
Hypothesis testing

Chapter 6

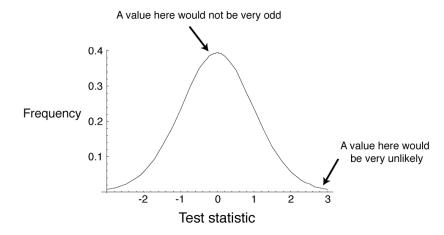
Hypothesis testing asks how unusual it is to get data that differ from the null hypothesis.

If the data would be quite unlikely under H_0 , we reject H_0 .

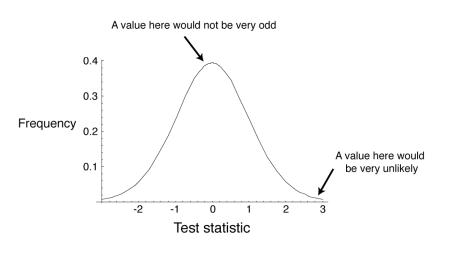
Hypotheses are about populations, but are tested with data from samples

Hypothesis testing usually assumes that sampling is random.

Null hypothesis: a specific statement about a population parameter made for the purposes of argument.

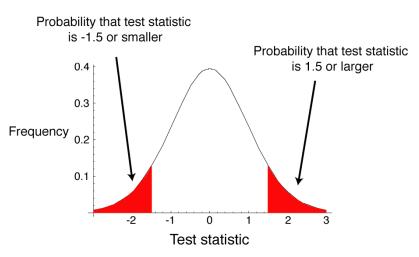

Alternate hypothesis: represents all other possible parameter values except that stated in the null hypothesis. The *null hypothesis* is usually the simplest statement, whereas the *alternative hypothesis* is usually the statement of greatest interest.

A good null hypothesis would be interesting if proven wrong. A null hypothesis is specific; an alternate hypothesis is not.


Test Statistic

A number calculated to represent the match between a set of data and the null hypothesis

Can be compared to a general distribution to infer probability



Possible outcomes from samples under null hypothesis

A test statistic summarizes the match between the data and the null hypothesis

P-value

A *P*-value is the probability of getting the data, or something as or more unusual, if the null hypothesis were true.

How to find P-values

Simulation

Parametric tests

Permutation

Hypothesis testing: an example

Does a red shirt help win wrestling?

The experiment and the results

Animals use red as a sign of aggression

Does red influence the outcome of wrestling, taekwondo, and boxing?

- 16 of 20 rounds had more red-shirted than blueshirted winners in these sports in the 2004 Olympics
- Shirt color was randomly assigned

Hill, RA, and RA Burton 2005. Red enhances human performance in contests Nature 435:293.

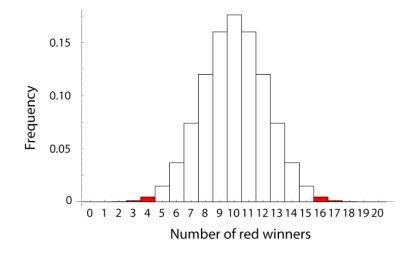
Stating the hypotheses

 H_0 : Red- and blue-shirted athletes are <u>equally likely</u> to win (*proportion* = 0.5).

H_A: Red- and blue-shirted athletes are <u>not equally likely</u> to win (proportion \neq 0.5).

Estimating the value

16 of 20 is a proportion of proportion = 0.8


This is a discrepancy of 0.3 from the proportion proposed by the null hypothesis, *proportion* = 0.5

Is this discrepancy by chance alone?:

Estimating the probability of such an extreme result

The *null distribution* for a test statistic is the probability distribution of alternative outcomes when a random sample is taken from a population corresponding to the null expectation.

The null distribution of the sample number of red wins

Calculating the *P*-value from the null distribution

The P-value is calculated as

 $P = 2 \times [Pr(16) + Pr(17) + Pr(18) + Pr(19) + Pr(20)] = 0.012.$

Statistical significance

The significance level, α , is a probability used as a criterion for rejecting the null hypothesis.

If the *P*-value for a test is less than or equal to α , then the null hypothesis is rejected.

Significance for the red shirt example

P = 0.012

 $P < \alpha$, so we can reject the null hypothesis

Athletes in red shirts were more likely to win.

α is often 0.05

Larger samples give more information

A larger sample will tend to give and estimate with a smaller confidence interval

A larger sample will give more power to reject a false null hypothesis

Sample R code for doing this simulation (Note: This is not the most efficient code for this!)

```
binarySample = function(n, prob){
  results = rep(NA,n)
  for(i in 1:n){
    if(runif(1) < prob) results[i] = "red"
    else
       results[i] = "blue"
    }
    length(which(results=="red"))
}</pre>
```

```
numreps=10000
resultsDF = data.frame(numberRedWins =
    replicate(numreps, binarySample(20,.5)))
```

Hypothesis testing: another example

Do dogs resemble their owners?

Common wisdom holds that dogs resemble their owners. Is this true?

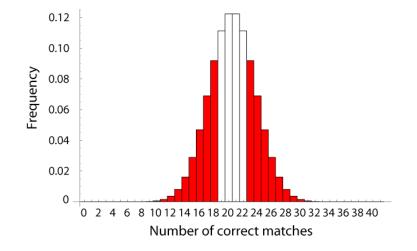
41 dog owners approached in parks; photos taken of dog and owner separately

Photo of owner and dog, along with another photo of dog, shown to students to match

Hypotheses

 H_0 : The proportion of correct matches is *proportion* = 0.5.

 H_A : The proportion of correct matches is different from *proportion* = 0.5.


Data

Of 41 matches, 23 were correct and 18 were incorrect.

Estimating the proportion

sample proportion
$$=\frac{23}{41}=0.56$$

Null distribution for dog/owner resemblance

The *P*-value:

P = 0.53

Jargon

We do not reject the null hypothesis that dogs do not resemble their owners.

Significance level

The acceptable probability of rejecting a true null hypothesis

Called α

For many purposes, $\alpha = 0.05$ is acceptable. α is somewhat arbitrarily chosen by researchers.

Type I error

Rejecting a true null hypothesis

Probability of Type I error is α (the significance level)

Type II error

Not rejecting a false null hypothesis

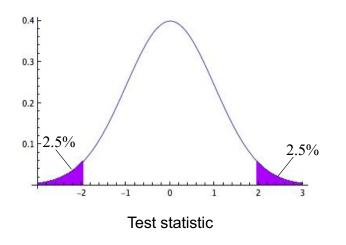
The probability of a Type II error is β .

The smaller β , the more *power* a test has.

Power

The ability of a test to reject a false null hypothesis

Power = 1- β


One- and two-tailed tests

Most tests are *two-tailed tests*.

This means that a deviation in either direction would reject the null hypothesis.

Normally α is divided into $\alpha/2$ on one side and $\alpha/2$ on the other.

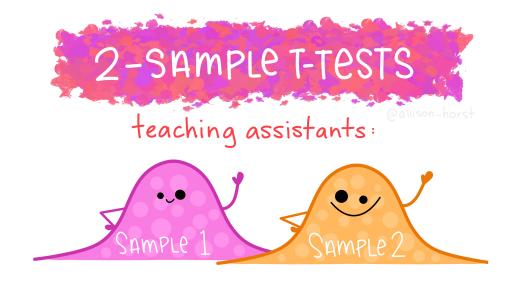
Power increases with more information (i.e. with larger sample size)

One-tailed tests

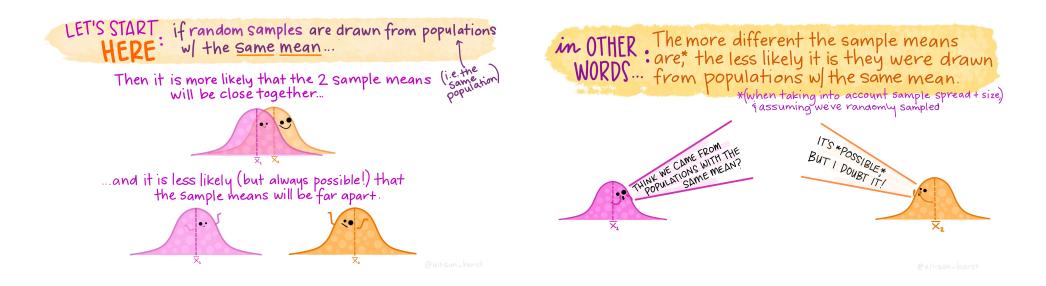
Only used when the other tail is nonsensical

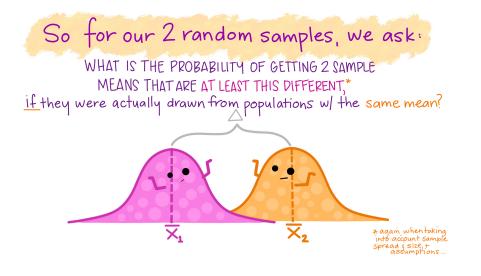
For example, comparing grades on a multiple choice test to that expected by random guessing

Critical value


The value of a test statistic beyond which the null hypothesis can be rejected

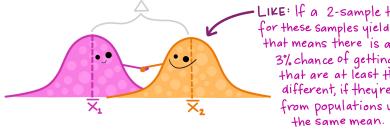
We never "accept the null hypothesis"


"Statistically significant"

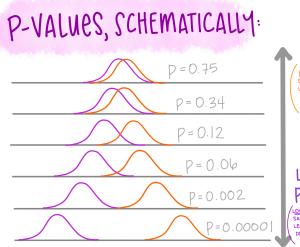

 $P < \alpha$

We can "reject the null hypothesis"

Artwork by @allison_horst https://github.com/allisonhorst/stats-illustrations



Artwork by @allison_horst https://github.com/allisonhorst/stats-illustrations


Juli That's our p-value. WHAT IS THE PROBABILITY OF GETTING 2 SAMPLE

MEANS THAT ARE AT LEAST THIS DIFFERENT, if they were actually drawn from populations w/ the same mean?

LIKE: If a 2-sample t-test for these samples yields p=0.03, that means there is a 3% chance of getting means that are at least this different, if they're drawn from populations with

Artwork by @allison_horst https://github.com/allisonhorst/stats-illustrations

Higher p-values

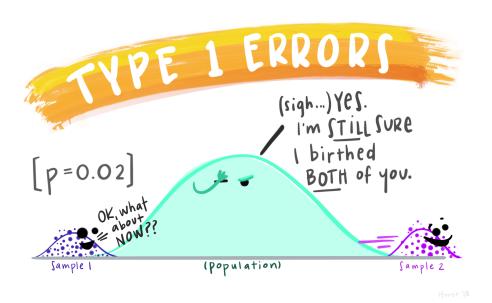
LESS EVIDENCE GHER PROBABILITY OF 2 SAMPLE MEANS BEING AT BETWEEN LEAST THIS DIFFERENT, IF POPULATION MEANS DRAWN FROM POPULATION WITH THE SAME MEAN

Lower D-values

LOWER PROBABILITY OF 2 SAMPLE MEANS BEING AT MORE EVIDENCE OF DIFFERENCES LEAST THIS DIFFERENT, IF BETWEEN DRAWN FROM POPULATIONS WITH THE SAME MEAN POPULATION MEANS

Duestion:

WHEN DO WE HAVE ENOUGH EVIDENCE TO SAY THERE IS A SIGNIFICANT DIFFERENCE?


answer:

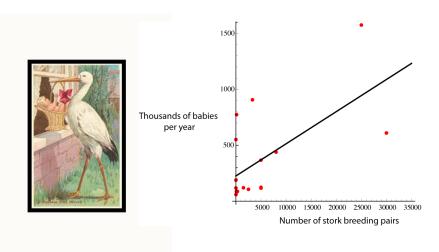
WHEN OUR P-VALUE IS BELOW OUR SELECTED SIGNIFICANCE LEVEL (CX), USUALLY (BUT NOT ALWAYS) = 0.05

Which means:

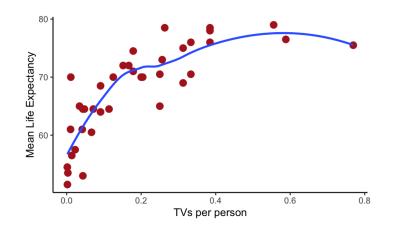
IF THE PROBABILITY (p-value) OF FINDING AT LEAST OUR DIFFERENCE IN SAMPLE MEANS (IF THEY WERE DRAWN FROM POPULATIONS WITH THE SAME MEANS) IS LESS THAN 5%, THAT'S ENOUGH EVIDENCE FOR US TO DECIDE THEY ARE LIKELY FROM POPULATIONS WITH UNEQUAL MEANS.

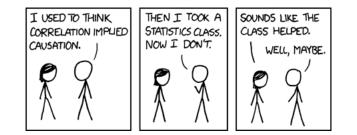
Artwork by @allison_horst https://github.com/allisonhorst/stats-illustrations

Artwork by @allison_horst https://github.com/allisonhorst/stats-illustrations


Artwork by @allison_horst https://github.com/allisonhorst/stats-illustrations

	Important	Unimportant
Significant	Polio vaccine reduces incidence of polio	Things you don't care about, <i>or</i> already well known things: Bruers Study Shows Frequent Sex Enhances Pregnancy Chances In The State of the State of the State of the State Study Shows Frequent Sex Enhances Pregnancy Chances In The State of the State of the State of the State of the State State of the State of the St
Insignificant	Small study shows a possible effect, leading to larger study which finds significance. <i>or</i> Large study showing no effect of drug that was thought to be beneficial.	Studies with small sample size and high <i>P</i> -value <i>or</i> Things you don't care about


Statistical significance ≠ Biological importance


Correlation does not automatically imply causation

Correlation does not automatically imply causation

Life expectancy by country:

Confounding variable

An unmeasured variable that may be the cause of both X and Y Observations vs. Experiments