Fitting probability models to frequency data

χ^{2} Goodness-of-fit test

Compares counts to a discrete probability distribution

Discrete distribution

A probability distribution describing a discrete numerical random variable

For example,

- Number of heads from 10 flips of a coin
- Number of flowers in a square meter
- Number of disease outbreaks in a year

Hypotheses for χ^{2} test

H_{0} : The data come from a particular discrete probability distribution.
H_{A} : The data do not come from that distribution.

Test statistic for χ^{2} test

$\chi^{2}=\sum_{\text {all classes }} \frac{\left(\text { Observed }_{i}-\text { Expected }_{i}\right)^{2}}{\text { Expected }_{i}}$
Number
of NHL
Mlayers $|$

Data from https://www.quanthockey.com/nh//birth-month-totals for 2019-2020

A Goodness-of-Fit test compares count data to a model of the expected frequencies of a set of categories.

Hypotheses for birth month example

H_{0} : The probability of a NHL birth occurring on any given month is equal to national proportions.
H_{A} : The probability of a NHL birth occurring on any given month is not equal to national proportions.

Computing Expected values

	Number of NHL players	Proportion Canadian births	Expected
Month	86	0.081	78.57
January	99	0.077	74.69
February	103	0.087	84.39
March	90	0.086	83.42
April	102	0.09	87.3
May	68	0.086	83.42
June	100	0.088	85.36
July	64	0.085	82.45
August	61	0.085	82.45
September	77	0.082	79.54
October	57	0.076	73.72
November	63	0.077	74.69
December			

NHL compared to all Canadians

$\left.$| Number of |
| :--- | ---: | ---: |
| NHL |
| players | | Proportion |
| ---: |
| Canadian |
| births | \right\rvert\,

The calculation for January

$$
\frac{(\text { Observed }- \text { Expected })^{2}}{\text { Expected }}=\frac{(86-78.57)^{2}}{78.57}=0.7026
$$

Calculating χ^{2}

$$
\begin{aligned}
\chi^{2} & =\sum_{\text {all classes }} \frac{(\text { Observed }- \text { Expected })^{2}}{\text { Expected }} \\
& =\binom{0.703+7.912+4.104+0.519+2.475+2.850+}{2511+4.129+5.580+0.081+3.792+1.830} \\
& =36.5
\end{aligned}
$$

The sampling distribution of χ^{2} by simulation

Sampling distribution of χ^{2} by the χ^{2} distribution

Degrees of freedom

The number of degrees of freedom of a test specifies which of a family of distributions to use.

Degrees of freedom for χ^{2} test

```
df = (Number of categories)
    - (Number of parameters estimated from the data)
    -1
```


Degrees of freedom for NHL month of birth

$$
d f=12-0-1=11
$$

Critical value

The value of the test statistic where $P=\alpha$.

Table A - χ^{2} distribution

df	α									
	0.999	0.995	0.99	0.975	0.95	0.05	0.025	0.01	0.005	0.001
1	0.0000016	0.000039	0.00016	0.00098	0.00393	3.84	5.02	6.63	7.88	10.83
2	0.002	0.01	0.02	0.05	0.10	5.99	7.38	9.21	10.60	13.82
3	0.02	0.07	0.11	0.22	0.35	7.81	9.35	11.34	12.84	16.27
4	0.09	0.21	0.30	0.48	0.71	9.49	11.14	13.28	14.86	18.47
5	0.21	0.41	0.55	0.83	1.15	11.07	12.83	15.09	16.75	20.52
6	0.38	0.68	0.87	1.24	1.64	12.59	14.45	16.81	18.55	22.46
7	0.60	0.99	1.24	1.69	2.17	14.07	16.01	18.48	20.28	24.32
8	0.86	1.34	1.65	2.18	2.73	15.51	17.53	20.09	21.95	26.12
9	1.15	1.73	2.09	2.70	3.33	16.92	19.02	21.67	23.59	27.88
10	1.48	2.16	2.56	3.25	3.94	18.31	20.48	23.21	25.19	29.59
11	1.83	2.60	3.05	3.82	4.57	19.68	21.92	24.72	26.76	31.26
12	2.21	3.07	3.57	4.40	5.23	2i.03-	23.34	26.22	28.30	32.91

The 5\% critical value

Goodness of fit in R

so we can reject the null hypothesis
NHL players are not born in the same proportions per month as the population at large.

```
```

NHLBirthMonthTable = table(NHLPlayerData\$BirthMonth)

```
```

NHLBirthMonthTable = table(NHLPlayerData\$BirthMonth)
CanadianBirthMonthProportions =
CanadianBirthMonthProportions =
c(0.081, 0.077, 0.087, 0.086, 0.09, 0.086, 0.088,
c(0.081, 0.077, 0.087, 0.086, 0.09, 0.086, 0.088,
0.085, 0.085, 0.082, 0.076, 0.077)
0.085, 0.085, 0.082, 0.076, 0.077)
chisq.test(NHLBirthMonthTable,
chisq.test(NHLBirthMonthTable,
p = CanadianBirthMonthProportions)

```
```

 p = CanadianBirthMonthProportions)
    ```
```


Test statistics

A test statistic is a number calculated from the data and the null hypothesis that can be compared to a standard distribution to find the P-value of the test.

χ^{2} test as approximation of binomial test

χ^{2} goodness-of-fit test works even when there are only two categories, so it can be used as a substitute for the binomial test.

Very useful if the number of data points is large.

Assumptions of χ^{2} test

-No more than 20\% of categories have Expected<5
-No category with Expected ≤ 1

See text for an example.

Estimating parameters from data

HUU (Hyperuricosuria and hyperuricemia) caused by a mutation in the SLC2A9 gene

Zierath, S. 2017. Frequency of five disease-causing genetic mutations in a large mixed-breed dog population (2011-2012). PLoS ONE 12(11): e0188543.

Estimating parameters from data
The expectation for these frequencies is
Homozygous mutant: q^{2}
Heterozygote: $2 q(1-q)$
Homozygous healthy: $(1-q)^{2}$

Estimating parameters from data

34,118 mixed breed dogs tested:

57 Homozygous for mutation
1517 Heterozygotes
32,544 Homozygous for wild type

Do these genotypes appear in
frequencies predicted by random
pairing of alleles?

Zierath, S. 2017. Frequency of five disease-causing genetic mutations in a large mixed-breed dog
population (2011-2012). PLOS ONE 12(11) : e0188543.

Estimating parameters from data
H_{0} : Genotype frequencies follow predictions of random association of alleles:

$$
q^{2}: 2 q(1-q):(1-q)^{2}
$$

But what is the value of q ?

Estimating parameters from data

But what is the value of q ?

$$
\begin{gathered}
q=\frac{\text { Freq.homozygote }+\frac{1}{2} \text { Freq. heterozygote }}{\text { Total number }} \\
\hat{q}=\frac{57+1517 / 2}{34118}=0.024
\end{gathered}
$$

Estimating parameters from data

```
\(\chi^{2}=\frac{(57-19.5)^{2}}{19.5}+\frac{(1517-1592.0)^{2}}{1592.0}+\frac{(32544-32506.5)^{2}}{32506.5}=75.8\)
    \(d f=\) Number of classes - number of parameters
            estimated from data - 1
    \(=3-1-1=1\)
```

We had to estimate one parameter (\hat{q}) from the data.

Estimating parameters from data

Expected values:

Homozygous mutant: $\hat{q}^{2} n=19.5$
Heterozygote: $\quad 2 \hat{q}(1-\hat{q}) n=1592.0$
Homozygous healthy: $(1-\hat{q})^{2} n=32506.5$

But remember - we had to estimate one parameter (\widehat{q}) from the data.

Estimating parameters from data

```
pchisq(sum(chiParts),df = 1, lower.tail=FALSE)
[1] 3.217808 e-18
```

Therefore $P=3.2 \times 10^{-18}$, and we reject the null hypothesis. These genotypes do not occur as we would expect by random combinations of alleles.

Fitting other distributions: the Poisson distribution

The Poisson distribution describes the probability that a certain number of events occur in a block of time or space, when those events happen independently of each other and occur with equal probability at every point in time or space.

Poisson distribution

$$
\operatorname{Pr}[X]=\frac{e^{-\mu} \mu^{X}}{X!}
$$

Example: Number of goals per side in World Cup Soccer

Q: Is the outcome of a soccer game (at this level) random?

In other words, is the number of goals per team distributed as expected by pure chance?

Hypotheses

H_{o} : Number of goals per side follows a Poisson distribution.
H_{A} : Number of goals per side does not follow a Poisson distribution.

Number of goals for a team (World Cup 2002)

| Number of goals | Frequency |
| :---: | :---: |
| 0 | 37 |
| 1 | 47 |
| 2 | 27 |
| 3 | 13 |
| 4 | 2 |
| 5 | 1 |
| 6 | 0 |
| 7 | 0 |
| 8 | 1 |
| Total | 128 |

World Cup 2002 scores

$$
\begin{aligned}
\bar{x} & =\frac{37(0)+47(1)+27(2)+13(3)+2(4)+1(5)+1(8)}{128} \\
& =\frac{161}{128} \\
& =1.26
\end{aligned}
$$

Poisson with $\mu=1.26$

Example:

$$
\operatorname{Pr}[2]=\frac{e^{-\mu} \mu^{X}}{X!}=\frac{e^{-1.26}(1.26)^{2}}{2!}=\frac{(0.284) 1.59}{2}=0.225
$$

Finding the Expected

| X | $\operatorname{Pr}[\mathrm{X}]$ | Expected |
| :---: | :---: | :---: |
| 0 | 0.284 | 36.3 |
| 1 | 0.357 | 45.7 |
| 2 | 0.225 | 28.8 |
| 3 | 0.095 | 12.1 |
| 4 | 0.030 | 3.8 |
| 5 | 0.008 | 1.0 |
| 6 | 0.002 | 0.2 |
| 7 | 0 | 0.04 |
| ≥ 8 | 0 | 0.007 |

Too small!

Poisson with $\mu=1.26$

| X | $\operatorname{Pr}[X]$ |
| :---: | :---: |
| 0 | 0.284 |
| 1 | 0.357 |
| 2 | 0.225 |
| 3 | 0.095 |
| 4 | 0.030 |
| 5 | 0.008 |
| 6 | 0.002 |
| 7 | 0 |
| ≥ 8 | 0 |

Calculating χ^{2}

| X | Expected | Observed | $\frac{(\text { Obsereved }, \text {-Eppectele })^{2}}{\text { Expected }}$ |
| :---: | :---: | :---: | :---: |
| 0 | 36.3 | 37 | 0.013 |
| 1 | 45.7 | 47 | 0.037 |
| 2 | 28.8 | 27 | 0.113 |
| 3 | 12.1 | 13 | 0.067 |
| ≥ 4 | 5.0 | 4 | 0.200 |

$$
\chi^{2}=\sum_{\text {all classes }} \frac{\left(\text { Observed }_{i}-\text { Expected }_{i}\right)^{2}}{\text { Expected }_{i}}=0.429
$$

Degrees of freedom

```
df = (Number of categories)
    - (Number of parameters estimated from the data)
    -1
    =5-1-1=3
```

Comparing χ^{2} to the critical value

$$
\begin{aligned}
& \chi^{2}=0.429 \\
& \chi_{3}^{2}=7.81 \\
& 0.429<7.81
\end{aligned}
$$

pchisq(0.429,df $=3$, lower.tail=FALSE) [1] 0.9341887

So we cannot reject the null hypothesis.
There is no evidence that the score of a World Cup Soccer game is not Poisson distributed.

Critical value

| | $\boldsymbol{\alpha}$ | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| df | $\mathbf{0 . 9 9 9}$ | $\mathbf{0 . 9 9 5}$ | $\mathbf{0 . 9 9}$ | $\mathbf{0 . 9 7 5}$ | $\mathbf{0 . 9 5}$ | $\mathbf{0 . 0 5}$ | $\mathbf{0 . 0 2 5}$ | $\mathbf{0 . 0 1}$ | $\mathbf{0 . 0 0 5}$ | $\mathbf{0 . 0 0 1}$ |
| 1 | 0.0000016 | 0.000039 | 0.00016 | 0.00098 | 0.00393 | 3.84 | 5.02 | 6.63 | 7.88 | 10.83 |
| 2 | 0.002 | 0.01 | 0.02 | 0.05 | 0.10 | 5.99 | 7.38 | 9.21 | 10.60 | 13.82 |
| 3 | 0.02 | 0.07 | 0.11 | 0.22 | 0.35 | 7.81 | 9.35 | 11.34 | 12.84 | 16.27 |
| 4 | 0.09 | 0.21 | 0.30 | 0.48 | 0.71 | | 9.49 | 11.14 | 13.28 | 14.86 |
| 5 | 0.21 | 0.41 | 0.55 | 0.83 | 1.15 | 11.07 | 12.83 | 15.09 | 16.75 | 20.52 |
| 6 | 0.38 | 0.68 | 0.87 | 1.24 | 1.64 | 12.59 | 14.45 | 16.81 | 18.55 | 22.46 |
| 7 | 0.60 | 0.99 | 1.24 | 1.69 | 2.17 | 14.07 | 16.01 | 18.48 | 20.28 | 24.32 |
| 8 | 0.86 | 1.34 | 1.65 | 2.18 | 2.73 | 15.51 | 17.53 | 20.09 | 21.95 | 26.12 |
| 9 | 1.15 | 1.73 | 2.09 | 2.70 | 3.33 | 16.92 | 19.02 | 21.67 | 23.59 | 27.88 |
| 10 | 1.48 | 2.16 | 2.36 | 3.25 | 3.94 | 18.31 | 20.48 | 23.21 | 25.19 | 29.59 |
| 11 | 1.83 | 2.60 | 3.05 | 3.82 | 4.57 | 19.68 | 21.92 | 24.72 | 26.76 | 31.26 |
| 12 | 2.21 | 3.07 | 3.57 | 4.40 | 5.23 | 21.03 | 23.34 | 26.22 | 28.30 | 32.91 |

