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Interest in the bacterial phenomenon known as
quorum sensing is exploding – many minireviews and
at least nine major reviews have been published in
the past two years [1–9], and the annual number of
publications is growing exponentially (Fig. 1). The
shared mechanism of all quorum-sensing systems is
regulation by autoinducers released into the cell’s
environment (Fig. 2a). Typically, cells produce a small
extracellular autoinducer molecule – usually a
peptide, a boron derivative of ribose or an acyl
homoserine lactone (Fig. 2b–d) – and simultaneously
sense the concentration of the autoinducer at the cell
surface. If the concentration exceeds a threshold, 
gene expression is induced, usually leading to the
production of other extracellular products. Some
well-studied examples are listed in Table 1.

The term quorum sensing is derived from the
interpretation that these regulatory circuits exist 
to sense population density [10]. Because the
concentration of autoinducer in liquid cultures
exceeds the induction threshold only when the culture
exceeds a critical cell density, these systems are
thought to have evolved to allow bacteria to detect cell
density and thus optimize the expression of functions
that are most beneficial when simultaneously carried
out by large populations of cells. Regulation by
quorum sensing was originally thought to be
restricted to specialized functions in a few species
(e.g. light production in Vibrio fischeri and
competence development in Streptococcus
pneumoniae [11,12]). However, the number of known
regulatory systems and the diversity of phenomena
regulated are growing dramatically, and it now
appears that most bacteria possess at least one
quorum-sensing system [2,3,5].

Problems with the quorum-sensing model

The appeal of the idea that bacteria act cooperatively
has caused the postulated benefits of quorum sensing
to be accepted uncritically as the explanation for the
role of autoinducers in gene regulation. However,
although autoinducer-controlled processes typically 
do act outside of the cell, there is little direct evidence
that their benefits depend on group action. Instead,
discussions of function usually begin by assuming 
that the benefits must be group-limited, and then
evolutionary ‘just-so stories’are postulated to explain
how this benefit arises. For example, secretion of
degradative enzymes such as cellulase and pectin lyase
by the plant pathogen Erwinia carotovora is regulated
by autoinducer accumulation [13,14]. Host plants
respond defensively to such exoenzymes, so it has been
proposed that regulation by quorum-sensing allows
E. carotovora cells to delay exoenzyme secretion until
the population is large enough to overwhelm host
defences [2]. However, no attempt has been made to
test this hypothesis by showing either that exoenzyme
production by an isolated cell triggers the host
responses, or that growth of this cell into a population
large enough to overcome these responses does not
require the nutrients exoenzymes provide. Many other
superficially plausible but untested hypotheses about
the benefits of quorum sensing have also been
proposed. The stories are usually developed in
isolation, often invoking benefits that in other stories
are treated as costs to be avoided. In one extreme
example, quorum regulation of natural competence
was proposed as an adaptation to decrease the
proportion of con-specific DNA and, a page later in the
same review, as an adaptation to increase it [2].

The evolution of quorum sensing also poses major
problems. Genes for quorum sensing will only evolve 
if cells that invest individual resources for a shared
benefit reproduce better than cells using their resources
selfishly. The difficulty of maintaining genes for
cooperative strategies in genetically mixed populations
makes this a notoriously weak and controversial mode
of selection, especially where interspecies quorum
sensing is proposed to benefit the members of a mixed-
species biofilm [9]. Because direct selection on
individual benefits is much more effective than indirect
selection on group benefits, evolutionary biologists
usually reject explanations relying on the latter unless
individual benefits have been ruled out [15].

Where cells live exclusively in single-clone
populations, natural selection can indeed favour clones
that cooperate over clones whose members act selfishly.
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However, in mixed populations engaged in quorum
sensing, selection will favour any selfish cells that can
passively obtain the benefits without the expense of
producing or responding to the signal. Consider a
population of cells obtaining their amino acids by
secreting a quorum-regulated protease. Cells that do
not participate in sensing or protease secretion will be
at an advantage, as they obtain the amino acids for free.
These ‘cheats’could be mutants that arose within the
population or members of other strains or species. The
benefits of cheating have been demonstrated by Velicer
and co-workers, who found that non-cooperating
mutants of Myxococcus xanthus can outcompete their
relatives during cooperative formation of fruiting bodies
[16]. Because bacterial populations are rarely clonal
outside of the laboratory (see references in [3]), cells

investing in quorum sensing to obtain shared benefits
should be under constant competition from non-
cooperators. However non-cooperators have not been
reported, suggesting that regulation by autoinducers
might confer a substantial benefit on individual cells.

Why diffusion matters

The evolution and postulated benefits of quorum sensing
are both problematic, but why else would a cell produce
and detect an autoinducer? One important candidate
function is the ability to detect the extent of diffusion and
mixing in the cell’s microenvironment. Because bacteria
cannot use phagocytosis, they rely on the secretion of
degradative enzymes to break down macromolecules
into subunits that can then be taken up (Fig. 3).
Bacteria also increase nutrient availability by secreting
siderophores, antibiotics, surfactants and other
secondary metabolites. All of these can provide benefits
to a single cell, but will be effective only when diffusion
and mixing in the cell’s microenvironment are limited, so
the secreted molecules remain close enough to the cell
for the benefits to be realized. Figure 4 illustrates how
an autoinducer serves as a molecular sensor, with its
local concentration reflecting the molecular processes
occurring in the cell’s immediate environment. Diffusion
and flow in natural environments can be extremely
unpredictable (consider soil before and after a
rainfall, or nasal mucosa before and after encounter
with an allergen), and cells that produce and detect
autoinducers can assess these changes directly and
regulate gene expression accordingly.

Many of the properties of quorum-sensing systems
support this hypothesis. As predicted, autoinducers
commonly regulate the production of substances that
are secreted into the extracellular environment. Some of
these functions are indicated in Table 1. Others include
secreted proteases of many types, cellulases, pectinases,
collagenases, chitinases, antibiotics, siderophores,
surfactants, lipases, cytolysins and the majority of
virulence factors. Molecules that have evolved to
function as diffusion sensors should also be cheap to
produce and not naturally present in the environment,
properties which are typical of the known autoinducers.

Testing hypotheses about autoinducer regulation

Quorum sensing holds its position as the current
paradigm for autoinducer regulation by default, and
both quorum sensing and diffusion sensing should be
treated skeptically until each has been rigorously tested.
Simply observing density-dependent regulation is not
informative, as any autoinducer-regulated process
will inevitably be regulated by population densities if
mixing is high but very local (i.e. able to disperse the
autoinducer among the population but unable to
disperse the population itself). Such conditions are
typical of laboratory cultures, where populations are
actively mixed but constrained within culture vessels.
Thus, demonstrations of quorum sensing in the
laboratory tell us nothing about the roles of autoinducers
in the natural environment. We instead need to ask
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Fig. 1. The rate of
publication of papers on
quorum-sensing. The
data were obtained using
a Web of Science search
for papers with ‘quorum
sensing’ in any field.
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Fig. 2. (a) Regulation by autoinduction. Many bacteria produce autoinducers (red ‘a’s) which diffuse or
are secreted into the cell’s environment. If the concentration of autoinducer detected by the cell
exceeds a critical threshold, genes are induced and effectors secreted (blue ‘e’s). (b) The competence
and sporulating stimulating factor (CSF) autoinducer of Bacillus subtilis [17]. (c) The AI-2 autoinducer
produced by many bacteria [7]. (d) The N-butyryl-homoserine lactone of Pseudomonas aeruginosa [7].



whether the regulation acts under natural conditions
where quorum sensing is possible (high mixing in a
bounded environment) and whether sufficient
autoinducer is produced under these conditions. Where
quorum sensing is shown to be physically possible, 
we still need to determine whether the hypothesized
evolutionary benefits exist. Is the measured benefit to
each cell greater when cells cooperate than when they
act individually? Alternatively, do isolated cells
experience diffusion-limited microenvironments where
self-induction would be expected? Does the consequent

expression of inducer-regulated genes increase growth
and/or survival? Because natural selection acts more
strongly on individual benefits than on those shared
between members of a population or community,
explanations relying on group benefits should not be
accepted unless potential benefits to individuals (or
demonstrably pure clones) have been rigorously
sought and unambiguously shown to be inadequate.

One experimental prediction of the diffusion-
sensing hypothesis is that isolated cells should be able
to produce enough autoinducer for self-induction
under plausible natural conditions. (The quorum-
sensing hypothesis does not predict this but does not
preclude it either.) Most of the available data are
consistent with this prediction. For example, in
laboratory cultures of the soil bacterium Bacillus
subtilis, autoinducers reach inducing concentrations
at culture densities <108 cells ml−1 [17], implying that
each cell can fill a volume of 104 µm3 with an activating
concentration of inducer. This is well within the
volumes bacteria are constrained to in drying soil
(Fig. 4b) [18]. However, direct experimental testing of
this prediction is warranted, especially because the
amounts of autoinducer produced depend strongly on
culture conditions (M. Surette, pers. commun.).

New perspectives on regulation by autoinducers

Diffusion does not play an obvious role in several
autoinducer-regulated processes. For some of these,
further investigation might demonstrate true
quorum-sensing systems. Others might be found 
to be more dependent on diffusion than previously
suspected. Consider natural competence. In both
Bacillus and Streptococcus the ability to take up DNA
is regulated by autoinducers [12,19], and scenarios
have been suggested whereby this reflects the
benefits of high population density. However, the
B. subtilis autoinducers also regulate secretory
functions (including a surfactant and a peptide
antibiotic) [20,21] and the coinduction of competence
could reflect their ability to increase DNA availability
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Table 1. Processes regulated by quorum sensing

Organism Autoinducer(s) Processes regulated Refs

Agrobacterium tumefaciens Acyl-homoserine lactone Ti plasmid transfer [39]
Erwinia carotovora, Erwinia Oxohexanoyl-homoserine Carbapenem antibiotica, polygalacturonasea, pectate lyasea, [40–42]
  vietnamiensis   lactone   cellulasea, proteasea, Harpina

Burkholderia cepacia Octanoyl- and hexanoyl- Proteasea, siderophorea, surfactanta,biofilm formationa, [43–45]
  homoserine lactones   swarming motility

Pseudomonas aeruginosa, Oxo-dodecanoyl-homoserine Antibioticsa, biofilm formationa, pigmenta, lectina, rhamnolipid [33,46–50]
  Pseudomonas  fluorescens,   lactone, N-butyryl-homoserine   surfactanta, elastasea

  Pseudomonas aureofaciens   lactone
Vibrio fischeri, Vibrio harveyii, Furanosyl borate diester, various Bioluminescence, cholera toxina, metalloproteasea, enterobactina, [29,51,52]
  Vibrio anguillarum, Vibrio cholerae   N-acyl homoserine lactones   hemolysina, serine, pigmenta, biofilm formationa, motility
Bacillus subtilis Oligopeptides Surfactanta, bactilysin antibiotica, competence, sporulation [53,54]
Staphylococcus aureus, Thiolactone peptides Toxic shock toxina, α-toxina, enterotoxin Ba, proteasea, many [30,55]
  Staphylococcus epidermidis   other virulence factorsa

Enterococcus faecalis Unknown Cytolysina, gelatinasea, serine proteasea [56,57]
Streptomyces sp. Butyrolactones (factor A) Streptomycina, superoxide dismutasea, mycelium formation [58]

aProducts known to be secreted.
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rather than a need for group action. Similarly, 
Li and co-workers have shown that the competence-
stimulating autoinducer of Streptococcus mutans also
stimulates biofilm formation and development of acid
resistance [22,23], suggesting that DNA uptake is
part of a suite of as yet poorly understood
environmental adaptations in Streptococcus.

The regulation of motility by autoinducers could
also reflect the benefits of sensing the physical
structure of the environment rather than the
presence of other bacteria. The presence of a solid
barrier will cause the autoinducer to accumulate, 
and might induce shifting to a mode of motility better
suited to movement along surfaces rather than to
movement free in solution. Although motility is most
often induced by accumulation of the autoinducer, 
in principle, repression of motility by autoinduction
could allow bacteria to increase investment in flagella
or other motility structures only when sufficient
water became available to make movement an option.
(The water films on soil particles and other
environmental surfaces can easily become so thin
that bacterial movement is precluded [18].) Similar
ideas can be applied to autoinducer regulation of
biofilm formation and sporulation.

This new perspective might also clarify other
aspects of regulation by secreted peptides.
Conjugative plasmids in Enterococcus faecalis
identify potential recipient cells by their secretion of
peptides. Although these peptides are often described
as sex pheromones, that is, recipient adaptations to
attract sources of potentially useful genes [24], they
have many of the hallmarks of autoinducers.
Flannagan and Clewell have now shown that the
peptides are derived from the signal sequences of
unrelated lipoproteins [25]; whether they function as

autoinducers has not yet been investigated. One
possibility is that, rather than being invited in by
eager recipients, the plasmids are targeting new
hosts by the peptides they release, in the same way
that mosquitoes exploit the CO2 we emit.

Bacterial bioluminescence remains problematic.
Most discussions focus on bioluminescent species
symbiotic in the light organs of marine animals, and
emphasize the indirect benefits that quorum-regulated
light production confers on the host. However many
non-symbiotic bacterial species also produce light, 
and some of these are known to use autoinduction to
regulate their bioluminescence [26]. Furthermore,
light production has been shown to benefit bacterial
cells directly by recycling reducing equivalents and by
providing photoreactivating wavelengths for DNA
repair [27,28]. Further investigation could show that
light organ environments do have the physical
properties required for true quorum sensing, and that
autoinducers produced there do indeed function as
quorum-sensing systems. However, this would
probably be seen as a secondary adaptation of an
as-yet-unknown function of autoinduction in
free-living bioluminescent bacteria.

The various autoinducer systems characterized 
so far exhibit both surprising unity and surprising
diversity. Both characteristics have been explained 
as adaptations for communication but could result
instead from selection on environmental sensing.
Many organisms use two or more different
autoinducers – these usually differ in physical
properties and so are likely to convey differing
information about the environment. They are also
usually differentially regulated, and so could
themselves regulate the different responses
appropriate to, for example, starvation, drying or
sporulation. Autoinducers shared by many unrelated
bacteria, such as the AI-2 specified by luxS [29], have
been interpreted as adaptations for inter-species
communication [2,7]. Under the diffusion-sensing
hypothesis, sharing would instead occur under
conditions where individual benefits 
are rarely confounded by signals from competitors.
The opposite situation is seen in the many cases
where autoinducers differ dramatically even between
isolates of the same species [19,30–32]. In pathogens
such diversification of autoinducers could be caused
by frequency-dependent selection, perhaps driven by
antagonistic host-recognition systems rather than by
any need for ‘private-channel’ communication [33].

There is currently substantial interest in developing
drugs that target quorum sensing, and autoinducer
transgenes that can be used to manipulate
plant–pathogen and plant–symbiont interactions
[34–36]. A clearer understanding of the function of
autoinducer production might suggest roles for these.
For example, interventions against virulence genes
controlled by autoinducers might be more effective
than previously expected if the response to autoinducer
is not restricted to conditions of high bacterial density.
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Is the molecular basis

of metronidazole

resistance in

microaerophilic

organisms

understood?

George L. Mendz and Francis Mégraud

Metronidazole is an antibiotic that has been effective against many

microaerophilic microorganisms with importance in medicine and animal

husbandry. The development of increasing resistance against current

treatments by many of these organisms has created an urgent need to

establish the molecular bases of resistance, knowledge which will help to

develop novel diagnostic methods and identify new therapeutic targets.

Significant progress has been made in understanding resistance to this

antibiotic in the human pathogens Helicobacter pylori and, to a lesser extent,

Campylobacter spp. However, insufficient knowledge of the physiology and

genetics of these and other related bacteria has led to investigations based on

hypotheses that themselves must be established more thoroughly. This review

presents the status of our current knowledge of metronidazole resistance and

outlines reasons to explain some of the conflicting evidence and controversy in

the interpretation of results in this area.
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Infectious diseases claimed more than 20 million lives
in the year 2001, with most of those deaths occurring
in developing countries. These same regions of the
world serve as incubators for emerging strains of
bacteria, fungi and parasitic protozoa that are
resistant to current antimicrobial therapies. In
addition, the overuse of hitherto potent antibiotics 
in agriculture and medicine in both developed and
developing countries also contributes significantly 
to the pool of resistant microorganisms.

Understanding the molecular basis of resistance to
antibiotics would be an advance in our knowledge of
pathogens of intrinsic scientific value, with many
potential applications. Practical outcomes include the
design of more effective antibiotic compounds, and of
faster and more accurate methods to diagnose the
susceptibility of infections to antimicrobials; proper
targeting and shorter time lags in determining the
resistance status of an infection can be critical factors
in its elimination.

Metronidazole (Mtr) is an important component 
of therapeutic regimes currently used against 
many bacterial and parasitic pathogens. It is a
5-nitroimidazole (Fig. 1) with a nitro group of
–415 mV redox potential. Mtr is administered as an
inactive prodrug and is converted to a cytotoxic form
by anaerobic or microaerobic organisms; the drug is
ineffective in aerobic microorganisms or mammalian
cells, and this is the basis of its selective toxicity. In
the classical definition of susceptibility, a bacterial
strain is considered susceptible to Mtr if it does not
grow in vitro at or above a specific concentration of 
the antibiotic, commonly set at 8 µg ml−1.

The mode of action of Mtr is well characterized in
anaerobic microorganisms, where the 5-nitro group 
of the imidazole ring is reduced via a one-electron
transfer to the nitro-radical anion intermediate
capable of damaging DNA [1]. Activation of Mtr occurs


