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Supplementary Material P3.1: Scientific inference and Bayesian analysis

Scientists perform experiments and gather data to gain evidence for or against
various hypotheses about how the world works. This sounds straightforward, but exactly
how we use this data to make quantitative statements about various hypotheses requires a
bit more care. In fact, there are two related, but philosophically distinct, approaches to
scientific inference. To some extent these two approaches parallel the frequency
interpretation and the subjective interpretation of probability. “Classical” statistical
analysis is most closely allied with the frequency interpretation, whereas “Bayesian”

analysis is allied with the subjective interpretation.

To quantify how the data from a particular experiment (or observation) informs us
about the world under the classical approach, we first propose some hypothesis (usually
referred to as the “null” hypothesis). We then imagine repeating the process of data
collection (e.g., repeating an experiment) over and over many times assuming that the
null hypothesis is true. Then we ask how likely it is that we would have obtained the data
from our actual experiment, given that the null hypothesis is correct. In other words, what
proportion of our imaginary experiments give rise to data like those that we collected
assuming the null hypothesis is true? If this proportion is very small, then we reject the

null hypothesis.

In many situations, however, it is difficult to imagine repeating the process of data
collection. For example, if the data arise from observing all of the events that have
happened (e.g., counting the number of bird species that have gone extinct on a particular

island using archeological remains) then exactly what is meant by “repeating the process



of data collection”? Furthermore, we might wish to combine previous information about
a hypothesis with such observations in order to be more confident about our conclusions.
This is where Bayesian inference comes into play. These ideas are best illustrated by

example.

Imagine that you are an apple farmer and manage an orchard of 100 trees. You
observe a mutation on one branch of an apple tree that leads to particularly delicious
apples, so you decide to replace one of your 100 trees with this mutant variety as a pilot
project. You then have an orchard with 99 trees of the wild type strain and one tree with
this new mutation. At this point, a disease spreads throughout your orchard and kills all
99 of the wild type trees, but the one mutant tree survives. The idea strikes you that
perhaps your new apple line is resistant to the disease. How can we quantify the

likelihood that this is the case, based on the observed data?

The classical statistical approach goes as follows. Suppose that the new mutation
is not resistant to the disease — this is the null hypothesis. Then we ask, what is the
probability of the observed outcome occurring if the null hypothesis were true? If this
probability is very small (smaller than some pre-specified cutoff — typically 5% by
convention), then we reject the null hypothesis and conclude that the new mutation must
be resistant. In the present example, if the mutant is not actually resistant, then all trees
are equally susceptible to the disease. Thus, given that only one tree survives, if you
repeatedly sampled the population for a sole surviving tree at random, the probability that
by chance the sole surviving tree is the mutant is just 1/100. In other words, if you could
re-run the “experiment” over and over, then only 1 out of every 100 trials, or 1%, would
result in the observed pattern if the null hypothesis were true. Because 1% is below the
conventional cutoff of 5%, you conclude that the evidence supports the idea that the

mutant tree is more resistant to the disease.

In trying to publish these results in a scientific journal, however, you might run
into the following objection from a reviewer. The reviewer might argue that you have not
taken into account the fact that we know mutations are rare, on the order of 10°° per gene.

This makes it extremely unlikely that the new line of apples happened to bear a new



mutation that provides resistance to the disease. How could you incorporate this prior
information about the frequency of mutations into your calculations? This is where

Bayesian analysis enters the picture.

Bayesian analysis asks the following question: What is the probability that a
hypothesis is true, given the data and any prior information that we have? The prior

information is incorporated using Bayes’ formula (Rule P3.7):

P(data | hypothesis) P(hypothesis)
P(data)

P(hypothesis | data) =
(SP3.1.1)

where P(hypothesis) describes the “prior” probability that the hypothesis is true. P(data)
describes the probability of observing the data and must be calculated over the entire

spectrum of possible hypotheses, using the Law of Total Probability (Rule P3.8):

P(data) = EP(data Ihypothesis = i) P(hypothesis = ). (SP3.1.2)
i

In the present example we have two possible hypotheses: the null hypothesis that
the new variety of apples is “not resistant”, and the alternative hypothesis that it is
“resistant”. To incorporate our prior information about mutation rates, we could set the
probability of resistance to a typical mutation rate, e.g., P(resistant) =10"°, so that

P(not resistant) =1-10"° The data that we have is that the only tree to survive the

disease was the new line of apples (“new line survived”). The probability of observing
this data can by calculated using the Law of Total Probability (Rule P3.8) as:

P(new line survived) = P(new line survived I not resistant) P(not resistant) (SP3.1.3)

+ P(new line survived |resistant) P(resistant)

Under the hypothesis that the new variety is not resistant and given that one tree survived,
the probability that the only surviving tree would be the new variety is

P(new line survived I not resistant) = 1/100. Under the hypothesis that the new variety is

resistant, the probability that it survived would be near one



P(new line survived Iresistant) ~ 1. Putting all of these terms into (SP3.1.3) gives us the

probability of the data:

P(new line survived) = (0.01) (1 - 10'6) +(1) (10'6) ~0.01000099" (SP3.1.4)

At this point, we can use the above pieces of information in Bayes’ formula
(SP3.1.1) to calculate the probability that the new line is resistant given that it was the

sole surviving tree:

P(new line survived | resistant) P(resistant)

P(resistant Inew line survived) = P(new I ved)
new line survive

(1)(10°)

~ 0.01000099 (SP3.1.5)

b

which is approximately 0.0001. Conversely, the probability that the new line is not
resistant given the data is 0.9999. Consequently, we would conclude that the new line is
probably not resistant. Thus, accounting for the rarity of mutations paints a very different

picture of whether the new line is resistant.

While the calculations in the apple example are straightforward, the philosophical
issues are not, and it is tricky to know which approach is best. If resistance to the disease
is economically critical, then it might well be worth following up and testing the new
variety, because we know that this tree is more likely to be resistant than a randomly
chosen tree. On the other hand, you would probably not be justified in claiming that the
new variety is definitely resistant from this data alone, given how unlikely it is to have

borne a new mutation.

The calculations in this example are relatively straightforward because there are
only two possible hypotheses (resistant and not resistant). In many cases, there might be
several, or even an infinite number of hypotheses. Suppose our prior information can be
encapsulated by a prior probability distribution, P(X = x) , describing the probability that
a random variable X (representing the hypothesized value of some entity, such as level of

resistance) takes on the value x. We can then use (SP3.1.1) to describe the posterior



probability distribution , P(X =X Idata), that the random variable takes on value x given

that certain data have been observed:

P(datalX = x) P(X = x)
P(data)

P(X = x Idata) =
(SP3.1.6)

where P (data) is calculated from Rule (P3.8) but by integrating over all values, x, that X

can take rather than discrete summation.

As an example, the beta distribution (Definition P3.12) has been used as a prior
distribution to describe an individual’s risk of contracting a disease after exposure (e.g.,
Pfeiffer et al. 2004). If data are subsequently collected that follow a binomial distribution
(e.g., the number of individuals in a study group that actually contract the disease), then
the posterior distribution will be a beta distribution as well. The fact that the prior and
posterior distributions are both beta distributions when the data are binomially distributed

makes it a natural choice as a prior distribution for probabilities (Figure SP3.1.1).



Figure SP3.1.1: The beta distribution and Bayesian inference. Let's use the beta
distribution to estimate the contagiousness, p, of a new strain of influenza. You assume,
initially, that the probability that an exposed individual gets infected is likely to be around
10%, as observed for the previous strain. To account for your uncertainty, you choose a
beta distribution as a prior probability distribution, f(p), with parameters a, = 1 and by =
9. You then study n individuals known to have been exposed to the virus, among whom
k individuals become infected (say, k/n = 60%). The posterior probability distribution
describing the contagiousness of the virus is then given by the prior probability for p (a
beta distribution) multiplied by the probability that k individuals out of n become infected
given p (a binomial distribution), normalized so that the posterior distribution for p
integrates to one (see SP3.1.6). The result is a beta distribution with parameters a = g
+ kand b=bg+n— k. The posterior distribution shifts toward the observed proportion,
60%, and exhibits less variation when the dataset is large, indicating greater confidence
in the estimate of p.
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For further information on Bayesian analyses in ecology and systematics, consult
The Ecological Detective (Hilborn and Mangel 1997) and Inferring Phylogenies
(Felsenstein 2004).

Exercise SP3.1.1:

(a) Imagine that the apple farmer had two trees that grew from the delicious apples and
that both trees survived the disease. Modify (SP3.1.5) to determine the probability that
the new apple line is resistant. How many trees would there have to be in order for the
farmer to infer that there is a 95% chance that the new apple line is resistant given the

prior information about mutation rates? [Answer']



" ANSWER:

(a) If both trees survive (data is “both survived”), we can rewrite (SP3.1.5) as:

P(both survived |resistant)P(resistant)

P(resistant | both survived) = P(both ived)
oth survive

If the new apple line is resistant, then the probability that the two trees survived is still
one, so the numerator remains unchanged. The denominator, however, needs to be
updated to give the total probability that both trees survive: P(both survived) = P(both

survived | not resistant) P(not resistant) + P(both survived | resistant) P(resistant) =
(0.0 1)2(1 - 10'6) + (1)2(10"6). In squaring the probability of survival, we assume that the

probability of survival of two susceptible trees is independent (Rule P3.4). Thus, the

overall probability that the new line is resistant given that both trees survived is

(1)2(10'6)

(0.01)°(1-10°) + (1)*(10°)

~(0.01. To infer that there is a 95% chance that the new apple

line is resistant, you would have to have observed x trees of the new variety survive the

(1)"(10°)

disease, where (0.01)"(1-10°) + (1)"(10°)

must equal 0.95. Solving for x, we get x = 3.6,

indicating that at least four trees that all survived the disease would be necessary to infer

that the new apple variety is resistant.



Supplementary Material P3.2: The sum of Poisson random variables

The property that the sum of different Poisson random variables is itself Poisson
distributed is extremely important, because it allows us to describe a mixture of different
Poisson variables without knowing the details of each distribution separately. Let’s
prove this property, starting with two underlying types of events, for example, two types
of mutations (e.g., transitions and transversions), each following a Poisson distribution
with its own expected number of events, u; and w,. Our goal is to prove that the

probability of observing a total of k events is given by the Poisson distribution.

To observe a total of k events, there must have been some number of the first type
of event (say /) and the remaining & — j events must have been of the second type. The

probability of observing a total of k events is thus given by the following sum:

j=0

LS TR ST (SP3.2.1)
=Ee e "u

w0 J! (k_])‘

Mathematical software packages (like Mathematica) include tables of known sums and
can help evaluate a sum like this. Alternatively, such sums can be solved by massaging
them into the form of known sums. If we factor out e™“**) from (SP3.2.1), we are left
with various factorial and power terms, which can be rewritten in terms of the binomial

distribution (see Definition P3.4):

e—(.“l +I~42)(

i) i C e (1-)
k! (k= j)

Binomial distribution

A

( ) . The term in parenthesis sums over an entire binomial distribution
W+ U,

where p =

(describing the probability of j events in £ trials) and must equal one (Rule P3.10). Thus,



the probability distribution for the sum of two independent random variables that are

Poisson distributed becomes:

~(y +12) k
k)=2 (1 + 1) (SP3.2.2)

P(X r

total —

which is just the Poisson distribution for a process with an expected number of events
equal to the sum, w = u; + w,. This fact can be proven more easily using moment

generating functions (see Exercise A5.2 in Appendix 5).

With n random variables, each following a Poisson distribution with mean w,, ...,
Ww,, respectively, we can apply the above proof to any pair of these random variables,
reducing the number of random variables by one. Following this process repeatedly, we
conclude that the sum of the » random variables will follow a Poisson distribution with

an expected number of events equal to the sum, uw = u; +...+ u,.
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