
Dealing with assumptions

Chapter 13

Assumptions of t-tests

• Random sample(s)

• Populations are normally 
distributed

• (for 2-sample t) Populations 
have equal variances

Detecting deviations from 
normality

Previous data / theory

Histograms

Quantile plots

Shapiro-Wilk test

Detecting deviations from 
normality: by histogram

Biomass ratio

Frequency



Detecting deviations from 
normality: by quantile plot

Detecting deviations from 
normality: by quantile plot

Normal data

Detecting differences from 
normality: Shapiro-Wilk test

A Shapiro-Wilk test is used to test statistically 
whether a set of data comes from a normal 
distribution.

What to do when the assumptions 
are not true: options

• If the sample sizes are large, sometimes the 
parametric tests work OK anyway

• Transformations

• Non-parametric tests

• Permutation tests 

• Bootstrapping



The normal approximation

Means of large samples are normally 
distributed.

Therefore, the parametric tests on 
large samples work relatively well, 
even for non-normal data.

Rule of thumb: if n > ~50, the normal 
approximations may work.

Parametric tests - Unequal 
variance

Welch�s t-test is ideal.

If sample sizes are equal and large, 
then even a ten-fold difference in 
variance is approximately OK. (But 
Welch’s is still better.)

Data transformations

A data transformation changes each data 
point by some simple mathematical formula.

Log-transformation
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 biomass ratio

ln[biomass ratio]

Carry out the test on the transformed data!

Biomass 
ratio

ln[Biomass 
Ratio]

1.34 0.30

1.96 0.67
2.49 0.91
1.27 0.24
1.19 0.18
1.15 0.14
1.29 0.26

The log transformation is often useful 
when:

• the variable is likely to be the result 
of multiplication or division of various 
components.

• the frequency distribution of the 
data is skewed to the right

• the variance seems to increase as 
the mean gets larger ( in comparisons 
across groups). 

Variance and mean increase 
together --> try the log-transform

Y Y' = ln[Y]
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Other transformations

Arcsine: !" = arcsin !

Square-root: *" = * + ,
-

Reciprocal: *" = ,
.



Example: Confidence interval 
with log-transformed data

Data:  5 12 1024 12398
Log data: 1.61 2.48 6.93 9.43

!"# = 5.11 ()* + = 3.70

!"# ± 01.12 3 ,5()* +
6 = 5.11 ± 3.18 3.704 = 5.11 ± 5.88

−0.993 < <)* + < 10.99

Valid transformations...

Require the same transformation be 
applied to each individual

Have one-to-one correspondence to 
original values

Have a monotonic relationship with 
the original values (e.g., larger values 
stay larger)

Choosing transformations

Must transform each individual in the same 
way

The transformed values must still carry 
biological meaning.

You CANNOT keep trying transformations 
until P <0.05!!!

Non-parametric methods

Assume less about the underlying 
distributions 

Also called "distribution-free"

"Parametric" methods assume a 
distribution or a parameter



Sign test

Non-parametric test

Compares data from one sample to a constant

Simple: for each data point, record whether 
individual is above (+) or below (–) the 
hypothesized constant.

Use a binomial test to compare result to 1/2.

Example: Polygamy and the 
origin of species

Is polygamy associated with higher 
or lower speciation rates?

Arnqvist et al. (2000) Sexual conflict promotes speciation in insects. PNAS 97:10460-10464.

Order Family Multiple mating
group

Number
of

species

Single
mating group

Number
of

species
Beetles Anobiidae Ernobius 53 Xestobium 10

Dermestidae Dermestes 73 Trogoderma 120
Elateridae Agriotes 228 Selatosomus 74

Flies Muscidae Coenosia 353 Delia 289
Cecidomyiidae Rhopalomyia 157 Mayetiola 30
Chironomidae Chironomus !300 Pontomyia 4
Chironomidae Stictochironomus 34 Clunio 18
Drosophilidae
and Culicidae

Drosophilidae 3,400 Culicidae 3,500

Dryomyzidae
and

Calliphoridae

Dryomyzidae 20 Calliphoridae !1,000

Tephritidae Anastrepha 196 Bactrocera 486
Sciaridae and

Bibionidae
Sciaridae 1,750 Bibionidae 660

Scatophagidae Scatophaga 55 Musca 63
Mayflies Siphlonuridae Siphlonurus 37 Caenis 115

Homoptera Psyllidae Cacopsylla !100 Aonidiella 30
Butterflies
and moths

Noctuidae and
Psychidae

Noctuidae 21,000 Psychidae 600

Tortricidae Choristoneura 37 Epiphyas 40
Nymphalidae Eueides

(aliphera clade)
7 Eueides

(vibilia
clade)

5

Nymphalidae Heliconius
(silvaniform

clade)

15 Heliconius
(sarasapho

clade)

7

Nymphalidae Polygonia ! / 18 Nymphalis 6

Etc....

Data: The differences are not normal

-5000 0 5000 10000 20000

43 -47 154 64 127 296 16
-100 -980 -290 1090 -8 -78 70
20940 -3 2 8 12 227 1
61 1 79 78



Hypotheses

H0: The median difference in number of 
species between singly-mating and 
multiply-mating insect groups is 0.

HA: The median difference in number of 
species between these groups is not 0.

7 out of 25 comparisons are negative

43 -47 154 64 127 296 16
-100 -980 -290 1090 -8 -78 70
20940 -3 2 8 12 227 1
61 1 79 78
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∑ 0.5( )i 0.5( )25− i = 0.02164

P = 2 (0.02164) = 0.043

Binomial test on pluses and minuses (compared to p = 0.5):

Sign test in R
polygamyData$difference = 

polygamyData$nSpeciesMultipleMating –
polygamyData$nSpeciesSingleMating

polygamyData$signOfDifference = 
ifelse(polygamyData$difference>0,"Positive", "Negative")

table(polygamyData$signOfDifference)

Negative Positive 
7       18 

binom.test(7,25)
Exact binomial test 
data: 7 and 25 
number of successes = 7, number of trials = 25, p-value = 0.04329 
alternative hypothesis: true probability of success is not equal to 0.5 
95 percent confidence interval: 
0.1207167 0.4938768 
sample estimates: 
probability of success 
0.28

The sign test has very low power

So it is quite likely to not reject a 
false null hypothesis.



Most non-parametric methods 
use RANKS

Rank each data point in all 
samples from lowest to highest.

Lowest data point gets rank 1, 
next lowest gets rank 2, ...

Non-parametric test to compare 
2 groups

The Mann-Whitney U test compares 
the central tendencies of two groups 
using ranks.

Performing a Mann-Whitney U test

First, rank all individuals from both 
groups together in order (for 
example, smallest to largest).

Sum the ranks for all individuals in 
each group --> R1 and R2

Calculating the test statistic, U
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U1 = n1n2 +
n1 n1+1( )
2

− R1
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U2 = n1n2 −U1

U1 is the number of times an individual from pop. 1 has a 
lower rank than an individual from pop. 2, out of all 
pairwise comparisons.



Example: Garter snake 
resistance to newt toxin

Rough-skinned newt

Comparing snake resistance to TTX 
(tetrodotoxin)

Locality Resistance
Benton 0.29
Benton 0.77
Benton 0.96
Benton 0.64
Benton 0.70
Benton 0.99
Benton 0.34
Warrenton 0.17
Warrenton 0.28
Warrenton 0.20
Warrenton 0.20
Warrenton 0.37

This variable is known to be not normally distributed 
within populations.

Hypotheses

H0: The TTX resistance for snakes 
from Benton is the same as for 
snakes from Warrenton.

HA: The TTX resistance for snakes 
from Benton is different from 
snakes from Warrenton.

Calculating the ranks
Locality Resistance Rank
Benton 0.29 5
Benton 0.77 10
Benton 0.96 11
Benton 0.64 8
Benton 0.70 9
Benton 0.99 12
Benton 0.34 6
Warrenton 0.17 1
Warrenton 0.28 4
Warrenton 0.20 2.5
Warrenton 0.20 2.5
Warrenton 0.37 7

Rank sum for Warrenton:  R=1+4+2.5+2.5+7=17



Mann-Whitney test in R 
(equivalent to Wilcoxon rank sum test)

wilcox.test(wholeAnimalResistance ~ locality, data = snakeData)

cannot compute exact p-value with ties 
Wilcoxon rank sum test with continuity correction 

data: wholeAnimalResistance by locality 
W = 33, p-value = 0.01468 
alternative hypothesis: true location shift is not equal to 0

Assumptions of Mann-Whitney 
U test

Both samples are random samples.

Both populations have the same 
shape of distribution.*

* Only necessary when using Mann-Whitney to compare 
means.

Permutation tests 

Used for hypothesis testing on 
measures of association

Mixes the real data randomly

Permutation tests 
1. Variable 1 from an individual is paired with 

variable 2 data  from a randomly chosen 
individual. This is done for all individuals.

2. The estimate is made on the randomized 
data. 

3. The whole process is repeated numerous 
times. The distribution of the randomized 
estimates is the null distribution.



Without replacement

Permutation tests are done without 
replacement.

In other words, all data points are 
used exactly once in each 
permuted data set.

Permutation can be done for any 
test of association between two 

variables

Example: Sage crickets

Sage cricket males 
sometimes offer their 
hind-wings to females 
to eat during mating.

Do females who eat hind-
wings wait longer to re-
mate?

Waiting time to remating in sage cricket females after 
initial mating with either a wingless or winged male 
(presented in ln(days)) 

Male wingless Male winged 

0 1.4 
0.7 1.6 
0.7 1.9 
1.4 2.3 
1.6 2.6 
1.8 2.8 
1.9 2.8 
1.9 2.8 
1.9 3.1 
2.2 3.8 
2.1 3.9 
2.1 4.5 

 4.7 

 



ln(Time to remating): First mate had no wings

ln(Time to remating): First mate had intact wings

Problems:
Unequal variance, 
non-normal distributions

Male 
wingless

Male 
winged

0 1.4
0.7 1.6
0.7 1.9
1.4 2.3
1.6 2.6
1.8 2.8
1.9 2.8
1.9 2.8
1.9 3.1
2.2 3.8
2.1 3.9
2.1 4.5

4.7

Real data: Randomized data:

€ 

Y 1 −Y 2 = −1.41
Male 

wingless
Male 

winged
0.7 2.8
2.3 1.9
1.9 2.1
1.8 1.6
3.8 0
1.4 1.4
1.9 2.2
3.9 2.1
4.7 1.6
2.6 4.5
1.9 2.8
2.8 0.7

3.1

€ 

Y 1 −Y 2 = 0.41

Note that each data point was 
only used once

1000 permutations

P < 0.001



A permutation approach in R
cricketData = read.csv("cricketWingless.csv")

differenceInMeans = function(groupVector, numericVector){
df = data.frame(groupName = groupVector, y = 

numericVector)

means = df %>% group_by(groupName) %>% 
summarize(meanOfGroup = mean(y))

means$meanOfGroup[2] - means$meanOfGroup[1]
}

observedDifference = 
differenceInMeans(cricketData$Treatment, 
cricketData$logDaysToRemating)

observedDifference

[1] -1.413462

permutationDifferenceInMeans = 
function(groupVector, numericVector){

n=length(numericVector)
permutedNumericVector = sample(numericVector, 
size = n, replace=FALSE)

differenceInMeans(groupVector, permutedNumericVector)
}

permutationDifferenceInMeans(cricketData$Treatment, 
cricketData$logDaysToRemating)

[1] -0.6057692

Note: this is just one possible answer from the permutation.

permutedDistribution = replicate(n=10000,
permutationDifferenceInMeans(cricketData$Treatment, 
cricketData$logDaysToRemating))

hist(permutedDistribution)
temp = permutedDistribution<=observedDifference
table(temp)

temp 
FALSE TRUE 
9997    3

So the P-value for this test is P = 2 x 3/10000 = 0.0006


