Fitting probability models to frequency data

Discrete distribution

A probability distribution describing a discrete numerical random variable

For example,

- •Number of heads from 10 flips of a coin
- •Number of flowers in a square meter
- •Number of disease outbreaks in a year

Hypotheses for χ^2 test

H₀: The data come from a particular discrete probability distribution.

 H_A : The data do <u>not</u> come from that distribution.

 χ^2 Goodness-of-fit test

Compares counts to a discrete probability distribution

Test statistic for χ^2 test

 $\chi^{2} = \sum_{all \ classes} \frac{\left(Observed_{i} - Expected_{i}\right)^{2}}{Expected_{i}}$

Month	Number of NHL players	
January	86	
February	99	
March	103	
April	90	
May	102	
June	68	
July	100	
August	64	
September	61	
October	77	
November	57	
December	63	

Sum

Data from https://www.quanthockey.com/nhl/birth-month-totals for 2019-2020

970

A *Goodness-of-Fit test* compares count data to a model of the expected frequencies of a set of categories.

Hypotheses for birth month example

 H_0 : The probability of a NHL birth occurring on any given month is equal to national proportions.

 H_A : The probability of a NHL birth occurring on any given month is *not* equal to national proportions.

NHL compared to all Canadians

Number of	Proportion	
NHL	Canadian	
players	births	
86	0.081	
99	0.077	
103	0.087	
90	0.086	
102	0.09	
68	0.086	
100	0.088	
64	0.085	
61	0.085	
77	0.082	
57	0.076	
63	0.077	
970	1	
	Number of NHL players 86 99 103 90 102 68 100 64 61 77 57 63	Number of NHL Proportion Canadian players births 86 0.081 99 0.077 103 0.087 90 0.086 102 0.09 68 0.086 100 0.088 64 0.085 61 0.085 77 0.082 57 0.076 63 0.077

Computing Expected values

	Number of NHL	Proportion Canadian	
Month	players	births	Expected
January	86	0.081	78.57
February	99	0.077	74.69
March	103	0.087	84.39
April	90	0.086	83.42
May	102	0.09	87.3
June	68	0.086	83.42
July	100	0.088	85.36
August	64	0.085	82.45
September	61	0.085	82.45
October	77	0.082	79.54
November	57	0.076	73.72
December	63	0.077	74.69
Sum	970	1	970

The calculation for January

$$\frac{(Observed - Expected)^2}{Expected} = \frac{(86 - 78.57)^2}{78.57} = 0.7026$$

Calculating χ^2

$$\chi^{2} = \sum_{all \ classes} \frac{(Observed - Expected)^{2}}{Expected}$$
$$= \begin{pmatrix} 0.703 + 7.912 + 4.104 + 0.519 + 2.475 + 2.850 + \\ 2511 + 4.129 + 5.580 + 0.081 + 3.792 + 1.830 \end{pmatrix}$$
$$= 36.5$$

The sampling distribution of χ^2 by simulation

Sampling distribution of χ^2 by the χ^2 distribution

Degrees of freedom

The number of degrees of freedom of a test specifies which of a family of distributions to use.

Degrees of freedom for χ^2 test

- df = (Number of categories)
 - (Number of parameters estimated from the data)
 - 1

Degrees of freedom for NHL month of birth

$$df = 12 - 0 - 1 = 11$$

Finding the *P*-value

Critical value

The value of the test statistic where $P = \alpha$.

Table A - χ^2 distribution

					0	ι				
df	0.999	0.995	0.99	0.975	0.95	0.05	0.025	0.01	0.005	0.001
1	0.0000016	0.000039	0.00016	0.00098	0.00393	3.84	5.02	6.63	7.88	10.83
2	0.002	0.01	0.02	0.05	0.10	5.99	7.38	9.21	10.60	13.82
3	0.02	0.07	0.11	0.22	0.35	7.81	9.35	11.34	12.84	16.27
4	0.09	0.21	0.30	0.48	0.71	9.49	11.14	13.28	14.86	18.47
5	0.21	0.41	0.55	0.83	1.15	11.07	12.83	15.09	16.75	20.52
6	0.38	0.68	0.87	1.24	1.64	12.59	14.45	16.81	18.55	22.46
7	0.60	0.99	1.24	1.69	2.17	14.07	16.01	18.48	20.28	24.32
8	0.86	1.34	1.65	2.18	2.73	15.51	17.53	20.09	21.95	26.12
9	1.15	1.73	2.09	2.70	3.33	16.92	19.02	21.67	23.59	27.88
10	1.48	2.16	2.56	3.25	3.94	18.31	20.48	23.21	25.19	29.59
11	1.83	2.60	3.05	3.82	4.57	19.68	21.92	24.72	26.76	31.26
12	2.21	3.07	3.57	4.40	5.23	21.03	23.34	26.22	28.30	32.91

The 5% critical value

Goodness of fit in R

P<0.05,

so we can reject the null hypothesis

NHL players are not born in the same proportions per month as the population at large.

Test statistics

A *test statistic* is a number calculated from the data and the null hypothesis that can be compared to a standard distribution to find the *P*-value of the test.

Test Statistics and Hypothesis Testing

χ^2 test as approximation of binomial test

 χ^2 goodness-of-fit test works even when there are only two categories, so it can be used as a substitute for the binomial test.

Very useful if the number of data points is large.

See text for an example.

Assumptions of χ^2 test

- •No more than 20% of categories have *Expected*<5
- •No category with *Expected* \leq 1

Estimating parameters from data

HUU (Hyperuricosuria and hyperuricemia) caused by a mutation in the SLC2A9 gene

Zierath, S. 2017. Frequency of five disease-causing genetic mutations in a large mixed-breed dog population (2011–2012). PLoS ONE 12(11): e0188543.

Estimating parameters from data

The expectation for these frequencies isHomozygous mutant: q^2 Heterozygote:2 q (1-q)Homozygous healthy: $(1-q)^2$

Estimating parameters from data

34,118 mixed breed dogs tested:

57 Homozygous for mutation 1517 Heterozygotes 32,544 Homozygous for wild type

Do these genotypes appear in frequencies predicted by random pairing of alleles?

Zierath, S. 2017. Frequency of five disease-causing genetic mutations in a large mixed-breed dog population (2011–2012). PLoS ONE 12(11): e0188543.

Estimating parameters from data

H₀: Genotype frequencies follow predictions of random association of alleles:

 $q^2 : 2 q (1-q) : (1-q)^2$

But what is the value of q?

Estimating parameters from data

But what is the value of q?

 $q = \frac{Freq.\,homozygote + \frac{1}{2}Freq.\,heterozygote}{Total\,number}$

$$\hat{q} = \frac{57 + 1517/2}{34118} = 0.024$$

Estimating parameters from data

Expected values:

Homozygous mutant:	\widehat{q}^2 n	=	19.5
Heterozygote:	2	=	1592.0
Homozygous healthy:	$(1 - \hat{q})^2 n$	= (32506.5

But remember – we had to estimate one parameter (\hat{q}) from the data.

Estimating parameters from data

$$\chi^2 = \frac{(57 - 19.5)^2}{19.5} + \frac{(1517 - 1592.0)^2}{1592.0} + \frac{(32544 - 32506.5)^2}{32506.5} = 75.8$$

df = Number of classes – number of parameters estimated from data – 1 = 3 – 1 – 1 = 1

We had to estimate one parameter (\hat{q}) from the data.

Estimating parameters from data

pchisq(sum(chiParts),df = 1, lower.tail=FALSE)
[1] 3.217808 e-18

Therefore $P = 3.2 \times 10^{-18}$, and we reject the null hypothesis. These genotypes do not occur as we would expect by random combinations of alleles.

Fitting other distributions: the Poisson distribution

The Poisson distribution describes the probability that a certain number of events occur in a block of time or space, when those events happen independently of each other and occur with equal probability at every point in time or space.

Poisson distribution

$$\Pr[X] = \frac{e^{-\mu} \mu^X}{X!}$$

Q: Is the outcome of a soccer game (at this level) random?

In other words, is the number of goals per team distributed as expected by pure chance?

Hypotheses

H₀: Number of goals per side follows a Poisson distribution.

H_A: Number of goals per side does not follow a Poisson distribution.

World Cup 2002 scores

Number of goals for a team (World Cup 2002)

Number of goals	Frequency
0	37
1	47
2	27
3	13
4	2
5	1
6	0
7	0
8	1
Total	128

What's the mean, μ ?

$$\overline{x} = \frac{37(0) + 47(1) + 27(2) + 13(3) + 2(4) + 1(5) + 1(8)}{128}$$
$$= \frac{161}{128}$$
$$= 1.26$$

Poisson with $\mu = 1.26$

Example:

$$\Pr[2] = \frac{e^{-\mu}\mu^{X}}{X!} = \frac{e^{-1.26}(1.26)^{2}}{2!} = \frac{(0.284)1.59}{2} = 0.225$$

Poisson with $\mu = 1.26$

	Х	Pr[X]
	0	0.284
	1	0.357
	2	0.225
	3	0.095
	4	0.030
-	5	0.008
	6	0.002
	7	0
	≥8	0

Finding the *Expected*

Х	Pr[X]	Expected
0	0.284	36.3
1	0.357	45.7
2	0.225	28.8
3	0.095	12.1
4	0.030	3.8
5	0.008	1.0
6	0.002	0.2
7	0	0.04
≥8	0	0.007

Too small!

Calculating χ^2

Х	Expected	Observed	$\frac{\left(Observed_i - Expected_i\right)^2}{Expected_i}$
0	36.3	37	0.013
1	45.7	47	0.037
2	28.8	27	0.113
3	12.1	13	0.067
≥4	5.0	4	0.200

 $\frac{\left(Observed_{i} - Expected_{i}\right)^{2}}{Expected_{i}} = 0.429$ $\chi^2 = \sum_{all \ classes}$

Degrees of freedom

Critical value

- df = (Number of categories)
 - (Number of parameters estimated from the data)
 - 1
 - = 5 1 1 = 3

	α									
df	0.999	0.995	0.99	0.975	0.95	0.05	0.025	0.01	0.005	0.001
1	0.0000016	0.000039	0.00016	0.00098	0.00393	3.84	5.02	6.63	7.88	10.83
2	0.002	0.01	0.02	0.05	0.10	5.99	7.38	9.21	10.60	13.82
3	0.02	0.07	0.11	0.22	0.35	7.81	9.35	11.34	12.84	16.27
4	0.09	0.21	0.30	0.48	0.71	9.49	11.14	13.28	14.86	18.47
5	0.21	0.41	0.55	0.83	1.15	11.07	12.83	15.09	16.75	20.52
6	0.38	0.68	0.87	1.24	1.64	12.59	14.45	16.81	18.55	22.46
7	0.60	0.99	1.24	1.69	2.17	14.07	16.01	18.48	20.28	24.32
8	0.86	1.34	1.65	2.18	2.73	15.51	17.53	20.09	21.95	26.12
9	1.15	1.73	2.09	2.70	3.33	16.92	19.02	21.67	23.59	27.88
10	1.48	2.16	2.56	3.25	3.94	18.31	20.48	23.21	25.19	29.59
11	1.83	2.60	3.05	3.82	4.57	19.68	21.92	24.72	26.76	31.26
12	2.21	3.07	3.57	4.40	5.23	21.03	23.34	26.22	28.30	32.91

Comparing χ^2 to the critical value $\chi^2 = 0.429$ $\chi^2_3 = 7.81$ 0.429 < 7.81

pchisq(0.429,df = 3, lower.tail=FALSE)
[1] 0.9341887

So we cannot reject the null hypothesis.

There is no evidence that the score of a World Cup Soccer game is not Poisson distributed.

World Cup 2002 scores

