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Supplementary Material 8.1:  Graphing the characteristic polynomial to determine 

stability 

Here we describe a method that can be used to determine the stability of an equilibrium 

without explicitly calculating the eigenvalues.  The method involves a graphical analysis of the 

characteristic polynomial of the Jacobian matrix. 

 Let’s first consider a discrete-time model with an n

€ 

×n Jacobian matrix, J.  As described 

in Primer 2, the characteristic polynomial of this matrix is defined as 

€ 

Det J − λI( )  and is an nth 

degree polynomial.  To simplify the graphical analysis, let’s multiply the characteristic 

polynomial by 

€ 

−1( )n , so that the term containing 

€ 

λn   always has a positive coefficient. Let’s call 

the resulting polynomial, P, where 

€ 

P = −1( )nDet J − λI( ) .  The eigenvalues of the model, λ, are 

the roots of the equation P = 0. 

To make this procedure more concrete, let’s consider the 2

€ 

×2 matrix, 

€ 

J =
a b
c d
" 

# 
$ 

% 

& 
' , of a 

discrete-time model.  Its characteristic polynomial is: 

 

€ 

P = −1( )2 Det
a − λ b
c d − λ

$ 

% 
& 

' 

( 
) = λ

2 − a + d( )λ + ad − bc( )  (S8.1.1) 

We could always use the quadratic formula (A1.10) to solve for λ, but the solution might involve 

the square-root of a function that is cumbersome to interpret.  Progress can be made, however, by 

plotting the shape of (S8.1.1) with respect to λ.  Because (S8.1.1) is quadratic, and because the 
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coefficient of the 

€ 

λ2 term is positive (it is one in this case), it is a parabola opening upwards (see 

Figure S8.1.1). The parabola will cross the horizontal axis as long as the roots of equation 

(S8.1.1) are real rather than complex (see Figure S8.1.1).  For the rest of this box, we’ll assume 

that it can be proven that the roots are real (e.g., by using the Perron-Frobenius theorem, 

Appendix 3, or by analysis of the square-root term in the quadratic formula). 

The crux of the graphical analysis is that an equilibrium is stable in a discrete-time model 

if the parabola crosses the horizontal axis only at points that lie between –1 and 1. Only then will 

the absolute values of the eigenvalues be less than one (Recipe 8.4).  This is true for the 

parabolas shown by thick curves in Figure S8.1.1b.  It wouldn’t help us much if we had to plot 

every combination of parameters to determine where the characteristic polynomial crosses the 

horizontal axis, but fortunately, it is often possible to determine roughly where P must cross the 

horizontal axis by considering the behavior of P at λ = 1 and λ = –1.  
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Figure S8.1.1:  Graphs of the characteristic polynomial. Parabolas illustrating the shape of 
the characteristic polynomial, (8.3.1), in a two-variable discrete-time model.  (a)  Examples with 
complex roots.  (b) Examples with real roots.  (c)  Examples with real roots both of which fall 
outside of {–1, 1}.  The thick curves indicate that the equilibrium under examination is stable, 
because the absolute values of the eigenvalues (written alongside each curve) all fall between 0 
and 1.  
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To begin, let’s consider what must be true for the roots of a quadratic characteristic 

polynomial to fall between –1 and 1.  Because P is an upwards-facing parabola, a negative value 

of P at λ = 1 implies that at least one eigenvalue is greater than one, because the characteristic 

polynomial rises as λ increases and must eventually cross the horizontal axis at some root greater 

than one.  Consequently, a negative value of P at λ = 1 always implies that the equilibrium is 

unstable (as in the parabola furthest to the right in Figure S8.1.1b).  For an equilibrium to be 

stable, we therefore require that P is positive at λ = 1 (see bold curves in Figure S8.1.1b).  The 

same is true at λ = –1;  P must be positive or else there will be an eigenvalue less than –1 (as in 

the parabola furthest to the left in Figure 8.3.1b).  Even if P is positive at both λ = 1 and λ = –1, 

however, we cannot necessarily conclude that the equilibrium is stable because there could be 

two roots above +1 or two roots below –1 (Figure S8.1.1c).  As long as the slope is negative at λ 

= –1 and positive at λ = +1, however, then these possibilities can also be ruled out.  The 

requirements for stability are summarized in Recipe S8.1.1:  

Recipe S8.1.1:  Determining stability from a quadratic characteristic polynomial in 

a discrete-time model 

An equilibrium in a discrete-time model with a 2

€ 

×2 stability matrix and real roots is 

stable if and only if the characteristic polynomial, P, satisfies all of the following four 

conditions: 

Condition 1:  P is positive at λ = 1, requiring that 

€ 

1− a + d( )+ ad − bc( ) > 0. 

Condition 2:  P is positive at λ = –1, requiring that 

€ 

1+ a + d( )+ ad − bc( ) > 0 . 

Condition 3: 

€ 

dP
dλ

 is positive at λ = 1, requiring that 

€ 

2 − a + d( )> 0. 

Condition 4: 

€ 

dP
dλ

 is negative at λ = –1, requiring that 

€ 

−2 − a+ d( )< 0 .  

If any of these conditions fail to be met, then the equilibrium is unstable. 
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Example:  The Lotka-Volterra model of competition 

In Chapter 3, we introduced the Lotka-Volterra model of competition.  The model 

extends the logistic growth model by allowing more than one species to compete for resources.  

Letting ri and Ki be the intrinsic growth rate and carrying capacity of species i, and letting the 

competition coefficient, αij, measure the per capita effect of species j on species i, the discrete-

time recursion equations for the Lotka-Volterra model with two species are: 

  n1( t +1) = n1(t) + r1 n1(t) 1−
n1(t) + α12 n2(t)

K1

# 

$ 
% % 

& 

' 
( (  (S8.1.2a) 

  n2(t +1) = n2(t) + r2 n2(t) 1 −
n2(t) + α21 n1(t)

K2

# 

$ 
% % 

& 

' 
( ( . (S8.1.2b) 

System (S8.1.2) has four equilibria.  Here, we will focus only on the equilibrium with both 

species present (Problem 8.10):  

  

€ 

ˆ n 1 =
K1 −α12 K2

1−α12α12

 (S8.1.3a) 

  

€ 

ˆ n 2 =
K2 −α21 K1

1−α12α12

 (S8.1.3b) 

For this equilibrium to be biologically valid (i.e., for the number of both species to be positive) 

requires either: 

  Weak Competition: 

€ 

1−α12α12 > 0, 

€ 

K1 >α12 K2 and 

€ 

K2 >α21 K1 (S8.1.4a) 

or  Strong Competition: 

€ 

1−α12α12 < 0, 

€ 

K1 <α12 K2 and 

€ 

K2 <α21 K1 (S8.1.4b) 

The stability matrix of (S8.1.2) evaluated at the equilibrium (S8.1.3) is:  
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€ 

J =
1+ r1 − 2r1

ˆ n 1
K1

− r1
α12 ˆ n 2

K1

−r1
α12 ˆ n 1

K1

−r2
α21 ˆ n 2

K2

1+ r2 − 2r2
ˆ n 2
K2

− r2
α21 ˆ n 1

K2

$ 

% 

& 
& 
& & 

' 

( 

) 
) 
) ) 

. (S8.1.5a) 

Plugging in for the equilibrium and simplifying,  

  

€ 

J =
1− r1

* −α12 r1
*

−α21 r2
* 1− r2

*

$ 

% 
& 

' 

( 
) . (S8.1.5b) 

where 

€ 

r1
* = r1

K1 −α12 K2

K1 1−α12α12( )
= r1

ˆ n 1
K1

 and 

€ 

r2
* = r2

K2 −α21 K1

K2 1−α12α12( )
= r2

ˆ n 2
K2

.  The characteristic 

polynomial of J is: 

  

€ 

P = λ2 − 2 − r1
* − r2

*( )λ + 1− r1
*( ) 1− r2*( ) −α12α21r1

*r2
* . (S8.1.6)  

According to the quadratic formula, the roots of (S8.1.6) are real if 

€ 

r1
* − r2

*( ) 2+ 4α12α21 r1
* r2

* is positive.  We will assume that the competition coefficients are both 

positive, meaning that the relationship between the two species is truly competitive, and that both 

species have positive intrinsic growth rates and positive carrying capacities.  Thus, 

€ 

ri
* = ri

ˆ n i
Ki

 

must be positive at an equilibrium with positive numbers of both species, and the roots will 

necessarily be real. 

To determine whether two species can co-exist if they interact competitively, let’s work 

through the conditions of Recipe S8.1.1. 

Condition 1: For P to be positive at λ = 1, the following must be positive: 

  

€ 

1− 2 − r1
* − r2

*( )+ 1− r1
*( ) 1− r2*( ) −α12α21r1

*r2
* = r1

*r2
* 1−α12α21( ) . 

Because we have assumed that 

€ 

ri
* is positive, Condition 1 tells us that competition must be weak, 

€ 

1−α12α21 > 0 , for the equilibrium to be stable. 
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Condition 2: For P to be positive at λ = –1, the following must be positive: 

 

€ 

1+ 2 − r1
* − r2

*( )+ 1− r1
*( ) 1− r2*( ) −α12α21r1

*r2
* = 4 − 2r1

* − 2r2
* + r1

*r2
* 1−α12α21( ). 

Condition 2 tells us that the growth rates must be small enough for the equilibrium to be stable, 

which we’ll write as 

€ 

r1
* + r2

*

2
<1+

r1
*r2
* 1−α12α21( )

4
.  (We chose this form because of a similar 

restriction that arises from Condition 4.) 

Condition 3: For 

€ 

dP
dλ

 to be positive at λ = 1, the following must be positive: 

  

€ 

2 − 2 − r1
* − r2

*( )= r1
* + r2

* . 

Condition 3 is true under our assumption that 

€ 

ri
* is positive. 

Condition 4: For 

€ 

dP
dλ

 to be negative at λ = –1, the following must be negative: 

  

€ 

−2 − 2 − r1
* − r2

*( )= −4 + r1
* + r2

*. 

Again, condition 4 tells us that the growth rates must be small enough for the equilibrium to be 

stable, 

€ 

r1
* + r2

*

2
< 2. 

 Putting together all of the above conditions, the equilibrium with both species present is 

stable only if all of the following restrictions are met:  

  

€ 

1−α12α21 > 0  (from Condition 1) 

  

€ 

0 <
r1
* + r2

*

2
< Min 1+

r1
*r2
* 1−α12α21( )

4
,2

$ 

% 
& 

' 

( 
)  (from Conditions 2 – 4) 
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Although the equilibrium exists with both species present when competition is weak and when 

competition is strong, condition 1 tells us that the equilibrium is unstable when competition is 

strong (S8.1.4b).  For the equilibrium to exist under strong competition requires that the 

resources of species 1 are entirely consumed by the competitor when species 2 is at its carrying 

capacity (

€ 

K1 <α12 K2) and vice versa (

€ 

K2 <α21 K1).  So it makes sense that the two species 

should not coexist. 

But why do we also see a restriction on the intrinsic growth rates (Conditions 2 – 4)?  The 

reason is the same as in the logistic model in discrete-time.  If the growth rates are too high, the 

number of individuals can grow so much within a time step that one or both species overshoots 

the equilibrium.  Indeed, if r1 = r2 = 

€ 

ˆ r , it can be shown that the second restriction reduces to 

€ 

0 < ˆ r < 2, exactly as found in the logistic model (Chapter 5, section 5.3.1).  If one species grows 

rapidly and the other slowly (e.g., r1 < 2 < r2), we need Conditions 2 – 4 to determine whether 

growth is so rapid that the equilibrium is overshot and unstable (Figure S8.1.2). 
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Figure S8.1.2:  Stability condition for coexistence in the Lotka-Volterra model. Stability in 
the discrete-time model requires that the intrinsic growth rates of two competing species be 
sufficiently low.  When r1 and r2 are similar, both intrinsic growth rates must be less than ~2 for 
stability (near filled circle).  If one of the growth rates is higher than two, the equilibrium can still 
be stable as long as the other growth rate is small enough.  Here, we assume equal carrying 
capacities (

€ 

K1= K2) and competitive effects (

€ 

α12 =α21 =α ) in the two species.  In this case, 
when inter-species competition is strong (α = 0.99), the average intrinsic growth rate must be 
less than ~2 for stability.  When inter-species competition is weak (α = 0.01), each intrinsic 
growth rate must be less than ~2 for stability.  

 

 

 

A similar graphical procedure can be used to analyze continuous-time models, but the 

conditions are the same as the Routh-Hurwitz conditions described in Box 8.3.  Nevertheless, it 

can help to have a more intuitive feel of the Routh-Hurwitz conditions by imagining what a 

graphical analysis would require.  For example, if we consider the shape of the 2nd degree 

polynomial given by 

€ 

r2 + a1r + a2 = 0, where now r represents the eigenvalue.  This polynomial 
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will necessarily have a root greater than zero if the polynomial is negative at r = 0.  But the value 

of the polynomial at r = 0 is just a2.  So stability requires that a2 be positive.  Similarly, if the 

slope at r = 0 is negative, then either both roots will be real and positive or both roots will be 

complex with a positive real part1.  In either case, the equilibrium is unstable.  But the slope of 

the polynomial at r = 0 is just a1.  Thus, stability also requires that a1 be positive.  These two 

conditions for stability are the Routh-Hurwitz conditions for a two-variable model (8.3.3).   

In Problem 8.11, we apply these conditions to the Lotka-Volterra model in continuous-

time.  While the growth rates of the two species matter in a discrete-time model, they do not 

affect stability in the continuous-time model, as you might expect based on the behavior of the 

logistic model.  Once again, this is because the growth of each species is continuously updated, 

reducing the chance that the equilibrium is overshot. 

 For the 2

€ 

×2 stability matrices considered so far, it is possible to use the quadratic 

formula to derive the eigenvalues.  The graphical method really earns its keep, however, when 

analyzing larger matrices whose eigenvalues cannot be directly calculated.  Unfortunately, as the 

degree of the characteristic polynomial increases, it becomes more difficult to prove that all of 

the roots satisfy the stability criterion (–1 < λ < 1 for a discrete-time model, r < 0 for a 

continuous-time model).  While proving that an equilibrium is stable becomes more difficult, it is 

often easier to prove that an equilibrium is unstable.  For example, if you can show that P is 

negative at λ = 1 in a discrete-time model (or at r = 0 in a continuous-time model) under a 

specific set of conditions, then you have proven that the equilibrium is unstable under these 

conditions.  For certain biological questions, this result might be enough.  For example, you 

might find that P is always negative at λ = 1 for a particular equilibrium of interest, which then 

proves that this equilibrium is always unstable.  

                                                
1 When the roots of a quadratic equation are complex, the real part of the roots can be found from a plot of the 

characteristic polynomial as a function of the eigenvalue.  The real part is given by the position along the horizontal 

axis where the minimum occurs. 


