
The aim of this workshop is to try out some basic programming. Many of the little tricks you 
will encounter can come in handy in different circumstances, as we have seen for the use of 
the for() loop. 
 
 
Debugging 
Writing code is just half, debugging the other half (if you are lucky). Find some lovely code 
here. Something wrong with it though.  
 
1.Download the code and run it. First, reproduce the problem and read the error message. 
Quite obvious what is goes wrong, but where? 
 
2.use print() to see if you can find in which function the error is. 
 
3. traceback() provides a fast way to find in what function the error is situated.  Similarly, 
browser()  can be very useful to got through a function step by step. For the purpose of 
exercise add browser()  to the first line of the directApplication() function at the top (above t <- 
testbase…) 
 
 
If only all the bugs were so easy. Here are some wise words by Kernighan and Plauger: 
“Debugging is twice as hard as writing the code in the first place. Therefore, if you write the 
code as cleverly as possible, you are, by definition, not smart enough to debug it.” 
 
The apply family 
The different apply functions can come in very handy. They both take standard functions, like 
mean, but also custom ones. 
  
1.Make a 10 by 20 matrix using matrix(). If you are unsure how to do this, use R (?matrix). 
Take the mean over the rows using apply(theMatrix, MARGIN, function). Do the same for 
each column. (MARGIN takes a 1 and 2 for columns or rows: or was it the other way 
around….. Reverse engineer it). 
  
2. You can use your own custom function as well. Instead of mean use function(theMatrix) 
your code. Try this, e.g. take the square root of the median of each column.  
  
3. Lists are very useful as you can put different character types in it. However, they can be 
notoriously difficult to work with. Let’s make a relatively simple list of different alleles for three 
genotypes.  
Make three vectors of different lengths (e.g. one <- c(sample(1:20, number of samples))). 
Turn them into a list. listName <- list(one, …..). Print the list to the screen. Unusual structure. 
  
4.If you want each list element to have a name, add 'name = ' before each element (list( 
name1 = one, name2 = …..)). Do this and look at the how it looks like. More familiar. Use 
str(listName) to check the structure. Access the first element by: 
listName$name1 or listName[1] 
 
 
the first element of the first list element can be accessed by  
listName$name1[1] or listName[[1]][2] 
 
 
5.lapply() is very useful to apply a function to each list element. Try to take the mean. 
Note that is always returns a list. 
Try sapply on the same data set. Notice the difference? Quite convenient! 
  



5. Ecological data often has multiple different for example, we have a two regions in which we 
sampled and different subsamples within these regions. How to get the mean of our 
measurements? Try tapply(). 
Make a data set. 
stemHeight <- runif(40) 
site <- factor(sample(c("a", "b", "c"), 40, TRUE)) 
region <- factor(sample(c("M", "F"), 40, TRUE)) 
Use tapply to calculate the mean stemHeight for each region, for each and for each site within 
region. If you are not sure what to do, use ?tapply. 
   
Try for the MARGIN argument: only the name of the factor, c(factor) and list(factor). Do the 
same for both factors. c() is often used but obscures the factor levels.  
 
The apply family is very useful and the above are only very basic applications. They can often 
be used instead of for loops, making the code more easy to read and less prone to bugs. 
 
 
Species competition model 
Species interact with one another and this affects the population dynamics over time. Species 
may compete over food resources, fight over territories or warn one-another when a predator 
is observed.  
The Lotka-Volterra model for competition is one of the classics in ecology. 
 
The population size in the next generation of species 1 (

� 

n1(t +1)) is captured by 
 

� 

n1(t +1) = n1(t) + r1n1(t)(1−
n1(t) + α12n2(t)

K1
)  

 
And species 2 by 
 

� 

n2(t +1) = n2(t) + r2n2(t)(1−
n2(t) + α21n1(t)

K2
) 

 
The subscripts denote the two species.  
The parameters: 

� 

ri is the growth rate of the ith species. 

� 

α ij  is the competition coefficient which represents the competition exerted by the jth species 
on the ith species. 

� 

Ki is the carrying capacity of the ith species. 
 
1. Before you start to implement the two discrete-time recursion equations think about how 
you want to structure the program. What are your variables of interest and what are the 
parameters? Which of the latter might you want to change? This is quite obvious in this case 
but you will need to add more parameters to run the simulation (e.g. initial population sizes). 
 
2. Implement the formulas in R. Although the Greek letters and subscripts look very cool, let’s 
simplify this. Avoid the subscripts (e.g. n1) and write Greek letters in letters (e.g. alpha12). 
Decide which parameter you make ‘global’ (can be used by any function to write later on). 
Assigning a new value to a global parameter and refer to the variable name saves a lot of 
time if you want to change the variable later on as you only need to do this at one place.  
 
3. Use a for() loop to execute the recursions equations multiple times (define at the start of 
the program how often!). Take care, as the population size at time t occurs in both formulas 
(so don’t update on of the population sizes before having calculating the other). Store the 
population size for each time steps, including the initial values. Plot the change of the 



population size over time for both species. Simulate for longer periods if the population sizes 
still change. 
 
4. You can run your entire r script in one go from your console by using 
source(“name_script.r”). Try it using the script you just wrote. 
 
5. Play around with different starting values and carrying capacities. Does this change the 
equilibrium values attained? Keep the alphas the same. 
 
6. The choice of competition coefficients represents different biological scenarios. What does 
both alphas negative and both positive represent*? One positive and one negative**? 
Predict how the different alphas would change the population dynamics of both species. 
Check your intuition by running simulations. 

    
* mutualism and competition 
** parasitic 
 
 
 
Genetic drift  
Genetic drift is a process, which changes allele frequencies in a population due to random 
sampling. Imagine a situation where a small part of a population of organisms arrives on an 
island. For sake of simplicity we assume these are clonally reproducing, haploid organisms. 
Initially two different alleles are present in the population: A and B. The aim is to write a 
simulation to see the initial allele frequencies change over time and how factors like 
population size and mutation affect this rate. 
 
A couple of programming hints: 
- Keep a version of your program which works in case changes fail. 
- When testing a change, keep it as simple as possible (e.g. test a for loop for one repetition 
first). 
- R is not the speediest code for some application. You can check the speed of a function or 
section of your program by embedding it in system.time( your function/code ). 
- Sometimes, if you can’t find a bug it is a good idea to clean the console, rm(list = ls()),  and 
start again. 
 
Setting up the simulation 
Drift depends on population size. Let’s check this out. 
 
1. Make an outline of the different components of the simulation. First the question has to be 
well defined and from this derive the variables of interest. What aspects of the model 
dynamics are we interested in (here the change of allele frequencies over time)? What 
parameters should we include in the model (e.g. population size)? In other words, what do we 
think affect the model outcome? If you want to change the parameters frequently, this is the 
right time to think how to implement them. A flow diagram can help you with this process. 
 
2. Initiate a population of individuals of size N. A certain proportion (p) has A alleles and 1- p 
has B alleles (the resampling tips page might come in handy). 
 
3.To get the next generation we should let them reproduce. How can we implement this? 
Assume that the population size remains constant. 
 
4. Run each step (in this simple model this is only reproduce) for a number of generations. 
For each time step calculate and store allele frequencies. If you run many generations it is 
better not to stare the data every generation. You can use a counter and if() statement to 
save every x generations. 
 
# parameters 



# general  
numberGenerations <- 10000  # number of generations the simulation  
            # will run for 
 
# data storage 
counter <- 0   # keeps track when you want to store the data 
saveData <- 100  # data will be written every 100th generation 
dataStorage <- rep(NA, numberGenerations / writeData)  
        # vector to store output 
 
 
# the main part of the program 
for(i in 1: numberGenerations) { 
    

 #insert code to update allele frequencies to get the next  #generation 
    
   # part to check if we need to store the data  
   counter <- counter + 1 
  if(counter == writeData) { 
     dataStorage[i / saveData] <- allele frequency   
     counter <- 0  # reset the counter 
  }  
  # end of saving data  
} 
 
 
5. Make a plot of the change of allele frequencies over time. How long does it take before only 
one allele is fixated? Do you think this time varies between runs? Check this (for relatively 
small population size). 
 
6. The first element in the dataStorage vector is the allele frequency after the first saveData 
generations. How would you change this, so that the first element is the initial starting value? 
 
 
The number of generations is the same for each simulation. In this way it is hard to find the 
‘time till fixation’ of an allele as you need to re-run a simulation for a longer period if it did not 
fixate. But this run will differ from the previous run! We will focus here on the rate of change of 
the allele frequencies over time.  
 
 
7. Optional: Instead of for() use while( conditional statement) to let the population reproduce. 
This function will keep on going till you tell the condition is not met.  
To test if it work let the condition, which needs to be met (e.g. a threshold difference in allele 
frequency between A and B) to be quite common so you don't wait for hours to stop the 
simulation. It might be useful to print the condition to the console to see if it works fine (maybe 
every 100 generations or so, similar to the saving the output file). 
If you want to be able to repeat a simulation, use set.seed() at the start. Change this between 
replicated simulations though; otherwise they will be all the same (unless other parameters 
are changed) 
 
 
Population size 
So far we have focussed on one specific parameter setting. Let’s change this. Investigate the 
effect of a range of population sizes.  
 
1. Nest your for loop in another for loop so that our ‘reproduce for x generations’ (loop 2) is 
run for a different population size each time (loop 1). 
 



#loop 1 
for(){ 
 code to change population size 
 popSize <- …. 
 
 #loop 2 

for() { 
  code for reproduction 
 } 
} 
 
Note that the variable you assign in the first for loop to the variable popSize, can be read in 
the next for loop. * 
 
2. Store each simulation in its unique row in a data frame. Plot the allele frequency against 
generation time for different population sizes. 
 
3. Pick a population size for which the speed of the simulation is still fast. Now, change the 
starting frequencies of the alleles and keep the population size constant. Does this matter 
much? 
 
4. Always check if your simulations work correctly. One way to do this is to investigate a 
situation of which you know the outcome. Equal allele frequencies for A and B is such 
situation. What are you expectations?** 
 
 
Mutation 
Mutation will change the allele frequencies and will thus affect the change of allele frequency 
change as investigated above. We assume the mutation is always reverses the allele (A -> B 
and B -> A). Let’s implement mutation.  
 
1.In favour of which allele will mutation work? Why? 
 
2.Think of a way to implement mutation. A mutation rate is needed which subsequently 
should be translated to how many mutations we find in our population. Implement this in your 
program, save the simulations and plot the change of allele frequencies for different mutation 
rates. *** If you use the same code as above you can make a set if replicas (same N and 
starting frequencies) for with and without mutation. 
 
3. Print the dataframe you use to your working directory (that is the standard directory to save 
to).**** 
 
Optional 
Population size changes over time 
The island our haploid creatures landed on is lush and the population can grow. 
 
1.Implement linear population growth in your simulation.***** One of the easiest ways is to 
use the generation counter (i) from the for loop. Does population growth change the effects of 
drift? 
 
2. Although things looked like heaven at first, it turns out there is a weather cycle spanning 
multiple generations which severely affects the population size on the island. It looks very 
much like a sine curve. Implement this and assess the effects.  
 
 
* You can make a vector filled with population size at the start of the program (make it a 
global variable) and use the for loop as an index. Each new iteration of the for() loop will use a 
new population size.  



** A and B should increase in equal proportion in the absence of selection. 
*** Mutation rates are often assumption to be very small (1 e-5).  Choose higher values to test 
the effect of mutation. 
**** write.table(name, filename = “”, sep = “,”). 
***** In case you did not notice, you can change the number of items resampled in the 
sample() function. 
 
 
 


