Describing data

Chapter 3

Two common descriptions of data

Location (or central tendency)

Width (or spread)

Measures of location

Mean Median Mode Mean

n is the size of the sample

Mean

 $Y_1 = 56, Y_2 = 72, Y_3 = 18, Y_4 = 42$

 \overline{Y} = (56+72+18+42) / 4 = 47

Median

The *median* is the middle measurement in a set of ordered data.

The data:

18 28 24 25 36 14 34

can be put in order:

14 18 24 25 28 34 36

Median is 25.

Mode

The mode is the most frequent measurement.

The mean is the center of gravity; the median is the middle measurement.

Mean and median for US household income, 2005

Median	\$46,326
Mean	\$63,344
Mode	\$5000-\$9999

Why?

University student heights

Measures of width

- Range
- Standard deviation
- Variance
- Coefficient of variation

Range

14	17	18	20	22	22	24	
25	26	28	28	28	30	34	36

The range is the maximum minus the minimum:

36 -14 = 22

The range is a poor measure of distribution width

Small samples tend to give lower estimates of the range than large samples

So sample range is a *biased estimator* of the true range of the population.

Variance in a population

$$\sigma^2 = \frac{\sum_{i=1}^{N} (Y_i - \mu)^2}{N}$$

N is the number of individuals in the population. μ is the true mean of the population.

Sample variance

$$s^{2} = \frac{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}}{n-1}$$

n is the sample size

Example: Sample variance

/ sizes	of 5 Bl	OL 300) students: 2 3 3 4 4 (in units of siblings)
Y _i	$Y_i - \overline{Y}$	$(Y_i - \overline{Y})^2$	$\bar{v} - \frac{2+3+3+4+4}{2} - \frac{16}{2} - 32$
2	-1.2	1.44	1 =
3	-0.2	0.04	$s^{2} = \frac{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}}{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}}$
3	-0.2	0.04	n-1
4	0.8	0.64	~ 2.80 (in units of
4	0.8	0.64	$s^2 = \frac{1}{4} = 0.70^{5}$ siblings squared)
5: 16		2.80 1	
	y sizes <u>Y</u> _i 2 3 3 4 4 5: 16	y sizes of 5 Bl $Y_i = Y_i - \overline{Y}$ 2 -1.2 3 -0.2 3 -0.2 4 0.8 4 0.8 5: 16	y sizes of 5 BIOL 300 $Y_i = Y_i - \overline{Y} + (Y_i - \overline{Y})^2$ 2 -1.2 1.44 3 -0.2 0.04 3 -0.2 0.04 4 0.8 0.64 4 0.8 0.64 4 0.8 0.64 5: 16 2.80 f "Sum of s

Shortcut for calculating sample variance

$$s^{2} = \left(\frac{n}{n-1}\right) \left(\frac{\sum_{i=1}^{n} Y_{i}^{2}}{n} - \overline{Y}^{2}\right)$$

Example: Sample variance (shortcut)

Family sizes of 5 BIOL 300 students: 2 3 3 4 4

	Y_i	Y_i^2	$Y_i - \overline{Y}$	$(Y_i - \overline{Y})^2$
	2	4	-1.2	1.44
	3	9	-0.2	0.04
	3	9	-0.2	0.04
	4	16	0.8	0.64
	4	16	0.8	0.64
Sume	s: 16	54		2.80

$$\bar{Y} = \frac{2 + 5 + 5 + 1 + 1}{5} = 3.2$$
$$s^{2} = \left(\frac{n}{n-1}\right) \left(\frac{\sum_{i=1}^{n} Y_{i}^{2}}{n} - \bar{Y}^{2}\right)$$

2 + 3 + 3 + 4 + 4

$$s^2 = \frac{5}{4} \left(\frac{54}{5} - (3.2)^2 \right) = 0.70$$

Standard deviation (SD)

Positive square root of the variance

 σ is the true standard deviation *s* is the sample standard deviation:

$$s = \sqrt{s^2} = \sqrt{\frac{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}{n-1}}$$

$$s^{2} = 0.70 \text{ people}^{2}$$

 $s = \sqrt{0.70} = 0.84 \text{ people}^{2}$

Coefficient of variation (CV)

 $CV = 100\% \frac{S}{\overline{V}}$

Skew

Skew is a measurement of asymmetry.

Skew (as in "skewer") refers to the pointy tail of a distribution

Nomenclature

	Population	Sample
	Parameters	Statistics
Mean	μ	Ŷ
Variance	σ^2	S ²
Standard Deviation	σ	S

Basic stats in R

> mean(classHeightDataFull\$height)
[1] 169.7955
> median(classHeightDataFull\$height)
[1] 170
> sd(classHeightDataFull\$height)
[1] 11.48828
> var(classHeightDataFull\$height)
[1] 131.9807

Manipulating means

• The mean of the sum of two variables:

 $\mathsf{E}[\mathsf{X} + \mathsf{Y}] = \mathsf{E}[\mathsf{X}] + \mathsf{E}[\mathsf{Y}]$

- •The mean of the sum of a variable and a constant: E[X + c] = E[X]+ c
- •The mean of a product of a variable and a constant: E[c X] = c E[X]

Manipulating variance

- The variance of the sum of two variables: Var[X + Y] = Var[X]+ Var[Y] if and only if X and Y are independent.
- The variance of the sum of a variable and a constant: Var[X + c] = Var[X]
- The variance of a product of a variable and a constant: $Var[c X] = c^2 Var[X]$

Example: converting units

Height:

Mean = 169.8 cmVariance = 131.98 cm^2

In inches (1 cm = 0.394 in): Mean: 169.8 cm \times 0.394 = 66.9 in Variance: 131.98 cm² (0.394)² = 20.5 in²