: eggs from day 6 to 10, batch 3: eggs from

day 11 to 15) at 37.88C and 55% humidity for 14 days (Favorit,

HEKA Brutgeräte, Rietberg). Eggs were then transferred to indi-

vidual compartments in a hatcher (Favorit, HEKA Brutgeräte,

Rietberg), and kept at 37.68C and 80% humidity until hatching

[20]. Eggs that did not hatch after 18 days of incubation were

classified as ‘did not hatch’ [20]. Eggs of all treatment groups

were treated in the same way and there was no significant

effect of inbreeding status (x2 ¼ 0.030, p ¼ 0.862), line (x2 ¼

0.190, p ¼ 0.663) or their interaction (x2 ¼ 1.958, p ¼ 0.162) on

the number of eggs laid (i.e. incubated) (number of eggs incubated

per breeding pair: 1–16; total number of eggs incubated: N ¼ 526).

(d) Statistical analysis
The probability of hatching (hereafter referred to as ‘hatching

success’) was analysed on the level of the breeding pair using a

generalized linear model with a binomial error structure and a

logit-link function. In a first model, we included selection line,

inbreeding status and their interaction as fixed effects, and

maternal tarsus length as a covariate. In a second model (same

as above), we replaced selection line with a female’s mean egg

mass (in grams) to provide further evidence that the line effects

observed in the first model are mediated by differences in

maternal egg provisioning. To infer significance, we compared

http://rspb.royalsocietypublishing.org/
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Figure 1. Hatching success of eggs from inbreeding and outbreeding parents
in the high and low maternal investment lines. Plotted values are means+
s.e. of the proportion of eggs hatched per breeding pair. Inbreeding signifi-
cantly reduces hatching success in the low investment lines but not in the
high investment lines.

Table 1. Effects of the inbreeding status of the parents (inbreeding versus
outbreeding) and prenatal maternal provisioning on hatching success:
(a) including selection line as a measure of prenatal maternal provisioning,
(b) including egg mass (grams) as a measure of prenatal maternal
provisioning.

x2 p-value

(a) hatching success

inbreeding status 14.976 ,0.001

selection line 2.125 0.145

selection line � inbreeding status 5.355 0.021

maternal tarsus length 3.395 0.065

(b) hatching success

inbreeding status 13.681 ,0.001

egg mass 2.439 0.118

egg mass � inbreeding status 15.539 ,0.001

maternal tarsus length 3.681 0.055
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two nested models, with and without the variable of interest,

using likelihood ratio tests (all d.f. ¼ 1; N ¼ 40 breeding pairs).

Data were analysed using the lme4 [21] and multcomp [22]

packages in R v. 3.21 (R Development Core Team 2015).
3. Results
Hatching success was influenced by a significant interaction

effect between selection line and inbreeding treatment

(x2 ¼ 5.355, p ¼ 0.021; figure 1, table 1a for full model

output). Post hoc contrasts revealed that in the low maternal

investment lines, hatching success was significantly lower

when parents were related (Tukey’s HSD test; LO versus

LI: z ¼ 4.237, p , 0.001, figure 1). By contrast, in the high

investment lines the hatching success of eggs from related

parents was not significantly different from the hatching

success of eggs from unrelated parents (HO versus HI:

z ¼ 1.041, p ¼ 0.724, figure 1). Furthermore, the hatching

success of eggs from related or unrelated parents from the

high investment lines did not differ significantly from

hatching success of eggs from unrelated parents from the

low investment lines (LO versus HI: z ¼ 1.297, p ¼ 0.564;

LO versus HO: z ¼ 0.357, p ¼ 0.984, figure 1).

To confirm that these line-specific effects of inbreeding on

hatching success are mediated by egg size, we ran a second

model in which we replaced selection line with mean

maternal egg mass as a predictor. Again, we found that the

interaction effect between inbreeding treatment and egg

mass significantly affected hatching success (x2 ¼ 15.539,

p , 0.001; figure 2; table 1b for full model output). Larger

eggs from an inbreeding pair were more likely to hatch

than smaller eggs, whereas no relationship between egg

size and hatching success was found in outbreeding pairs

(figure 2). In both models, there was a trend for a negative

relationship between a female’s body size and the hatching

success of her eggs (table 1a,b).
4. Discussion
We show that favourable prenatal conditions can buffer the

negative effects of inbreeding on hatching success. Inbreeding
strongly reduced hatching success when offspring developed

in a small, nutrient poor egg (i.e. under harsh prenatal con-

ditions), but this inbreeding effect was absent when offspring

developed in a large, nutrient rich egg (i.e. under benign

prenatal conditions). This demonstrates that the prenatal

environment affects the expression of inbreeding depression,

and that mothers can mitigate the negative consequences of

inbreeding by increasing their prenatal provisioning.

There is widespread and increasing evidence for environ-

mental mediation of inbreeding depression [5,7,9,23,24].

However, despite the importance of parents in shaping the

early environment experienced by an individual, the role of

parental care in modulating the expression of inbreeding

depression has received little attention to date. An exception

is a pair of recent studies in burying beetles that provide sup-

port for ‘parental rescue’ from inbreeding depression during

the postnatal period [15,25]. Burying beetle parents provide

food to the larvae, but this parental provisioning is facultative.

Pilakouta et al. [15] set up experimental matings between

siblings and unrelated individuals, and removed the care-

providing mother before larval hatching from half of the

broods. They found that inbred offspring without a mother

present suffered a greater decline in fitness-related traits than

did those with an attendant mother [15]. A subsequent study

revealed that maternal quality can also impact the expression

of inbreeding depression, with offspring of large mothers

experiencing less inbreeding depression than offspring of

small mothers [25]. However, a similar study in another

care-giving insect, the European earwig (Forficula auricularia),

failed to find evidence that postnatal parental care alleviates

the negative consequences of inbreeding [26].

While there is mixed empirical evidence for a role of par-

ental care during the postnatal period in shaping the

consequences of inbreeding (see above), the role of care pro-

vided before birth, and in particular of prenatal maternal

resource provisioning, has not been experimentally tested.

It is well documented that prenatal care has positive

effects on offspring fitness [27–29]. Chicks developing in

larger, more nutrient rich eggs are, for example, heavier,

grow faster and are more likely to survive [20,29,30]. Prenatal

parental provisioning is also known to mitigate the negative
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Figure 2. Relationship between hatching success and egg mass in inbreeding
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effects of a harsh postnatal environment on offspring fitness.

For example, large amphibian eggs increase juvenile survival

in harsh environments [31], and nestlings raised under

limited food conditions reach a similar fledging mass as

food-supplemented nestlings if their mother had received

extra food during egg laying [32]. Finally, prenatal maternal

provisioning has been hypothesized to alleviate genetic

disadvantages, as when female house finches (Haemorhous
mexicanus) paired with low quality mates increase the depo-

sition of androgens to their eggs [33]. Our results are in line

with these previous findings and provide the first experimen-

tal evidence that mothers can reduce the negative fitness

consequences of inbreeding for offspring by increasing

their resource provisioning before birth. It implies that popu-

lation structure, and thus the likelihood of mating with a

relative, may shape the evolution of parental care, in general,

and the evolution of prenatal maternal provisioning in par-

ticular (see also [34]). Selection for increased parental

provisioning might be particularly strong in small and iso-

lated populations, in which inbreeding is common [34], but

weaker in large populations where outbreeding is the norm.

Population structure might, therefore, contribute to the main-

tenance of variation in parental provisioning observed across

populations [35,36].

Egg size has a strong heritable component and has been

shown to respond rapidly to selection [20,37]. In addition,

there is evidence for a substantial non-genetic effect of
maternal egg size on the egg size of the next generation (i.e.

a cascading maternal effect, JL Pick, E Postma, B Tschirren

2017, unpublished data) that further accelerates the response

to selection on prenatal maternal provisioning. This positive

feedback loop will allow for a fast response in prenatal provi-

sioning to changing environmental conditions, which may

buffer the next generation from the negative impact of

environmental or genetic stressors [38].

In addition, our results suggest that plastic changes in

prenatal maternal provisioning in response to the relatedness

of the partner may be adaptive. On the one hand, we may

predict increased prenatal maternal provisioning when a

female is breeding with a relative in order to alleviate the

negative consequences of inbreeding for the offspring. On

the other hand, reduced prenatal maternal provisioning

may be predicted when the risk of inbreeding is high.

Indeed, the higher susceptibility of inbred offspring to

harsh prenatal conditions may provide females (which mate

with multiple partners) with a post-zygotic inbreeding avoid-

ance opportunity and prevent females from wasting postnatal

investment in unfit offspring. To our knowledge, no data on

the plastic change of egg size in response to the relatedness of

the partner are currently available from natural populations,

but testing for evidence for these different scenarios would

clearly be a fruitful next step.

In conclusion, we provide the first experimental evidence

that prenatal maternal provisioning can alleviate the negative

consequences of inbreeding. Our results, along with those of

Pilakouta and co-workers [15,25], demonstrate that parental

buffering of inbreeding depression may be widespread and

suggest that the risk of inbreeding may shape the evolution

of parental care.
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