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Abstract

A unified theory in science is a theory that shows a common underlying set of rules that

regulate processes previously thought to be distinct. Unified theories have been

important in physics including the unification of electricity and magnetism and the

unification of the electromagnetic with the weak nuclear force. Surprisingly, ecology,

specifically the subfields of biodiversity and macroecology, also possess not one but at

least six unified theories. This is problematic as only one unified theory is desirable.

Superficially, the six unified theories seem very different. However, I show that all six

theories use the same three rules or assertions to describe a stochastic geometry of

biodiversity. The three rules are: (1) intraspecifically individuals are clumped together; (2)

interspecifically global or regional abundance varies according to a hollow curve

distribution; and (3) interspecifically individuals are placed without regard to individuals

of other species. These three rules appear sufficient to explain local species abundance

distributions, species–area relationships, decay of similarity of distance and possibly

other patterns of biodiversity. This provides a unification of the unified theories.

I explore implications of this unified theory for future research.
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U N I F I E D T H E O R I E S

A unified theory is a theory that ties together branches

formerly seen as separate and unconnected. Physics has

unified the electromagnetic and weak forces producing two

Nobel prizes in the 20th century, unified the electric and

magnetic forces (by Maxwell in the late 19th century), and

unified motion on earth and in the heavens (Newton in the

17th century). Einstein spent the last 20 years of his life

unsuccessfully trying to unify gravity with the electromag-

netic forces. Similarly chemistry deifies Mendeleev for the

unifying role of the periodic table. One might think ecology

was too immature or too complex to support unified

theories of its own.

On the contrary, in the last 10 years ecology, specifically

macroecology, has produced not one, but at least half a

dozen different unified theories of biodiversity. These

theories broadly unify ideas of area, abundance and richness

to produce from a few underlying principles such seemingly

distinct patterns as the species–area curve and the species

abundance distribution. With one exception (neutral the-

ory), these unified theories have arrived with relatively little

fanfare. Unlike physics, unification has not been heralded as

one of the highest achievements in ecology. No doubt this

is in part due to certain sociological tendencies in ecology

which fail to appreciate theory in general and especially

theory that greatly simplifies the natural world (Kingsland

1995; Simberloff 2004). But it is also undeniably a problem

that there is not one, but at least six different unified

theories. And the theories seem extremely different from

each other. They start with radically different assumptions.

One starts with the niche while another explicitly rejects the

niche. Some are at scales of 100s m while others are at

scales of 1000s km. The math ranges from birth–death

processes to the recursive nature of fractals to Gaussian

bell-curves. But all share the property of being highly

stochastic (probably further working against their broad

acceptance).
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Here I show that the differences are superficial and at a

deep level all of the unified theories share a common set of

rules and approaches. In short, once one navigates through

superficialities, there is a single unified theory of biodiversity

that starts with a few simple rules or assertions that in turn

can explain disparate features of ecology. In short, there is a

unification of all the unified theories.

R E V I E W O F U N I F I E D T H E O R I E S O F B I O D I V E R S I T Y

I review six different unified theories. Two of these were

first presented, at least in partial form, in the 1970s, but

then remained relatively dormant (at least as unified

theories), only to then receive major reworkings, improve-

ment, testing and attention in the last decade. The other

four all were first developed and published within the last

decade. Thus the last decade has provided a rapid burst of

unified theories of biodiversity. My delimitation of what is

or is not a unified theory is somewhat arbitrary, but I have

tried here to focus on theories that reproduce at least two

major previously known patterns of macroecology (usually

the species–area relationship and the local species abun-

dance distribution), and I have tended to group together

conceptually related efforts. I have also deemphasized

theories (Harte et al. 1999, 2005) where the authors have

themselves moved on to newer theories (Harte et al. 2008).

I now briefly summarize each of these six theories,

proceeding in chronological order. Also see Tables 1 and

2 and Fig. 1.

Continuum theory

Gauch & Whittaker (1972) presented a model that was

intended to capture all the rules observed in Whittaker�s
gradient studies (Whittaker 1952, 1960; Whittaker & Niering

1965) in such a way that realistic communities across

gradients could be simulated. Nine empirically derived rules

were given of which we repeat four here: (1) abundance of a

species along a linear environmental gradient is roughly

Gaussian bell-curve in shape; (2) the location in space of the

peaks are distributed randomly (with some caveats about

dominant species); (3) the maximum observed abundance

across species is distributed log-uniform (i.e. geometric) in

small assemblages and log-normal in large assemblages; and

(4) the width of the bell curves is normally distributed.

Gauch and Whittaker showed that these rules led to realistic

communities by the test of visually inspecting the simulated

communities along a gradient and getting realistic ordination

results, but they did not explicitly link this model to

macroecological patterns. Hengeveld made the connection

that this model could explain local species abundance

distributions and derived analytical results (Hengeveld et al.

1979; Hengeveld & Haeck 1981). McGill & Collins (2003)

ended up in the same place but starting from the literature

on Gaussian bell-curves of abundance across two-dimen-

sional species ranges (Brown et al. 1995, 1996) rather than

along an environmental transect. They independently

derived a model based on these same four rules (except

the width of bell curves was lognormal). They showed that

these assumptions produce realistically shaped species–area

curves, species abundance distributions, decay of similarity

with distance, and abundance occupancy correlations. They

derived these conclusions analytically (with help from Allen

& White 2003) and showed using Monte Carlo simulation

that the results were robust to minor variations in the

assumptions. They also used data from the North American

Breeding Bird Survey and showed that without curve fitting

the model explained the species abundance distribution and

species–area relationship well.

Neutral theory

Caswell (1976) suggested that neutral molecular evolution

models could be applied to abundances of species in

ecological communities. He showed that such an approach

produced realistic species abundance distributions and

species–area relationships but that other patterns such as

change in evenness over succession were not realistically

produced. Hubbell (1979) and Hubbell & Foster (1986)

also suggested neutral drift might be the dominant factor in

structuring communities. In a series of papers 20 years

later, Bell and Hubbell (Bell 2000, 2001; Hubbell 2001)

proposed a neutral theory of biodiversity that assumed: (1)

neutral demographics (per capita birth and death rates

constant between species), (2) neutral dispersal limitation

(dispersal distance is identical across species and in the

form of diffusion); (3) immigration from an external

metacommunity to prevent drift to fixation; (4) explicit

absence of differential response to environmental hetero-

geneity; and (5) absence of species interactions. Hubbell

(2001) also added a neutral evolution component. These

five assumptions were able to accurately reproduce many

of the patterns held central in community ecology such as

species abundance distributions, species–area curves, and

decay of similarity with distance. Later work has shown

that this model can accurately predict clumping of

individuals in space (Chave & Leigh 2002; Houchmand-

zadeh 2008).

Metapopulation

Hanski & Gyllenberg (1997) started from metapopulation

theory which studies patchy networks (or island networks).

They used the standard differential equation model (Levins

1969) of patch occupancy, pij, for species i on patch

j: dpij ⁄ dt = Ci(t )(1 - pij(t )) - lijpij(t ). The two parameters
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C and l are functions of island area, Aj, species density, wi,

and island population Kij = wiAj where Aj and wi are each

assumed to be log-uniform distributed. In the case of a

mainland ⁄ island model, Ci(t) = c1wi and li(t) = c2 ⁄ Kij.

A slightly more complicated form of Ci is used in

archipelagos with no mainland. These assumptions produce

a Michaelis–Menton-like incidence curve pij (probability

species is present on an island given species abundance and

island area). The number of species on an island is then

(assuming independence between species) E(Sj) = Sj pij(Aj,

wi). This gives an empirically realistic island-species–area

curves (distinct from the nested species–area curves of the

previous two theories). Similarly, what they called a DA

curve giving the probability of patch occupancy on an island

(Pj) can be obtained by summing over i: E(Pj) = Si pij(Aj,wi).

The links to species–area relationships were analysed in

more detail later (Ovaskainen & Hanski 2003).

Fractal

A fractal object is one that is self-similar, i.e. it maintains

basic geometric measurements across spatial scales.

A power-law (S = cAz ) form to a species–area distribution

(something often found empirically to be at least approx-

imately true) suggests that individuals are distributed in a

self-similar fashion. Harte et al. (1999) demonstrated that

assuming a fractal distribution of individuals can produce a

number of macroecological patterns including not just the

aforementioned power-law species–area distribution, but a

distribution of occupancies (specifically, the probability,

P(n, A|A0) that n individuals are observed in an area A

given a total area A0), a species abundance distribution

derived from the occupancy distribution (by taking

A = the area occupied by one individual), and a new

pattern known as the endemics–area relationship (giving

the number of species found only in the given area).

A debate ensued about whether this theory assumed

community-level self-similarity or species-level self-similar-

ity. Lennon et al. (2002) pointed out that species-level self-

similarity does not produce a power-law species–area

relationship. An empirical test (Green et al. 2003) showed

that the community-level self-similar assumption did not

produce realistic communities (due to the assumption that

all species are the same), but the individual-level self-

similarity model worked fairly well, failing only in slightly

over estimating the degree of spatial aggregation (clumping

of individuals).This suggested that the occupancy function

depended on N0 the global abundance of a species

(P(n|N0,A,A0) and now required a distribution of global

abundances. Harte et al. (2005) proposed an alternative

theory incorporating such variation between species that

was no longer self-similar but produced an appropriate

degree of clumping known as HEAP. One problem with

assuming self-similarity is that species distributions do not

appear self-similar (Condit et al. 2000; Hartley et al. 2004).

Borda-de-Agua et al. (2002) developed a model using

multifractals, in which the fractal dimension changes

systematically with scales. This model was able to produce

species–area relationships, species abundance distributions

(and how they change with scale), and range–size-abun-

dance relationships. Storch et al. (2008) proposed a model

based on generalized fractals. Generalized fractals suggest

combining patches of species presence in a hierarchical

fashion, in a manner not dissimilar to fractals, but allowing

key parameters such as the number of clumps and

proportion of area to vary from scale to scale. This model

also produces realistic patterns including species–area

relationships, probability of abundance, Pi(n|A,A0) which

in the limit of small area gives species abundance

distributions, and distribution of fractal dimensions.

Because Harte and colleagues have replaced their fractal

model with a MaxEnt model (Harte 2008) and because the

generalized fractal model fits empirical data better, I focus

hereafter on the generalized fractal model.

Table 2 Predictions and tests of different unified theories (i.e. patterns reproduced by given theory)

Global

SAD

Local

SAD SAR Abb-Occ

Decay

of Sim Other Test data Test scale

Continuum X X X X Elevational transects

Breeding bird

survey

10s km 1000s km

Neutral X X X X BCI 100s m

Metapopulation X X Moths on offshore

islands; birds in habitat

patches

1s km 10s km?

Poisson cluster X X BCI, Pasoh 100s m

Fractal X X X Box Dim, P(A) BCI, Czech birds 100s m 10s km

MaxEnt X X X X EAR, P(A) BCI 100s m
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Clustered Poisson

Starting from the empirical observation that individuals of a

given species are nearly always spatially aggregated

(clumped) on scales from m2 to hectares (He & LaFrankie

1997; Condit et al. 2000; Plotkin et al. 2000), several authors

have used the clustered-Poisson (aka Neyman–Scott) point

process as a model. A Poisson-cluster model is one of the

simplest and most well-known point processes (stochastic

models of the location of points in space). A Poisson-cluster

process (Stoyan & Stoyan 1994) first places ‘mother� points

at random locations (Poisson processes), then places

multiple ‘daughter� points centred around the mother

points. Parameters to the model include the number

(intensity) of mother points, number (or parameters for

the probability distribution of the number) of daughter

points around each mother point, and the distance and

fashion of placing points around the seed points (e.g. a

bivariate Gaussian density with distance to inflexion given).

Plotkin et al. (2000) showed that such models are good fits

to empirical data in tropical forest tree plots and lead to

species–area relationships that fit the data well. Plotkin &

Muller-Landau (2002) later added the assumption of a global

species abundance distribution to produce a model of decay

of Sorenson similarity with distance. Morlon et al. (2008)

provide a highly general, scale-explicit version where a

species abundance distribution and a Poisson-cluster model

of spatial distribution produce a decay-of-similarity with

distance curve.

MaxEnt

Maximum entropy is a generic tool for predicting a

probability distribution subject to certain minimal know-

ledge about the distribution (such as its mean) (McGill 2006;

McGill & Nekola in press). Maximum entropy is justified

based on a minimum information logic – it starts with a no-

information prior (often all species are equally abundant)

and adds in a technical sense as little information as possible

subject to the constraints. It uses a standard optimization

technique (Lagrange multipliers) and produces a Gibbs

probability distribution with parameters that are the solved

Lagrange multipliers. Often this distribution collapses to

more familiar distributions such as the exponential or

normal distributions. Pueyo et al. (2007) showed that the

tool of maximum entropy can produce realistic logseries

(Fisher et al. 1943) species abundance distributions with very

minimal input (specifically a constraint on mean abundance

and a prior of 1 ⁄ n). Harte et al. (2008) produced a unified

theory making multiple predictions. The starting assump-

tions (aside from the use of maximum entropy) involve

equal abundance priors, a constraint on mean abundance

and a constraint on mean energy. The exact constraints are

critical (more or less constraints produce very different

results). This system can be solved using fairly standard

MaxEnt techniques. The central result is a joint distribution

for energy and abundance. When summed over all energy

states, this produces a logseries distribution for abundance

depending only on S and N. It also produces the function

Pi(n|A,A0,N0,S0) giving the probability of observing n

individuals of a species in area A (given the number of

individuals, N0, and species, S0, in some larger study area,

A0). With the function P in hand, species–area relationships

and endemic–area relationships can be easily derived by

summing across the Pi.

Point process Lattice

Fractal

Metapopulation

0

0.5

1

Continuum

p
i
(n|a,θ)

(a) (b)

(c) (d)

(e) (f)

Figure 1 Six different models of distribution of organisms in

space. (a) A point process with different symbols representing

different species. (b) A lattice with some cells empty and different

symbols representing different species. (c) the Pi(n|A) model in

which for a given species, for a given area, a probability density

function (shown as histograms) gives the probability of finding n

individuals of that species in a given area. This distribution can

change with area and also changes with species (specifically with

the global abundance of a species). This model is not spatially

explicit. (d) Fractal models involve repeated subdivisions of space -

here the divisions are regular (always three areas, each of which is

regular proportion of the parent area. This corresponds to a true

fractal. Generalized fractals (Storch et al. 2008) allow the number

and proportions of subdivisions to vary. Harte et al.�s (1999) model

is based on recursiveness of P(n|A) and does not have an obvious

visual representation. (e) Metapopulation models consist of patches

with infrequent migration between the patches. (f) Continuum

model places Gaussian shaped curves of abundance (the z-axis

represents abundance) in space. Sometimes a 1D space is used.

Sometimes slight variations on the Gaussian shape are used (e.g.

beta functions).
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D I F F E R E N T M A T H E M A T I C A L L A N G U A G E S

A major impediment to identifying a minimally sufficient set

of rules to specify the stochastic geometry of biodiversity is

the fact that the six unified theories reviewed above all use

extremely different mathematical languages and tackle

extremely different spatial scales. At the most basic split,

four models work with population densities in an area

(continuum, metapopulation, fractal, MaxEnt, spatially

implicit neutral), while two model the precise spatial

location of individuals (spatially explicit neutral, cluster

Poisson). Even for the models that deal with aggregated

individuals (i.e. densities), the spatial scales vary widely with

the continuum model covering entire species ranges (McGill

& Collins 2003) or entire elevational transects (Gauch &

Whittaker 1972) and explicitly including climatic variation.

In contrast, the MaxEnt model (Harte 2008) is likely

intended at scales close to the individual and uses test data

similar to that used by the individual models. The

metapopulation and fractal models fall in between.

Similarly, the clustered Poisson, continuum and generali-

zed fractal models are spatially explicit (precise spatial

locations are given to objects and distances between objects

can be derived). The MaxEnt model is spatially implicit. The

neutral model has both spatially implicit (the analytical

solution) and explicit (the lattice simulation) versions and

the metapopulation model is intermediate between being

spatially explicit and implicit. More generally, the view of

and mathematical descriptions of space are distinct in all six

models – this is summarized in Fig. 1 and Tables 1 and 3.

Finally, although, this should in principle be irrelevant,

the six different models use fundamentally different

branches of math (Table 1). The metapopulation model

starts from Levins (1969) colonization extinction differential

equation. The neutral theory uses birth–death processes

(Hubbell 2001). The fractal (Harte et al. 1999) and gener-

alized fractal (Storch et al. 2008) models use recursive

equations or simulations respectively. The clustered Poisson

model uses point processes. And the MaxEnt (Harte 2008)

and continuum models (McGill & Collins 2003) use

probability theory in a fairly general fashion (with MaxEnt

also using Lagrange multipliers).

D I S T R I B U T I O N S O F O R G A N I S M S = S T O C H A S T I C

G E O M E T R Y

These six types of unified theory have largely been perceived

as entirely distinct. After all, how could a model based on

such distinct mechanisms as niches (continuum theory),

neutrality and MaxEnt have anything in common? But in

fact, these six theories have the commonality that they are all

exercises in what a mathematician would call multitype

stochastic geometry. Stochastic geometry is the study of

objects placed stochastically in space (Stoyan & Stoyan

1994). The multitype qualifier indicates that the objects not

only have a location (and in some cases a size ⁄ shape) but

also have a type which in ecology corresponds to different

species.

It should not be surprising that these unified theories

have this common thread of locating typed organisms in

space. In the real world ecologists go into the field (in situ

studies) and place down boxes (quadrats) in different

configurations and count the number and type (species)

found within the box. In the real world this leads to data

giving rise to all of the patterns addressed by unified theories

of biodiversity such as species abundance distributions

(SAD), species–area relationships (SAR), decay of similarity

with distance, endemics area relationships, etc.

All six unified models are doing this exact same process in

a modelling fashion. First, the model places organisms down

in space according to some rules. This creates an exact

analogue of the real world where organisms are spread out

spatially and identified to species. Then boxes are drawn in

different fashions according to which pattern is reproduced

(i.e. SAD, SAR, etc). In some cases these analyses are

in papyro (pseudo-Latin for on paper, meaning by analytical

Table 3 The null and alternative hypothesis for intraspecific spatial structure, broken out for each unified theory for intraspecific spatial

patterns

Unified theory Null intraspecific spatial (no clumping) Alternative (clumped)

Continuum Equally abundant everywhere (flat abundance surfaces) Gaussian variation across space

(rare most places, common in one area)

Neutral Well-mixed (infinite dispersal) Dispersal-limited

Metapopulation Present in all patches Incidence function (logistic curve for

presence ⁄ absence vs. patch area) – mixed

presence ⁄ absence

Fractal Equally abundant everywhere (flat abundance surfaces)

or strictly fractal

Generalized fractal (not self-similar but

hierarchical division) or multifractal

Point process Poisson Clustered-Poisson (Neyman–Scott process)

MaxEnt Pi(n|A) is Poisson Pi(n|A) is exponential
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formula) and in other cases the analyses are done in silico (i.e.

in a computer via a Monte Carlo simulation). Presumably if

we can find the minimally sufficient set of rules such that

the in papyro or in silico analyses match the in situ (field-based

real world) analyses to accurately reproduce the macroeco-

logical patterns of biodiversity, we will have achieved a

useful description of rules governing nature. This is the

central goal of this paper.

A major challenge to the acceptance of this approach

(witness the dormancy of both continuum and neutral

theory for over 25 years after first being introduced) is that

these unified models are inherently stochastic. Traditionally

in ecology, stochasticity has been treated as noise that is

inherently uninteresting. Indeed most null hypotheses are

stochastic (e.g. two means differ by less than the 95%

bounds of a t-distribution, random reshuffling of individ-

uals) whereas most explanatory theories in ecology have

long been seen primarily as deterministic. The defining

models in ecology such as the Lotka–Volterra model,

resource competition, and optimal foraging have all been

100% deterministic. But arguably scientific fields increas-

ingly use stochastic modelling techniques as the discipline

matures. For example, physics moved from the determin-

istic (essentially differential equation) world of Newtonian

mechanics (glorified by Descartes� hypothetical watch-

maker) to the increasingly probabilistic world of statistical

mechanics and quantum mechanics. In these worlds,

scientists can only make probabilistic statements. Unfortu-

nately, ecology has not yet made this transition and

stochastic models seem very unfamiliar to most ecologists.

Most ecologists receive much more training in the differ-

ential equation tools common to population dynamics than

in the various forms of probability theory (e.g. the birth–

death processes of neutral theory or the MaxEnt machin-

ery). Many ecologists find the idea of explanatory stochastic

theories deeply disturbing, but it may be a necessary

paradigm shift.

Indeed stochastic geometry models in ecology and

especially biodiversity and macroecology have become

increasingly common. There are several such models of

species–area relationships where ranges of varying size are

given a position in space and then SARs are calculated

(Coleman 1981; Leitner & Rosenzweig 1997; Maurer 1999;

Allen & White 2003). An alternative approach is to start

with sampling from a species abundance distribution and

build collectors curves which can be equated to SARs with

an assumption of constant number of individuals per unit

area (Arrhenius 1921; He & Legendre 1996; Ugland et al.

2003). Green & Ostling (2003) have produced endemics–

area relationships using similar principles. A similar

approach has produced decay of similarity with distance

(Plotkin & Muller-Landau 2002; Morlon et al. 2008). This

same paradigm has produced the mid-domain effect to

explain the latitudinal gradient in species richness (Colwell &

Hurtt 1994; Colwell & Lees 2000). The key innovation of

the six unified theories relative to these approaches is not

the use of stochastic geometry, but only the derivation of

multiple patterns from the given stochastic geometry.

M I N I M A L L Y S U F F I C I E N T R U L E S F O R T H E

S T O C H A S T I C G E O M E T R Y O F B I O D I V E R S I T Y

To date, the differences in scale, biological assumptions and

mathematical language have tended to obscure any possible

similarities between the distinct unified theories. Indeed

several authors have suggested the only commonality is the

fact that they are unified theories and some have gone to

great pains to draw distinctions between the theories (Harte

et al. 2005; Harte 2008; Storch et al. 2008), although certain

structural similarities have been recognized (Harte et al.

2005; Storch et al. 2008). I have already suggested that all six

unified theories also share the fact of using stochastic

geometry.

However, I here make a strong claim that all six models

implicitly or explicitly share three key assertions and that

these three key assertions (in some cases invoked as

assumptions and in some cases derived from assumptions)

alone represent the minimally sufficient set of rules for

describing the stochastic geometry of biodiversity. These

three rules then lead inexorably to key patterns in

biodiversity such as local species–abundance distributions,

species–area relationships, decay of similarity with distance,

abundance occupancy correlations and others (Fig. 2).

The three assertions or rules are:

1. Individuals are spatially clumped within a species

2. Abundance between species at a regional or global scale

varies drastically and is roughly hollow curve in

distribution

3. Individuals between species can be treated as indepen-

dent and placed without regard to other species

The right hand side of Table 1 shows how these three

assertions are formulated in each of the six theories. Further

commentary on each of these assertions follows. McGill &

Collins (2003) also earlier identified these three principles as

the key assumptions. To advance the field, these assertions

need to be falsifiable with alternative options clearly

available (Platt 1964; Lakatos 1978). Table 4 summarizes

each of these three assertions and gives an obvious

alternative possibility.

Assertion 1 – intraspecific individuals clumped

Probably the single most important feature of all six models

is that individuals within a species are spatially aggregated or

clumped (Table 1, third column from the right). This
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commonality was noted earlier (Storch et al. 2008) but only

as a launching point for an entirely new model. In three of

the models, the clumping assertion is an explicit assumption

(i.e. the clumped Poisson process, continuum model and the

fractal model). In the other three models this assertion is

derived. Specifically, neutral theory assumes dispersal

limitation which leads to clumping; metapopulations assume

populations in a patch are either at abundance 0 or density w

(with nothing in between) which is a form of clumping; and

MaxEnt produces an exponential form for P(n|A,A0,N0)

which is much more strongly clumped than in a Poisson

distribution (more n = 0 and more n large). Table 3

summarizes how each model specifies clumping and

contrasts this with an alternative non-clumped possibility.

The empirical evidence for making this assertion is

reasonably strong, although more work is needed. A number

of recent studies at the scale of individuals have shown that

such intraspecific clumping occurs (He & LaFrankie 1997;

Condit et al. 2000; Plotkin et al. 2000; Conlisk et al. 2009). At

very large spatial scales individuals are also clumped – this is

represented by the propensities for abundance surfaces

across space to show a small, very high abundance peak and

a large area of low abundance (Gauch & Whittaker 1972;

Brown et al. 1995; McGill in revision). Although the

mathematical language of clumped individuals (Ripley�s K,

Condits W) sound very different than the language of

abundance surfaces, in the end both describe a propensity

for individuals to be spatially clumped. Indeed several

authors have recently begun improving earlier models which

assumed complete spatial randomness (e.g. Coleman 1981)

by explicitly incorporating clumping (e.g. He & Legendre

1996; Conlisk et al. 2009) and have shown that such

refinements lead to improved fits to empirical data.

Assertion 2 – interspecific abundance varies

In all of these models it is necessary to create variability in

the global or regional pool abundance of species (Table 1,

next to last column). This has been shown most strongly in

the fractal model where early models assumed similarly

Intraspecific
clumping

Interspecific
variation in
global
abundance

Random in
space wrt
other species

Local
SAD

SAR

Decay
similarity

Max
ent

Gen
fractal

Species
ranges

Contin
uum

Endemics
area

Neutral

Metapop
ulation

Clustered
poisson

Antecedent
assumptions

Stochastic
Geometry

Figure 2 Conceptual overview of the uni-

fied theory. Three key assertions are com-

mon to all six unified theories. Some

theories start with these three assertions

explicitly as assumptions, while some make

antecedent assumptions that lead to these

assertions. But in either case, these three

assertions in turn produce a variety of

macroecological patterns.

Table 4 Summary of three key assertions or rules contrasted. The second column contains the default or null or ‘no biology� rule. The third

column contains the alternative possible rule. The assertion that has been used in all six unified models and which has confirming empirical

evidence is highlighted in grey

Question Null Alternative

1. Spatial arrangement of intraspecific

individuals

Random (Poisson) or even (uniform) Clustered

2. Species similarity All species have equal abundance Species differ strongly in global ⁄ regional

abundance (some form of hollow curve)

3. Spatial correlation between species There is no correlation between species Interspecific correlation is positive or negative
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abundant species (Harte et al. 1999) which was rejected by

empirical data (Green et al. 2003) leading to later explicit

incorporation of variation in abundance between species

(Harte et al. 2005). These abundances are invariably distrib-

uted with some hollow curve shape (McGill et al. 2007) in

which there are many rare and a few common species.

Although most measures of interspecific abundance are

local, it is well documented that a hollow curve at a

global ⁄ regional scale is empirically justified (Nee et al. 1991;

Gregory 2000; Hubbell 2001; McGill & Collins 2003). In

some models, like the continuum, metapopulation and

Poisson cluster, a specific distribution of regional abun-

dances is assumed explicitly as an input to the model. In

other models, the hollow curve distribution of regional

abundances is derived from other assumptions (the speci-

ation ⁄ drift to extinction balance in neutral theory, the

constraint on mean abundance in MaxEnt, or the repeated

multiplication of fractional box sizes across hierarchical

levels in the generalized fractal model leading to a central

limit theorem like process). It is interesting to note that

these models require no differences between the species to

successfully reproduce biodiversity patterns except the

variation in abundance. Thus other traits of species such

as body size or life history that are presumably highly

relevant to some aspects of ecology do not appear important

for driving biodiversity patterns except for how they

influence abundance.

Assertion 3 – interspecific spatial arrangement is
independent

All six models treat the spatial location of different species

as completely unrelated to each other (Table 1, last column).

This in turn makes the math simpler as it makes the

probabilities of species occurrences independent, and allows

for simple summing across species to derive multispecies

patterns such as richness. In non-spatially explicit models

there is no spatial arrangement of species and this assertion

may not be strictly necessary (Green & Ostling 2003). After

decades of assuming species interactions are central to

ecology, this assertion is unpalatable for many. However, to

date models assuming no spatial interactions have been very

successful at making predictions about macroecological

biodiversity patterns that match empirical data. Indeed, a

few recent empirical studies tend to lend support to the

assertion. Veech (2006) found that pairwise correlations of

abundance across space were most commonly zero and with

positive correlations also found. Hoagland & Collins (1997)

also found 24 of 42 communities showed no correlation in

locations of peak abundance and the rest showed a positive

(clumped) correlation. And a recent paper examining

correlations of abundance across time found that most

correlations were zero or positive (Houlahan et al. 2007).

The existence of some positive interactions has several

interpretations. They could indicate predation (although one

would expect matching negative interactions), or they could

also indicate mutualism (although most people would not

expect specific pairs of species in these studies to be

mutualists and a weaker non-species specific facilitation

would not produce these results). A third explanation, the

one adopted by Houlahan and colleagues, is that some

points in space (first two studies) or time (third study) are

inherently more favourable (benign) to most species,

resulting in higher abundances across several species at that

point, leading to detection of clumping. However, the

presence of some weak positive clumping does not appear

to break the models (explicitly tested in McGill & Collins

2003). Also note that it would be incorrect to interpret any

success of this assertion as rejecting the importance of

competition, predation, mutualism and other species inter-

actions. Independence may be more a consequence of

statistical arguments. If one starts with a community of 30

species, then there are 435 = 30 · (30–1) ⁄ 2 possible

pairwise interactions. If we assume that each species

interacts strongly with 3 other species in a symmetric

fashion then there are only (30 · 3) ⁄ 2 = 45 strong interac-

tions – i.e. only about 10% of all possible interactions are

strong. Thus in a many species communities, pairwise

interactions may on average be quite weak, despite the

existence of some strong interactions (Paine 1988; Wootton

1997). This appears sufficient for this assertion of indepen-

dence to become accurately predictive.

It is interesting to note (Table 4) that of the three

assertions, one (independence between species) would fit

our a priori null hypothesis and seems relatively uninforma-

tive about biology, while the other two (clumping within

species, variability in abundance between species) are

rejections of the obvious nulls and appear to represent

significant underlying biology. It is also worth commenting

on the box labelled ‘Antecedent assumptions� in Fig. 2.

Some theories (continuum, clustered point process) start

with assumptions that exactly match the three assertions

identified here. Others (neutral theory, fractal theory and

MaxEnt theory) start with different assumptions (the

antecedent assumptions) and derive the three assertions

presented here. Thus it must be emphasized that while the

three assertions highlighted here are sufficient to produce a

stochastic geometry theory of biodiversity, and represent a

minimal set in the sense that removing any one of the

assertions will cause the theory to fail, neutral, MaxEnt and

fractal theories can also produce the same results. Could one

of those sets of assumptions be more minimal? It is hard to

say. Much has been made by various authors (Hubbell 2001;

Volkov et al. 2003; Harte et al. 2005; Storch et al. 2008) of

numbers of parameters, strength of assumptions and

numbers of predictions to justify claims of superiority.
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However, many of the models have various numbers of

hidden parameters (e.g. is the assumption of MaxEnt or a

Gaussian bell-curve one parameter?), and there is not even

agreement on exactly how many quantitative parameters the

neutral model contains (Nee & Stone 2003; Volkov et al.

2003; McGill et al. 2006). But it is probably moot to try to

choose one model as superior to the others. Indeed the

main argument of this paper is the models are essentially a

single model with different mathematical representations. In

the end the theories will probably be judged on success at

prediction and stimulation of new research rather than

parsimony. Moreover, it is hard to imagine how neutral or

MaxEnt theory could create realistic stochastic geometry

without somehow reproducing the three minimally suffi-

cient assertions identified here. One clear benefit of the

three assumptions used here is that they make strong

biological statements that can be directly tested and studied

(see Box 1). But other theories have advantages too, such as

the predictions over time of neutral theory or (paradoxically)

the relative lack of biological inputs to MaxEnt.

P R E D I C T I O N S A N D T E S T I N G

The above three assertions are in general adequate, when

worked through the various mathematical methods of the

six different unified theories, to predict multiple patterns

that are commonly observed in nature (Table 2). Although

the math is highly different, the conceptual, geometric

process of producing the basic patterns of biodiversity are

the same (Fig. 3 and the steps identified in the legend of

Fig. 3). All six theories produce species–area relationships.

Four of the six have produced a local species abundance

distribution, and the remaining two (clustered Poisson point

process and metapopulation) could probably be used to

produce local SADs with a little effort. Half of the models

derive the global SAD from other assumptions (neutral,

generalized fractal, MaxEnt) while three (continuum, meta-

population, clustered Poisson) make it an explicit assump-

tion (but all agree that a hollow curve-shaped global SAD is

a key step in predicting the stochastic geometry). Three

theories produce explicit decay of similarity with distance

predictions (continuum, neutral and clustered Poisson). The

other three models presumably could derive such curves as

well. Three theories (continuum, metapopulation and

MaxEnt) derive the positive correlation between abundance

and occupancy (or range size and occupancy in the case of

the continuum) and the other three probably could as well.

The bottom line is that once the stochastic geometry has

been realistically produced we can in principle derive any

basic macroecological pattern using in papyro or in silico

methods that exactly match the in situ methods used to

collect the analogous empirical data. At a minimum this

should always be possible in a computer simulation. What

Figure 3 A visual demonstration of how the three minimally

sufficient rules combine to produce common macroecological

patterns of biodiversity. This visual demonstration is inspired by

the continuum unified theory. However, the same basic processes

are at play in all six unified theories. The mathematical details and

the scale (specifically whether individuals or abundance surfaces

are modelled) vary. For simplicity and clarity, the number of

species has been reduced to just five although typically dozens are

used. The two horizontal axes represent the two spatial

dimensions of the study area. The vertical axis represents the

density of the organisms (or perhaps the intensity of a point

process positioning individual organisms). The basic steps in the

model are as follows. (1) Individuals or density within a species are

placed in space in a clumped fashion (assertion one). The

individuals here are shown to be contiguous with peak abundance

in the centre, but this need not be true. (2) The total abundance

across species (height in the figure) follows a hollow curve

(assertion two), which in turn results in a hollow curve distribution

of area occupied across species (i.e. occupancy or range size). (3)

Species are placed spatially random with respect to each other

(assertion 3). With these stochastic geometry rules, patterns can

now be measured. (4) Species abundance distributions are taken by

sampling at one point (see the line). Most species present at this

point are sampled outside the clump since clumps are small and

are therefore rare in that community (the blue and yellow species),

and a few species at this point are abundant because the point

happens to fall within their clumps (the red species), thereby

giving rise to the many rare, few common hollow curve (such as

plotted in the histogram atop the line). This variation is magnified

by the overall variation in global abundance of species (the varying

heights of the species). (5) Species–area relations are derived by

examining progressively larger areas (the two floating boxes) and

identifying which species occupancies or ranges intersect those

areas. Decay of similarity is very similar except that two boxes of

equal size are placed repeatedly at varying distances from each

other. The SAR and decay of similarity patterns are both driven by

the fact that there are many species occupying small areas (and

therefore likely not to be in the focal area of interest) and a few

species covering large areas and likely to be in most areas of

interest.
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has perhaps proven surprising is in how many different

mathematical languages ⁄ spatial descriptions and for how

many different patterns it has proved possible to do this

analytically.

Simply producing curves of an appropriate shape is a

weak test. Elsewhere (McGill 2003a) I have called this the

lowest possible test or a level I test. All of the published

unified theories have gone beyond this level though, using

empirical data to parameterize their model, and then

demonstrate good fit not just in shape but in slope,

intercept, etc., of the predicted curves to the empirical data

(Table 4, two rightmost columns and Fig. 4). In other

words, they curve fit the predicted functional forms to the

data. Although, most authors do not report r2 values, the

visual fits demonstrated are in most cases impressive. I

called such curve-fitting tests Level II tests. Stronger tests

are possible and desirable (e.g. fitting empirical data with a

priori parameters or predicting dynamics over time or

predicting previously unknown patterns – see McGill

2003a). At least three theories produce such level III tests

(McGill & Collins 2003; Harte et al. 2008; Storch et al. 2008).

Moreover, unified theories by definition make many

simultaneous predictions, which if they prove true has to

count as a strong test, even if individual predictions are

weak; Rosenzweig described this as the dipswitch test where

many weak (binary) predictions are unlikely to align

correctly by chance (Rosenzweig & Abramsky 1997; McGill

et al. 2007).

L I M I T A T I O N S A N D S C O P E O F A P P L I C A B I L I T Y

Although I hope this identification of minimally sufficient

rules and similarities between formerly distinct theories

represents a useful step forward, it is clear that it is currently

incomplete and represents an intermediate point along the

path (Boxes 1 and 2). There is probably more left undone

than done. Most noticeably there is not a unified set of

equations that covers all scales (Box 2). It is also important

to be clear about the limits of applicability, beyond which

this theory does not apply. First, although implicit in much

of the discussion, it is perhaps important to reiterate that

these minimally sufficient rules lead to predictions about

biodiversity and macroecology. They do not lead to

predictions about any other branch of ecology such as

physiological ecology, behavioural ecology or even popula-

tion ecology.

Second, the discussion so far has been quite vague about

which taxa and how broad a group of species it applies to.

Hubbell�s version of neutral theory was built on a zero-sum

assumption (Hubbell 2001; but see Etienne et al. 2007) which

he interpreted to mean that the theory applied only to a single

guild or group of organisms at one trophic level directly

competing with each other. He later relaxed this assumption

applying neutral theory to all birds in Britain which clearly

contains multiple trophic levels. I am unaware of explicit

statements of scope for the other unified theories. From first

principles, the theory proposed herein would apply to any

group of organisms that fit the identified minimally sufficient

rules or assertions. I know of no studies suggesting that the

strong propensity to clump disappears in any group of

organisms but clumping has been primarily studied in plants.

Similarly, if the statement of spatial independence between

species holds for closely related organisms, one would expect

it to also apply to more distantly related organisms. Probably

the most constraining assertion is the hollow curve

distribution of abundances. Only taxonomic extents meeting

this constraint would be addressed by this unification.

However, the hollow curve species abundance distribution

has, in practice, been measured across very diverse groups

such as all birds (Gaston & Blackburn 2000; McGill &
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Figure 4 Testing various unified theories. A comparison of

Preston�s empirical data (circles) on the species–area relationship

from the scale of m2 to the North American continent. The large X

and the dashed line are from the continuum model (McGill &

Collins 2003). The dashed lines (with small x and diamond

symbols) are from MaxEnt (Harte et al. 2008). There is a clear scale

break around 100 km · 100 km (104 km). The continuum theory

fits the data very well above that scale but poorly below that scale.

The MaxEnt data is difficult to apply to this data set since it

assumes every individual in an area is sampled which is not true for

Preston�s bird data. Thus we provide two prediction lines, one for

the 119 species actually reported from the 6 North American

Breeding Bird Survey routes within the �10 000 km2 (actually a

circle of 0.5� radius) around the starting point (41� N, 79� W, a

round number close to Preston�s lab). But these routes cover only

approximately 9.4 km2 or 0.097% of the 104 km2 area. The

S = 160 line was chosen to maximize fit to the data. Thus in

addition to highlighting a scale-break in processes and which

models fit, this analysis also highlights the difficulty in applying

models across different scales and different types of data.

Review and Synthesis Towards a unified unified theory 637

� 2010 Blackwell Publishing Ltd/CNRS



Collins 2003), all fish (Winemiller 1990) or even across phyla

as in all zooplankton or all marine invertebrates (Ugland et al.

2007). Thus, the assertions and the predictions discussed

here would be presumed to apply to nearly any community

of any taxonomic extent pending further study of the

generality of the assertions.

Box 1 What this theory tells us about what we do know, what we don�t know, and what we need to know

What we know

1. The processes driving local species abundance distributions, species–area relationships, and decay of

similarity with distance. All six of the unified theories are successful in explaining the first two of these well known

macroecological patterns and several explain the third as well. And as shown here, all six do it in more or less the same

way. Local species abundance distributions occur from sampling from clumped spatial distributions (sometimes in the

clump, usually not in the clump) overlayed with global variation in abundance. Species–area curves and decay of

similarity derive from random placement of species with many small ranges and a few large ranges. We don�t need to

continue producing two to three new theories explaining species abundance distributions per year (McGill et al. 2007),

but we probably will.

What we don’t know

2. How does clumping change across scales? Are species more clumped or less clumped at larger scales (e.g. He &

LaFrankie 1997; Plotkin & Muller-Landau 2002)? Can we quantify the nature of this variation.

3. How general are clumped distributions beyond plants and at large spatial scales? Clumping has been studied

almost entirely in plants and almost entirely at scales of 100s–1000s m, although birds do appear to be clumped at the

scale of their geographic ranges (McGill & Collins 2003)

4. What processes cause most species to show clumping? Presumably it is some mixture of dispersal limitation (not

necessarily neutral) and clumping of underlying environmental factors with current evidence giving a nod to

environment being stronger (Gilbert & Lechowicz 2004; Jones et al. 2008) A powerful, predictive theory of how neutral

dispersal limitation affects clumping exists (Houchmandzadeh 2008), but equivalent theories for non-neutral dispersal

limitation or environment are lacking.

5. How general is the hollow curve global abundance distribution? All attempts known to me to measure global

abundance distributions show a hollow curve, but there are probably less than a dozen such attempts.

6. What drives the variation of global abundance? It seems probable that global species abundance distributions must

derive from evolutionary processes, although they may also emerge as limit theorems of local processes (Šizling et al.

2009). The attempt to relate species traits to global abundance (a more logical agenda than relating species traits to local

abundances) has had little success to date (Murray et al. 2002; White et al. 2007), perhaps due to the complex interplay of

forces involved (McGill 2008).

7. To what degree and at what spatial and taxonomic scales are species spatially independent and why? Of the

three assertions, this has been the least studied (the three studies cited in the main text are the only attempts I know of

to measure this). It likely depends on scale (Wiens 1989; Russell et al. 2006)

8. What are the ramifications of the spatial non-independence of species? The assertion with the most contrary

evidence to date is that of interspecific spatial independence, where a solid minority of species show interspecific

clumping. This appears not to break the theory. Why and how much clumping can be tolerated?

What we need to know

9. S and N are always inputs. What drives these? This paper suggests that the central unanswered question is what

determines S and N. Despite my calling the unified theory a theory of biodiversity, in every case the species richness,

S, and number of individuals, N are inputs to the model rather than predictions (nb: neutral theory uses h as an input

but h is not directly measurable and is highly correlated with S: McGill 2003b). To date the greatest success in the study

of these factors has been empirical (i.e. looking for correlations with environmental variables), where factors like

productivity, climate, and altitude seem important (Mittelbach et al. 2001; Hurlbert 2004). Arguably one consequence of

the unified unified theory, is a strong indication that one of, if not the, central focus of future biodiversity research needs

to be directed towards mechanistic explanations of S and N.
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The timescale of this theory is very similar to that of

the original theory of island biogeography. Namely it is a

dynamic equilibrium. Thus it makes predictions about all

points in time without being specific about the time

trajectory by being vague about species identity. However,

the theory presented here uses S and N as inputs. So it is

clear that predictions would change over situations and

timescales where S and N are changing. I perceive the lack

of statements about trajectories over time to be one of the

larger limitations of the current theory. I have not been

too precise about the definition of community covered by

the theory, but it does not appear to matter. The spatial

area being modelled is precise, the time period is any time

over which the input conditions (S & N) are constant, and

the species involved can be pretty much any set of

interest. In this way the community studied here is not so

different from past definitions of community (Fauth et al.

1996).

C O N C L U S I O N

The central goal of this paper has been to see if there was

a commonality across all six unified models to produce a

minimally sufficient set of rules to successfully describe

Box 2 Moving further towards a useful unified unified theory

1. Can we develop a general mathematical machinery? Can we find a generic mathematical machinery that efficiently

captures the three core assertions, allows the derivation of multiple predictions (Table 2) which can be tested against

data at multiple scales? Having mathematical equations will allow us to: (1) make additional predictions (such as those

called for in point 3 below) and (2) to make precise quantitative predictions that are subject to more robust testing.

Although the six different unified theories make qualitatively similar predictions (or one of them would be falsified by

data), they do differ in specific detail. Perhaps most extreme is the predictions about species–area relationships which

range from negative to positive second derivatives (Fig. 4). To date, probably the most promising general approach for

developing equations in this unified context has been the P(n|A,A0,N0) idea found in several unified theories (Harte

et al. 1999, 2005, 2008; Storch et al. 2008) as well as several simpler theories (e.g. He et al. 2002). By changing A this

approach make statements ranging from individuals to large areas, so by summing across species derivation of SADs

and SARs are trivial. However, P(n|A,A0,N0) is not spatially explicit, making derivation of patterns like decay of

similarity with distance difficult, and P(n|A,A0,N0) was inspired by theory without much empirical precedent so we

know little about its true empirical patterns and it will require enormous amounts of data to fill this in. The sampling

language of neutral theory (Alonso & McKane 2004; Etienne 2005) which is independent of the neutrality assumption

might also be a possibility. Multifractals (Borda-de-Agua et al. 2002) are another possibility. Or we may need something

completely new.

2. Can we describe a unified model that works across scales? As highlighted in Table 2, although very few of the

unified theories are explicit about the scales they operate at, it becomes clear from the different empirical datasets used

that different theories are targeted with different spatial scales in mind. The fact that some theories deal with individuals

and some deal only with densities per unit area also suggests this. In fact the neutral, MaxEnt, and clustered Poisson

seem targeted at smaller scales of a few thousands of individuals and 100s of meters, the metapopulation and

generalized fractal seem targeted at intermediate scales, not dealing with individuals but targeting 10s of kms, and the

continuum theory seems targeted at macroscales (elevational gradients and continents). This suggests several research

questions. At the simplest level, can we paste the models at different scales together to produce an ‘all-scales� model.

This is suggested in Fig. 4 where no one unified theory produces the triphasic species–area relationship but the MaxEnt

and continuum models combined successfully reproduce the entire range from scales of m2 to continents. At a more

profound level can we develop a single model and mathematical machinery that can span this range of scales? One key

feature of such a model will be an ability to go mathematically from locations of individuals to population density

(abundance surfaces) (i.e. Fig. 1a ⁄ b to 1e). Another key feature will be either a prediction or incorporation of empirical

data on how clumping changes with spatial scales (Question 2, Box 1).

3. Conservation implications? It would be disappointing if the unified unified theory proved interesting only to

academics. One hopes it will carry over into adding tools to conservation biology. To date there has been a noticeable

failure to do this (Clark 2009). But it seems hard to imagine that a truly general and accurate stochastic geometry of

biodiversity will not influence conservation biology. Some of this may come through exploring in depth the three

assertions. But I think one of the most promising areas occurs if we succeed in moving towards a general all-scales

theory; such a theory can be used to extrapolate from easily obtainable data up or down to spatial scales for which it is

more difficult to obtain data. Several attempts at this research program have already begun (Kunin 1998; He & Gaston

2003; Harte et al. 2009).
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the stochastic geometry of biodiversity patterns in the real

world. I identified three assertions or rules (intraspecific

clumping, interspecific variation in global abundance, and

interspecific spatial independence) that either explicitly (as

assumptions) or implicitly (as results) are central to all six

theories. This strongly points to these three assertions as a

minimally sufficient set of rules to produce a unified

stochastic geometry theory of biodiversity. Conceptually

this stochastic geometry can then be used to derive any

biodiversity pattern of interest that depends only on

species and the spatial structure and abundance of

organisms. Aside from the importance of having a single

unified theory from a theoretical perspective, we can treat

the progress towards a unified theory of unified theories

of biogeography as a filter for distinguishing interesting

from uninteresting future research directions (Boxes 1 and

2). Perhaps biodiversity ecology is beginning to have a

strong unified theory to serve as a central organizing

paradigm.
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