Estimating with uncertainty

Chapter 4

Sample size 10 from Normal distribution with $\mu=13$ and $\sigma^{2}=16$

X

Another sample of 10 from same distribution

A third sample of 10 from the same distribution

X

A sample of 100 from the same population distribution

X

Distribution of the means of many samples, each of sample size 10

A sample of 1000 from the same population distribution

X

Distribution of the means of many samples, each of sample size 100

The standard error of an estimate is the standard deviation of its sampling distribution.

The standard error predicts the sampling error of the estimate.

1000 samples each

Heights of BIOL300 students ($N=157$)

Standard error of the mean

$$
\sigma_{\bar{Y}}=\frac{\sigma}{\sqrt{n}}
$$

Estimate of the standard error of the mean

$$
S E_{\bar{Y}}=\frac{S}{\sqrt{n}}
$$

This gives us some knowledge of the likely difference between our sample mean and the true population mean.

Heights of BIOL300 students ($N=157$)

$\mu_{\overline{\mathrm{Y}}}=\mu=67.4$ $\sigma_{\bar{\gamma}}=\frac{\sigma}{\sqrt{n}}=\frac{3.9}{\sqrt{5}}=1.7$
Mean heights of samples of size
(1000 samples)
 Mean $=67.4$ $S D=1.7$ The math works!

The problem is, we rarely know σ.

Confidence interval

The 95\% confidence interval provides a plausible range for a parameter. All values for the parameter lying within the interval are plausible, given the data, whereas those outside are unlikely.
https://www.zoology.ubc.ca/~whitlock/ Kingfisher/CIMean.htm

The 2SE rule-of-thumb

The interval from $\bar{Y}-2 S E_{\bar{Y}}$ to $\bar{Y}+2 S E_{\bar{Y}}$ provides a rough estimate of the 95% confidence interval for the mean.
(Assuming normally distributed population and/or sufficiently large sample size.)

Use correct language when talking about confidence intervals

Not correct:

"There is a 95\% probability that the population mean is within a particular 95\% confidence interval"

Correct

"We are 95% confident that the population mean lies within the 95\% confidence interval."

Sample means of gene sizes

US counties with high kidney cancer death

Fig. 2.3 The counties of the United States with the highest 10% age-standardized death rates for cancer of kidney/ureter for U.S. white males, 1980-1989.

Confidence interval

US counties with low kidney cancer death

> Lowest kidney cancer death rates

Fig. 2.4 The counties of the United States with the lowest 10% age-standardized death rates for cancer of kidney/ureter for U.S. white males, 1980-1989.

Variation in cancer rates decreases with population size of counties

Wainer (2007) The most dangerous equation. American Scientist 95: 249-256

Example: Pseudoreplication

You are interested in average pulse rate of mountain climbers. Since they are hard to find, you decide to take 10 measurements from each climber. You study 6 climbers, so you have 60 measurements.

What is your sample size (n)?

Pseudoreplication

The error that occurs when samples are not independent, but they are treated as though they are.

Avoiding pseudoreplication

You are interested in average pulse rate of mountain climbers. Since they are hard to find, you decide to take 10 measurements from each climber. You study 6 climbers, so you have 60 measurements.

Take the mean blood pressure for each climber, so that you have 6 pulse rates, one for each climber $(n=6)$.

