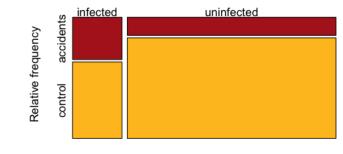
### Contingency analysis: associations between categorical variables

Chapter 9

## Contingency analysis


•Test the independence of two or more categorical variables

•We'll learn one kind: χ<sup>2</sup> contingency analysis

## Toxoplasma and accidents

| OBSERVED    | Infected with<br><i>Toxoplasma</i> | Uninfected | Totals |
|-------------|------------------------------------|------------|--------|
| Accident    | 21                                 | 38         | 59     |
| No accident | 38                                 | 211        | 249    |
| Totals      | 59                                 | 249        | 308    |

## Mosaic plot



infectionStatus

## Hypotheses

H<sub>0</sub>: Being infected with *Toxoplasma* does not affect chance of having a car accident.

H<sub>A</sub>: Being infected with *Toxoplasma* does affect chance of having a car accident.

## Calculating the expectations

With independence,

Pr[Toxoplasma AND accident] =

Pr[Toxoplasma] × Pr[accident]

## Calculating the expectations

| EXPECTED    | Infected<br>with<br>Toxoplasma | Uninfected | Totals |
|-------------|--------------------------------|------------|--------|
| Accident    |                                |            | 59     |
| No accident |                                |            | 249    |
| Totals      | 59                             | 249        | 308    |

Pr[Infection] = 59/308=0.1916

## Calculating the expectations

| <u>EXPECTED</u> | Infected<br>with<br><i>Toxoplasma</i> | Uninfected | Totals |
|-----------------|---------------------------------------|------------|--------|
| Accident        |                                       |            | 59     |
| No accident     |                                       |            | 249    |
| Totals          | 59                                    | 249        | 308    |

Pr[Infection] = 59/308=0.1916

Pr[No accident] = 249/308= 0.8084

| EXPECTED    | Infected<br>with<br><i>Toxoplasma</i> | Uninfected | Totals |
|-------------|---------------------------------------|------------|--------|
| Accident    |                                       |            | 59     |
| No accident | 47.7                                  |            | 249    |
| Totals      | 59                                    | 249        | 308    |

Pr[Infection] = 59/308=0.1916

Pr[No accident] = 249/308= 0.8084

If  $H_0$  is true, Pr[Infection AND No accident] = (0.1916)(0.8084) = 0.1548

 $Expected = 0.1548 \times 308 = 47.7$ 

## Calculating $\chi^2$

$$\chi^{2} = \sum_{i} \frac{(Oberved_{i} - Expected_{i})^{2}}{Expected_{i}}$$
$$= \frac{(21 - 11.3)^{2}}{11.3} + \frac{(38 - 47.7)^{2}}{47.7} + \frac{(38 - 47.7)^{2}}{47.7} + \frac{(211 - 201.3)^{2}}{201.3}$$
$$= 12.7$$

## Calculating the expectations

| EXPECTED    | Infected<br>with<br><i>Toxoplasma</i> | Uninfected | Totals |
|-------------|---------------------------------------|------------|--------|
| Accident    | 11.3                                  | 47.7       | 59     |
| No accident | 47.7                                  | 201.3      | 249    |
| Totals      | 59                                    | 249        | 308    |

Degrees of freedom

*df*= (# columns -1 )(#rows -1)

For *Toxoplasma* example, df = (2-1)(2-1) = 1

## Conclusion

 $\chi^2 = 12.7 \ >> \chi^2_{1,\alpha=0.05} = 3.84,$ 

We can reject the null hypothesis of independence. Toxoplasma infection status did covary with having car accidents.

## Conclusion, using R

chisq.test(toxoData\$infectionStatus, toxoData\$driverType, correct = FALSE)

Pearson's Chi-squared test

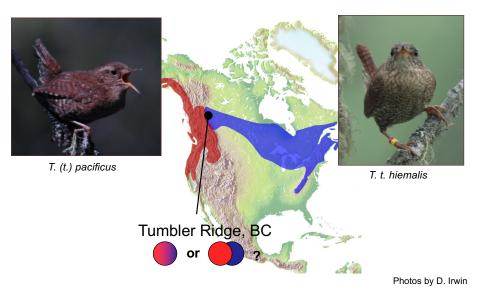
```
data: toxoData$infectionStatus and
toxoData$driverType
X-squared = 12.733, df = 1, p-value =
0.0003593
```

## Assumptions

This  $\chi^2$  test is just a special case of the  $\chi^2$  goodness-of-fit test, so the same rules apply.

You can't have any expectation less than 1, and no more than 20% < 5.

## Fisher's exact test


For 2 x 2 contingency analysis

Does not make assumptions about the size of expectations

R (or other programs) will do it, but cumbersome to do by hand

#### Winter Wren (Troglodytes troglodytes)

Are western and eastern forms (currently considered subspecies) actually reproductively isolated, and therefore separate species?



#### Association of DNA and song: The winter wren contact zone

| <u>OBSERVED</u>  | Western<br>song | Eastern<br>song | Totals |
|------------------|-----------------|-----------------|--------|
| Western<br>mtDNA | 12              | 0               | 12     |
| Eastern mtDNA    | 0               | 4               | 4      |
| Totals           | 12              | 4               | 16     |

Data from Toews & Irwin 2008, Molecular Ecology

## Calculating the expectations

| <u>EXP.</u>      | Western<br>song | Eastern<br>song | Totals |
|------------------|-----------------|-----------------|--------|
| Western<br>mtDNA |                 |                 | 12     |
| Eastern<br>mtDNA |                 |                 | 4      |
| Totals           | 12              | 4               | 16     |

A shortcut for calculating expectations (assuming  $H_0$  is true):

Exp[row i, column j] =

(row i total)(column j total) grand total

Exp[w mtDNA, w song] = 12\*12/16 = 9

### Comparing observed and expected

| <u>OBS.</u>      | Western<br>song | Eastern<br>song | Totals |
|------------------|-----------------|-----------------|--------|
| Western<br>mtDNA | 12              | 0               | 12     |
| Eastern<br>mtDNA | 0               | 4               | 4      |
| Totals           | 12              | 4               | 16     |

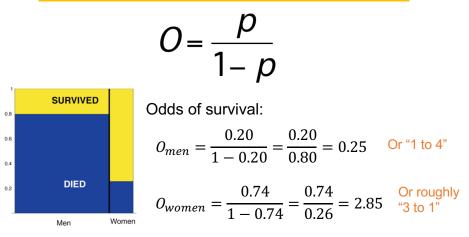
| EXP.             | Western<br>song | Eastern<br>song | Totals |
|------------------|-----------------|-----------------|--------|
| Western<br>mtDNA | 9               | 3               | 12     |
| Eastern<br>mtDNA | 3               | 1               | 4      |
| Totals           | 12              | 4               | 16     |

Too many of the expected are below 5, so we cannot use the  $\chi^2$  contingency test. Instead, we use a computer to do Fisher's exact test:

P = 0.00055, so we reject the  $H_0$  of no association.

## Fisher's exact test in R

#### fisher.test(wrenData\$song,wrenData\$mtDNA)


Fisher's Exact Test for Count Data data: wrenData\$song and wrenData\$mtDNA p-value = 0.0005495 alternative hypothesis: true odds ratio is not

equal to 1 95 percent confidence interval: 4.616679 Inf sample estimates:

odds ratio Inf

## Odds

The probability of success divided by the probability of failure.



## Odds ratio

The odds of success in one group divided by the odds of success in another group.

#### Used often in medical research

|                                                   | Number of bad thing  |
|---------------------------------------------------|----------------------|
| $OR = \frac{Odds \text{ in treatment group}}{OR}$ | Number of good thing |
| OK – Odds in Control group                        | Number of bad thing  |
|                                                   | Number of good thing |

OR<1 means treatment helps; OR>1 means treatment makes things worse.

# Odds ratio: ABO blood type and hospitalization for COVID-19

|              | A    | other |
|--------------|------|-------|
| Hospitalized | 670  | 1105  |
| Control      | 1188 | 2506  |
|              |      |       |

$$OR = \frac{\frac{670}{1188}}{\frac{1105}{2506}} = 1.28$$

# Odds ratio: ABO blood type and hospitalization for COVID-19

ABOCOVIDData\$Hospitalized = factor(ABOCOVIDData\$Hospitalized, levels = c("Hospital","Control")) ABOCOVIDData\$typeA = factor(ABOCOVIDData\$typeA, levels = c("A","notA"))

ABOtable = table(ABOCOVIDData\$Hospitalized, ABOCOVIDData\$typeA)

oddsratio(ABOtable, method = "wald")

# Odds ratio: ABO blood type and hospitalization for COVID-19

| <pre>oddsratio(ABOtable, method = "wald")</pre> |       |       |          |          |   |
|-------------------------------------------------|-------|-------|----------|----------|---|
|                                                 | А     | notA  |          |          |   |
| Hospital                                        | 670   | 1105  |          |          |   |
| Control                                         | 1188  | 2506  |          |          |   |
|                                                 |       |       |          |          |   |
| \$data                                          |       |       |          |          |   |
|                                                 | A     | notA  | Total    |          |   |
| Hospital                                        | 670   | 1105  | 1775     |          |   |
| Control                                         | 1188  | 2506  | 3694     |          |   |
| Total                                           | 1858  | 3611  | 5469     |          |   |
|                                                 |       |       |          |          |   |
| \$measure                                       |       |       |          |          |   |
|                                                 | odds  | ratio | o with 9 | 5% C.I.  |   |
|                                                 | esti  | mate  | lower    | upper    |   |
| Hospital                                        | 1.000 | 000   | NA       | NA       |   |
| Control                                         | 1.279 | 019 1 | .136407  | 1.439528 | ] |