Two common descriptions of data

Location (or central tendency)

Describing data

Chapter 3

Measures of location

Mean
Median
Mode

Width (or spread)

Mean

$$
\bar{Y}=\frac{\sum_{i=1}^{n} Y_{i}}{n}
$$

n is the size of the sample

Mean

$$
Y_{1}=56, Y_{2}=72, Y_{3}=18, Y_{4}=42
$$

$$
\bar{Y}=(56+72+18+42) / 4=47
$$

Median

The median is the middle measurement in a set of ordered data.

Mode

The mode is the most frequent measurement.

Median is 25 .

Mean and median for US household income, 2005

Median	$\$ 46,326$
Mean	$\$ 63,344$
Mode	$\$ 5000-\$ 9999$

Why?

The mean is the center of gravity; the median is the middle measurement.

University student heights

Mean 169.3 cm
Median 170 cm
Mode $165-170 \mathrm{~cm}$

Measures of width

- Range
- Standard deviation
- Variance
- Coefficient of variation

Range

14	17	18	20	22	22	24	
25	26	28	28	28	30	34	36

The range is the maximum minus the minimum:

$$
36-14=22
$$

The range is a poor measure of distribution width

Small samples tend to give lower estimates of the range than large samples

So sample range is a biased estimator of the true range of the population.

Sample variance

$$
s^{2}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}{n-1}
$$

n is the sample size

Variance in a population

$$
\sigma^{2}=\frac{\sum_{i=1}^{N}\left(Y_{i}-\mu\right)^{2}}{N}
$$

N is the number of individuals in the population. μ is the true mean of the population.

Example: Sample variance

Family sizes of 5 BIOL 300 students: $\begin{array}{lllll}2 & 3 & 4 & 4\end{array}$ ((in units of

Shortcut for calculating sample

 variance$$
s^{2}=\left(\frac{n}{n-1}\right)\left(\frac{\sum_{i=1}^{n} Y_{i}^{2}}{n}-\bar{Y}^{2}\right)
$$

Example: Sample variance (shortcut)

Family sizes of 5 BIOL 300 students:

Y_{i}	Y_{i}^{2}	$Y_{i}-\bar{Y}$	$\left(Y_{i}-\bar{Y}\right)^{2}$
2	4	-1.2	1.44
3	9	-0.2	0.04
3	9	-0.2	0.04
4	16	0.8	0.64
4	16	0.8	0.64

$$
\begin{aligned}
\bar{Y} & =\frac{2+3+3+4+4}{5}=3.2 \\
s^{2} & =\left(\frac{n}{n-1}\right)\left(\frac{\sum_{i=1}^{n} Y_{i}^{2}}{n}-\bar{Y}^{2}\right) \\
s^{2} & =\frac{5}{4}\left(\frac{54}{5}-(3.2)^{2}\right)=0.70
\end{aligned}
$$

Standard deviation (SD)

Positive square root of the variance

σ is the true standard deviation s is the sample standard deviation:

$$
\begin{aligned}
& s=\sqrt{s^{2}}=\sqrt{\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}{n-1}} \\
& s^{2}=0.70 \text { people }^{2} \\
& s=\sqrt{0.70}=0.84 \text { people }
\end{aligned}
$$

Standard deviation: 5

Coefficient of variation (CV)

$C V=100 \% \frac{S}{\bar{Y}}$

Nomenclature

	Population Parameters	Sample Statistics
Mean	μ	\bar{Y}
Variance	σ^{2}	s^{2}
Standard Deviation	σ	s

Skew

Skew is a measurement of asymmetry.
Skew (as in "skewer") refers to the pointy tail of a distribution

Basic stats in R

```
> mean(classHeightDataFull$height)
[1] 169.7955
> median(classHeightDataFull$height)
[1] 170
> sd(classHeightDataFull$height)
[1] 11.48828
> var(classHeightDataFull$height)
[1] 131.9807
```


Manipulating means

-The mean of the sum of two variables:

$$
\mathrm{E}[\mathrm{X}+\mathrm{Y}]=\mathrm{E}[\mathrm{X}]+\mathrm{E}[\mathrm{Y}]
$$

-The mean of the sum of a variable and a constant: $E[X+c]=E[X]+c$

- The mean of a product of a variable and a constant: $\mathrm{E}[\mathrm{CX} \mathrm{X}=\mathrm{c} \mathrm{E}[\mathrm{X}]$

Manipulating variance

-The variance of the sum of two variables:
$\operatorname{Var}[\mathrm{X}+\mathrm{Y}]=\operatorname{Var}[\mathrm{X}]+\operatorname{Var}[\mathrm{Y}]$
if and only if X and Y are independent.
-The variance of the sum of a variable and a constant: $\operatorname{Var}[\mathrm{X}+\mathrm{c}]=\operatorname{Var}[\mathrm{X}]$
-The variance of a product of a variable and a constant: $\operatorname{Var}[\mathrm{c} X]=\mathrm{c}^{2} \operatorname{Var}[\mathrm{X}]$

Example: converting units

Height:
Mean $=169.8 \mathrm{~cm}$
Variance $=131.98 \mathrm{~cm}^{2}$

In inches ($1 \mathrm{~cm}=0.394 \mathrm{in}$):
Mean: $169.8 \mathrm{~cm} \times 0.394=66.9 \mathrm{in}$
Variance: $131.98 \mathrm{~cm}^{2}(0.394)^{2}=20.5 \mathrm{in}^{2}$

