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Supplementary Material P2.1:  More on matrix multiplication

When you see two matrices written as A B, this denotes the type of multiplication that we

have been using.  This operation is sometimes called the “dot product” or “inner product” and

can also be written as 

€ 

A •B = A B.  There are, however, a few different multiplication operators

that are occasionally seen in mathematical biology. These alternative products represent different

operations that can be performed on lists of objects.  Although we won’t be using them in this

book, it is worth knowing that they exist.  The simplest multiplication operator is the “Hadamard

product” or “direct product” of two r 

€ 

×  c matrices, written as   

€ 

A oB.  The Hadamard product is

straightforward to calculate:  you just multiply the two matrices together element by element,

placing Aij times Bij in the ijth position of the new r 

€ 

×  c matrix.  For example, if you have data on

the survival probability of different Drosophila strains from egg to the third larval stage in one

vector,   

€ 

v v 1, and from the third larval stage to pupation in a second vector,   

€ 

v v 2 , then the total

survival probability from egg through pupation could be represented as   

€ 

v v 1 o
v v 2.

Another multiplication operator is the “Kronecker product” of two matrices, represented

as 

€ 

A ⊗B .  If A is an r 

€ 

×  c matrix and B is an s 

€ 

×  d matrix, then the Kronecker product is an (r

s) 

€ 

×  (c d) matrix, obtained by replacing the ijth element of A with the matrix B times the scalar

Aij.  As an example, consider two matrices that represent fitnesses of diploid individuals at genes

A and B:

WA = Fitnesses at gene A = 

€ 

WAA WAa

WaA Waa

 

 
 

 

 
       WB = Fitnesses at gene B = 

€ 

WBB WBb

WbB Wbb

 

 
 

 

 
 

where each row specifies the allele inherited from the mother (A or a; B or b) and each column

specifies the allele inherited from the father.  If the fitness of an individual is the product of the
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fitnesses predicted by each gene (“multiplicative selection”), we could represent the fitness of

every genotype using the Kronecker product:

€ 

A ⊗B( ) =

WAAWBB WAAWBb WAaWBB WAaWBb

WAAWbB WAAWbb WAaWbB WAaWbb

WaA WBB WaAWBb WaaWBB WaaWBb

WaAWbB WaAWbb WaaWbB WaaWbb

 

 

 
 
 
 

 

 

 
 
 
 

,

where now each row specifies the gamete type inherited from the mother (AB, Ab, aB, or ab) and

each column specifies the gamete type inherited from the father.  This example illustrates the

book-keeping benefits of the Kronecker product;  it would be easy to write down the fitness

matrix for any arbitrary number of loci as 

€ 

A ⊗B⊗C⊗ ...⊗N( ) , but it would be tedious to write

this matrix out by hand!

 Advanced linear algebra texts provide further information about these alternative

products and their properties (see Further Reading).



© Princeton University Press, all rights reserved

3

Supplementary Material P2.2:  Calculating the determinant or the eigenvalues of a larger

matrix

It can be cumbersome to find the determinant or the eigenvalues of a large matrix.  Even

Mathematica and other software packages can run into difficulties working with large matrices

involving several parameters. Fortunately, there are operations that can be used to simplify the

form of any matrix.  These operations are known as the elementary row and column operations,

and they have a known effect on the determinant.  The elementary row operations are:

Operation 1: Two rows of a matrix can be interchanged

                      

€ 

⇒The determinant switches sign

Operation 2:  A row can be multiplied by any non-zero and finite constant, c

                      

€ 

⇒The determinant is multiplied by c

Operation 3:  A row times any constant can be added to or subtracted from another row

                      

€ 

⇒The determinant is unchanged

The elementary column operations are similar, with “row” replaced by “column” in the above

rules.

By repeatedly applying these operations, we can turn any matrix, M, into a triangular

matrix, M'.  The determinant of the triangular matrix is the product of the diagonal elements, and

we can use the above rules to relate Det(M') back to the determinant of the original matrix,

Det(M).  For example, let’s turn the matrix M = 

€ 

a b
c d
 

 
 

 

 
  into a triangular matrix.  The easiest

way to do this is to use elementary row operation 3.  Take the second row times b/d and subtract

it from the first row to get M' = 

€ 

a − c b
d

0
c d

 

 

 
 

 

 

 
 
.  The constant, b/d, was chosen to make the zero

appear on the top right:  the numerator was set to the term that we want to disappear (here, b) and

the denominator was set to the term in the same column from the row to be subtracted (here, d).
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Because elementary row operation 3 does not affect the determinant, Det(M') equals Det(M).

And, indeed, both determinants are a d – b c (convince yourself of this).

These operations are also helpful in finding the eigenvalues of a matrix, M, which

involves taking the determinant of 

€ 

M − λ I( ) and setting it to zero.   For example, consider a

model of three equally-fit alleles, whose frequencies at a locus are p1, p2, and p3.  If each allele

mutates at rate 2µ per generation and is converted equally to the other two alleles, then the

changes in allele frequency per generation can be written in matrix form as:

€ 

p1 t +1( )
p2 t +1( )
p3 t +1( )

 

 

 
 
 

 

 

 
 
 

=

1− 2µ µ µ

µ 1− 2µ µ

µ µ 1− 2µ

 

 

 
  

 

 

 
  

p1 t( )
p2 t( )
p3 t( )

 

 

 
 
 

 

 

 
 
 

The eigenvalues of this matrix can be used to predict the allele frequency trajectories (see

Chapters 7 – 9).  To find these eigenvalues, we must find the determinant of:

€ 

M − λ I( ) = 

€ 

1− 2µ − λ µ µ

µ 1− 2µ − λ µ

µ µ 1− 2µ − λ

 

 

 
  

 

 

 
  

Calculating the determinant of a 3

€ 

×3 and factoring is a bit tedious, so let’s use the elementary

row and column operations.  It’s always a good idea at this point to look for terms that are

similar and that can be subtracted from each other without making the matrix horribly ugly.  In

this case, we’ll start by subtracting the second column from the third column (elementary column

operation 3):

€ 

M − λ I( )' = 

€ 

1− 2µ − λ µ 0
µ 1− 2µ − λ − 1− 3µ − λ( )
µ µ 1− 3µ − λ

 

 

 
  

 

 

 
  

Next we’ll add the third row to the second row (elementary row operation 3):

€ 

M − λ I( )'' = 

€ 

1− 2µ − λ µ 0
2µ 1−µ − λ 0
µ µ 1− 3µ − λ

 

 

 
  

 

 

 
  
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Finally, we’ll multiply the first row by 

€ 

1−µ − λ  (elementary row operation 2) and then subtract

off the second row times µ to get:

€ 

M − λ I( )''' = 

€ 

1−µ − λ( ) 1− 2µ − λ( ) − 2µ2 0 0
2µ 1−µ − λ 0
µ µ 1− 3µ − λ

 

 

 
 
 

 

 

 
 
 

Because 

€ 

M − λ I( )''' is a lower triangular matrix, its determinant is the product of the diagonal

elements, which after factoring equals 

€ 

1− λ( ) 1− 3µ − λ( )2 1−µ − λ( ) .  In all of these calculations,

we’ve only performed one operation that altered the determinant, which was when we multiplied

a row by 

€ 

1−µ − λ  (elementary row operation 2).  This operation caused the determinant of

€ 

M − λ I( )''' to be (

€ 

1−µ − λ ) times greater than the determinant of 

€ 

M − λ I( ).  Consequently, we

can infer that the determinant of 

€ 

M − λ I( ) is 

€ 

1− λ( ) 1− 3µ − λ( )2 .  Setting this determinant to zero

and solving for λ correctly identifies the three eigenvalues of the matrix, M, as 1, 1 – 3 µ, and 1

– 3 µ.  Finding an eigenvalue that equals one informs us that there is some feature to the model

that is invariant over time.  In this model, we can identify this feature from the fact that the allele

frequencies must always sum to one, p1 + p2 + p3 = 1.

A word of caution:  Avoid applying operation 3 using a constant whose denominator involves

λ.  This constant will not necessarily be finite for some choices of λ and can cause errors in the

calculation of the eigenvalues.

From these examples, it might not be too obvious why we should bother with elementary

row and column operations.  After all, finding the determinant of a 2

€ 

×2 matrix or even a 3

€ 

×3

matrix isn’t too cumbersome, even if the matrix isn’t triangular.  One advantage that we gained

in this last example is that factoring was more straightforward than it would have been had we

calculated the determinant using Rule P2.16.  Where these operations really come in useful,

however, is with higher dimensional matrices, where we can often “see” which elementary row

operations can simplify a matrix in a way that a computer cannot.

Although we’ve discussed using elementary row and column operations to turn a matrix

into a triangular matrix, you won’t always have to go this far.  If you can turn your original
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matrix into a block triangular matrix, then you can use Rule P2.21 to calculate the determinant

from the diagonal sub-matrices.  This helps enormously, for example, if the diagonal sub-

matrices are two 2

€ 

×2 matrices, whose determinants are much easier to calculate than the

determinant of a 4

€ 

×4 matrix!  Alternatively, if you can use the elementary row and column

operations to make all the non-diagonal elements in a row (or column) equal zero, then you can

use Rule P2.22 to reduce the size of the matrix by one dimension, which is certainly a step in the

right direction.

Exercise SP2.2.1:  Use elementary row and column operations to find the determinant of the

following matrix:

M = 

€ 

1 2 3
4 4 4
2 2 1

 

 

 
  

 

 

 
  

 [Answeri]

Exercise SP2.2.2:  A continuous-time version of the mutational model is:

€ 

dp1 /dt
dp2 /dt
dp3 /dt

 

 

 
  

 

 

 
  

=

−2µ µ µ

µ −2µ µ

µ µ −2µ

 

 

 
  

 

 

 
  

p1
p2
p3

 

 

 
  

 

 

 
  

Use elementary row and column operations to find the eigenvalues of this rate matrix.  How do

these eigenvalues differ from the discrete-time model?  [Answerii]
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Supplementary Material P2.3:  Solving a system of linear equations using the method of

row reduction

Many problems are related to solving a system of linear equations for a set of unknown

variables.  For example, we might wish to solve:

  

€ 

M v n =
v 
b 

for the unknown vector   

€ 

v n .  Here we describe a technique to solve this problem.  First, create an

“augmented matrix” by adding the vector   

€ 

v 
b  to the end of the matrix, M:

  

€ 

m11 m12 ... m1d
m21 m22 ... m2d

M M M M

md1 md 2 ... mdd

b1
b2
M

bd

 

 

 
 
 
 

 

 

 
 
 
 

,

where we use the straight line through the matrix to help us remember that we’ve augmented M

with   

€ 

v 
b .  The augmented matrix is just a compact way of writing the system of equations where

the first column gives the terms multiplying n1, the second column gives the terms multiplying

n2, etc.  Any solution vector,   

€ 

v n , that satisfies the equations represented by the augmented matrix

will also work after applying an elementary row operation:

Operation 1: Two rows of the augmented matrix can be interchanged

Operation 2: A row can be multiplied by any non-zero constant, c

Operation 3: A row times any constant can be added to or subtracted from another row

A solution that causes the original equations to hold true would obviously satisfy the equations if

we reordered them (operation 1).  Furthermore, multiplying a true equation on both sides by a

non-zero constant (operation 2) cannot make it false, nor will subtracting one true equation from

another (operation 3).
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The method of row reduction involves applying these elementary row operations to the

augmented matrix until the augmented matrix is in the following form (known as the “reduced

row-echelon form of the matrix”):

– The first non-zero element of any row is one (call this the leading term)

– The leading term in each row is to the right of the leading terms of the previous rows

– All other elements in a column in which a leading term is found are zeros

– If row reduction leads to a row of zeros, this row is moved to the bottom of the matrix

For example, if the matrix M is invertible, then our goal is to produce an augmented matrix:

  

€ 

1 0 ... 0
0 1 ... 0
M M M M

0 0 ... 1

f1
f2
M

fd

 

 

 
 
 
 

 

 

 
 
 
 

,

where fi are functions of the bi.  This augmented matrix is equivalent to   

€ 

I ⋅ v n =
v 
f , which indicates

that   

€ 

v n =
v 
f  is the solution that we sought.

To accomplish this procedure, follow these steps:

Step 1:  Set i = 1 and j = 1.

Step 2:  Make sure that the jth element in row i is non-zero.  If not, swap the first row with

another row.  If no row contains an element in the jth column, then move over one column to the

right (set j to j + 1).

Step 3:  Divide the ith row by the jth entry in the row, making the leading term in the row equal

one.

Step 4:  From each of the remaining rows, subtract off the product of the jth entry in each row

multiplied by the ith row that we have just calculated.  This will create a series of zeros below the

leading term of one in the ith row and jth column.
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Step 5:  Set i to i + 1 and j to j + 1 and return to Step 2.  Repeat until the last row is reached.

Step 6:  To create a series of zeros above the leading term in each row, determine the last row

with a leading term of one.   Set i to the number of this row and j to the column containing the

leading term.

Step 7:  From each of the rows 1 through i - 1, subtract off the product of the jth entry multiplied

by the ith row.

Step 8:  Set i to i – 1 and j to j – 1.  If this term does not equal one, then set j to j – 1 again until

the leading term is one.  Return to Step 7.  Repeat until the first row is reached.

This all sounds very abstract, but the procedure is pretty straightforward once you get

used to it.  As a simple numerical example, let’s solve the following system of equations:

€ 

2n1 + n2 + n3 = 2
2n1 + 3n2 + 5n3 = 4
2n2 + 3n3 =1

,

which can be written in matrix form as:

€ 

2 1 1
2 3 5
0 2 3

 

 

 
  

 

 

 
  

n1
n2
n3

 

 

 
  

 

 

 
  

=

2
4
1

 

 

 
  

 

 

 
  
,

and in augmented matrix form as:

€ 

2 1 1
2 3 5
0 2 3

2
4
1

 

 

 
 
 

 

 

 
 
 

Starting with i = j = 1, we find that there is a non-zero element in the first row of the first

column, so we can move to Step 3 and divide the first row by the (i, j) element, 2:
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€ 

1 1/2 1/2
2 3 5
0 2 3

1
4
1

 

 

 
 
 

 

 

 
 
 

Now turn to Step 4.  From the second row, we subtract off the jth element in the second row (= 2)

multiplied by the first row to get:

€ 

1 1/2 1/2
0 2 4
0 2 3

1
2
1

 

 

 
 
 

 

 

 
 
 

The jth (=1) element in the third row is already zero, so we can proceed to Step 5, setting i = j = 2

and going back to Step 2.  Again, we find that there is a non-zero element in the second row and

second column, so we can move to Step 3 and divide this second row by the element in this

position (= 2):

€ 

1 1/2 1/2
0 1 2
0 2 3

1
1
1

 

 

 
 
 

 

 

 
 
 

Now turn to Step 4.  From the third row, we subtract off 2 (the jth element in the third row, where

now j = 2) times the second row:

€ 

1 1/2 1/2
0 1 2
0 0 −1

1
1
−1

 

 

 
 
 

 

 

 
 
 

Finally, we can multiply the last row by –1, to give it a leading term of one as well:

€ 

1 1/2 1/2
0 1 2
0 0 1

1
1
1

 

 

 
 
 

 

 

 
 
 

Great.  Now we can proceed to Step 6 and place zeros on top of the leading terms.  The last row
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with a leading term in it is the third row, so we set i = j = 3.  We then subtract off twice the third

row from the second row to get a zero in the third column of the second row:

€ 

1 1/2 1/2
0 1 0
0 0 1

1
−1
1

 

 

 
 
 

 

 

 
 
 
,

and subtract off 1/2 times the third row from the first row:

€ 

1 1/2 0
0 1 0
0 0 1

1/2
−1
1

 

 

 
 
 

 

 

 
 
 

Step 8 is next.  We move up to the leading term in the second row, setting i = j = 2.  We need

only subtract off 1/2 times the second row from the first row to finish the procedure:

€ 

1 0 0
0 1 0
0 0 1

1
−1
1

 

 

 
 
 

 

 

 
 
 

This is now in reduced row-echelon form and we can read off the answer from the column on the

right-hand side of the straight line:  n1 = 1, n2 = –1, and n3 = 1.  Plugging this solution into the

original equation:

€ 

2 1 1
2 3 5
0 2 3

 

 

 
  

 

 

 
  

1
−1
1

 

 

 
  

 

 

 
  

=

2
4
1

 

 

 
  

 

 

 
  

confirms that we have indeed found the solution.

The method of row reduction can also be used to find the inverse of a matrix.  Now, the

equation that we wish to solve is:

€ 

MM−1 = I

for the unknown matrix 

€ 

M−1.  The “augmented matrix” now involves a matrix on the right-hand

side of the straight line too:
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€ 

m11 m12 ... m1d
m21 m22 ... m2d

M M M M

md1 md 2 ... mdd

1 0 ... 0
0 1 ... 0
M M M M

0 0 ... 1

 

 

 
 
 
 

 

 

 
 
 
 

,

At this point, however, the method is exactly the same, just follow the steps outlined above.  If

matrix M is invertible (i.e., its determinant is not zero), then by row reduction you will

eventually reduce the matrix on the left of the straight line to the identity matrix.  At that point,

the matrix to the right of the straight line is the inverse of M.

Exercise SP2.3.1:  Use the method of row reduction to solve the following set of equations:

€ 

x + y + z = 6
x − y + z = 2
x − y − z = 4

 [Answeriii]

Exercise SP2.3.2:  Use the method of row reduction to find the inverse of the following matrix:

€ 

M =

3 1 2
1 2 1
1 1 1

 

 

 
  

 

 

 
  

 [Answeriv]

                                                  

i ANSWER: Det(M) = 4.

ii ANSWER: The eigenvalues are 0, – 3 µ, and – 3 µ.  Each of these eigenvalues is one less than

the eigenvalues for the discrete-time model.  This relationship is true whenever the continuous-

time rate matrix is just the discrete-time transition matrix minus the identity matrix.

iii ANSWER: x = 5, y = 2, and z = –1.

iv ANSWER: 

€ 

M−1 =

1 1 −3
0 1 −1
−1 −2 5

 

 

 
  

 

 

 
  
.


