BIOL 300: Biostatistics

Course web address:

http://www.zoology.ubc.ca/~whitlock/bio300/

Canvas: https://canvas.ubc.ca/courses/39708

Office hours: Mon. 1:30-2:30

and after class most days

Prof. Michael Whitlock
Department of Zoology
Office: 216 Biodiversity
whitlock@zoology.ubc.ca

Dr. Matt Pennell
Dept. of Zoology
pennell@zoology.ubc.ca

Textbook

Whitlock and Schluter, The Analysis of Biological Data

Lab manual

R

Available at course web site

Statistical software for PCs and Macs

Available for free download:

http://www.zoology.ubc.ca/~whitlock/bio300/labs/downloadingR.html

Evaluation

Lab

Final 25%
Mid-term 30%
Project final 25%
Assignments (homework) 10%
Lab assignments 10%

Begins second week of term (September 14-18)

Biosci 2004

Virtual labs

Midterm

Assignments

Mid-October:

Available on canvas

Class vote: Oct. 22 or 29

Due on Fridays at noon

Lab assignments

Statistics course pairings

Due in canvas the following week

Credit given for only one of BIOL 300, FRST 231, STAT 200, PSYC 218 or 366.

These are paired with BIOL 300, but *do not count* as biology courses.

Introduction to statistics

Statistics are "a quantitative technology for empirical science; it is a logic and methodology for the measurement of *uncertainty* and for an examination of that uncertainty."

The key word here is "uncertainty." Statistics become necessary when observations are variable.

Statistics is also about good scientific practice

Goals of statistics

- Estimate the values of important parameters
- Test hypotheses about those parameters

Feline High-Rise Syndrome (FHRS)

The injuries associated with a cat falling out of a window.

"The diagnosis of high-rise syndrome is not difficult. Typically, the cat is found outdoors, several stories below, and a nearby window or patio door is open."

High falls show *lower* injury rates

Whitney and Mehloff, Journal of the American Veterinary Medicine Association, 1987

Why?

- Cats have high surface-to-volume ratios
- Cats have excellent vestibular systems
- Cats reach terminal velocity quickly, relax, and therefore absorb impact better
- Cats land on their limbs and absorb shock through soft tissue

Jared Diamond, Nature 1988

Or not...

A sample of convenience is a collection of individuals that happen to be available at the time.

Read: Chapters 1 & 2

A newer study reports more injuries with longer falls

Figure 5 Graph showing the relationship between injury score and height of fall.

Vnuk et al. 2004. Feline high-rise syndrome: 119 cases (1998-2001). J. Fel. Med. Surg. 6:305-312.

Variable

A variable is a characteristic measured on individuals drawn from a population under study.

Data are measurements of one or more variables made on a collection of individuals.

Explanatory and response variables

We try to predict or explain a response variable from an explanatory variable.

Older terminology: dependent variable and independent variable

Populations and samples

Mortality on the *Titanic*, as predicted by gender

A population of starfish

Random samples of 5 starfish

Populations <-> Parameters; Samples <-> Estimates

A biased sample

Bias is a systematic discrepancy between estimates and the true population characteristic.

The 1936 US presidential election

VS.

Alf Landon Republican

Franklin Roosevelt Democrat

1936 Literary Digest Poll

2.4 million respondents

Based on questionnaires mailed to 10 million people, chosen from telephone books and club lists

Predicted Landon wins: Landen 57% over Roosevelt 43%

1936 election results

Roosevelt won with 62% of the vote

What went wrong?

Subjects given the questionnaire were chosen from telephone books and clubs, biasing the respondents to be those with greater wealth

Voting and party preference is correlated with personal wealth

Volunteer bias

Volunteers for a study are likely to be different, on average, from the population.

For example:

- Volunteers for sex studies are more likely to be open about sex
- Volunteers for medical studies may be sicker than the general population

Goals of estimation

- Accuracy (on average gets the correct answer)
- Precision (gives a similar answer repeatedly)

Each point represents an estimate of a parameter.

Properties of a good sample

- Independent selection of individuals
- Random selection of individuals
- Sufficiently large

In a random sample, each member of a population has an equal and independent chance of being selected.

Independent sampling

The chance of an individual being included in the sample does not depend on who else is sampled.

Non-independent sample

One procedure for random sampling

Choose random numbers

Sample those individuals with matching numbers

Population parameters are constants whereas estimates are random variables, changing from one random sample to the next from the same population.

Sampling error

The difference between the estimate and average value of the estimate

Introduction to R

Larger samples on average will have smaller sampling error.

R is a free, open-source statistical language, widely used by scientists worldwide.

A simple command in R

Basic arithmetic

```
> log(42)
[1] 3.73767
> sqrt(4)
[1] 2
> 4^3
[1] 64
```

Functions can have multiple inputs

$$> \log(4, \text{ base} = 10)$$
 [1] 0.60206

You can define variables

$$> x < -4$$
 $> x + 3$ [1] 7

Calculations on data

```
> mean(titanicData$age, na.rm=TRUE)
[1] 31.19418
```

Data frames

```
> titanicData <- read.csv("DataForLabs/titanic.csv")</pre>
```

> head(titanicData)

	passenger_class	name	age	embarked
1	1st	Allen, MissElisabeth Walton	29.0000	Southampton
2	1st	Allison, MissHelenLoraine	2.0000	Southampton
3	1st	Allison, MrHudsonJoshuaCreighton	30.0000	Southampton
4	1st	Allison, MrsHudsonJ.C. (BessieWaldoDaniels)	25.0000	Southampton
5	1st	Allison, MasterHudsonTrevor	0.9167	Southampton
6	1st	Anderson, MrHarry	47.0000	Southampton

Each row is an individual; each column is a variable describing each individual.

Calculations on data

```
> t.test(titanicData$age ~ titanicData$survive)
```

Welch Two Sample t-test