Self-Affine Timeseries Analysis¹ Rik Blok² Department of Zoology, UBC March 25, 2003

Abstract

A brief introduction to Lévy flight and fractional Brownian motion from the experimentalist's perspective. Simple tools to analyze these timeseries, the Zipf plot and dispersional analysis, are presented. As a demonstration, these tools are applied to financial and meteorological data to determine the Lévy and Hurst exponents.

Outline

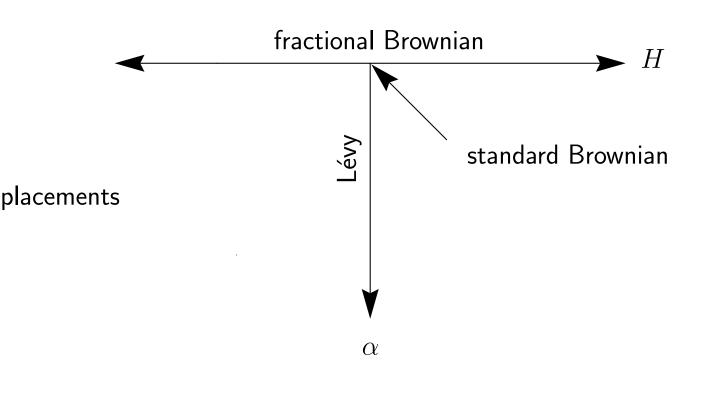
1	Brownian motions		1
	1.1	Self-affine	3
2	Lévy flight		4
	2.1	Data analysis: Zipf plot	6
	2.2	Test: Synthetic Lévy series	7
3	Fractional Brownian motion		10
	3.1	Diffusion	11
	3.2	Data analysis: Dispersion	11
	3.3	Test: Synthetic fBm series	14
4	Empirical examples		15
	4.1	Swiss Franc versus U.S. Dollar exchange rate	15
	4.2	Vancouver precipitation	19

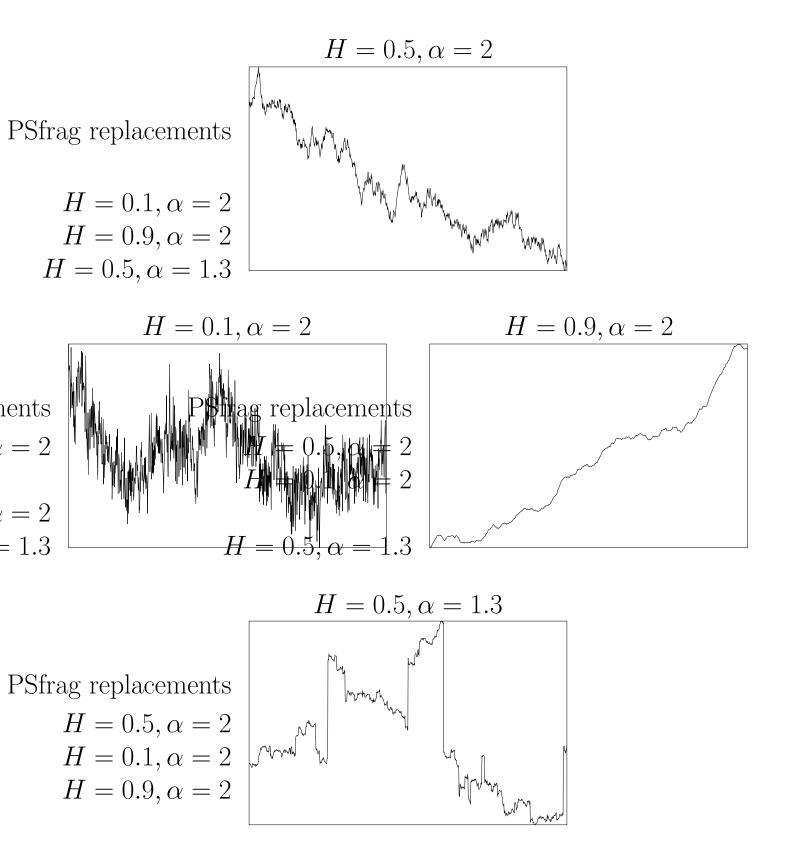
¹http://rikblok.cjb.net/lib/blok03.html

²mailto:rikblok@shaw.ca

1 Brownian motions

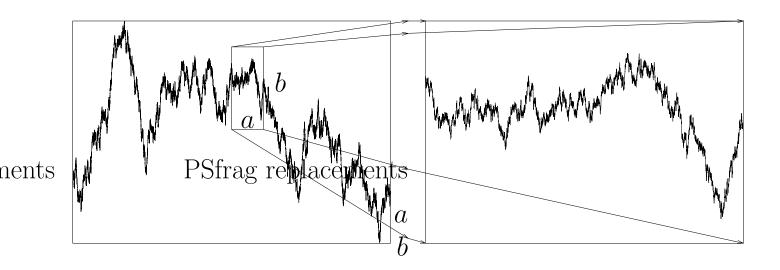
- Standard Brownian motion = uncorrelated Gaussian increments (finite variance), $\alpha = 2$, H = 1/2
- Fractional Brownian motion (fBm) = finite variance but correlations extend over entire history, $H \neq 1/2$ (0 < H < 1)
- Lévy flight = uncorrelated increments but divergent variance, $\alpha < 2$ (mean also diverges if $\alpha < 1$)





1.1 Self-affine

If timescale zoomed by factor a then process looks statistically identical by scaling series by: $\begin{array}{l} \mathsf{fBm} \Rightarrow b = a^H \\ \mathsf{L\acute{e}vy} \Rightarrow b = a^{1/\alpha} \end{array}$

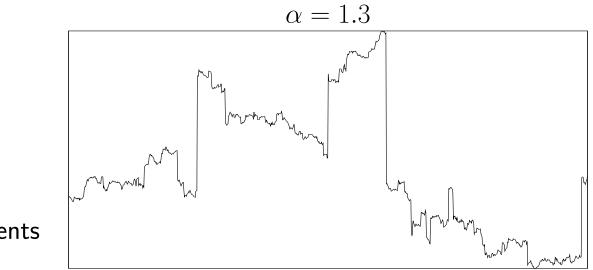


My goal is to explain how to obtain parameters H and α from empirical data.

Warning: some tools to calculate exponent rely on self-affinity and are unable to distinguish between fBm and Lévy flight. They will return exponent which could be either H or $1/\alpha$.

2 Lévy flight

Like standard Brownian motion but with overabundance of very large jumps.



placements

If distribution of increments $r(t) = x(t) - x(t - \Delta)$ with stepsize Δ denoted by p(r) then tails of distribution decay as a *power law*:

$$p(r) \sim \frac{1}{|r|^{\alpha+1}} \text{ as } |r| \to \infty$$
 (1)

for $0 < \alpha < 2$. (For $\alpha = 2$ tails are Gaussian.)

Can use this property to recover α from dataset.

Easier to work with cumulative distributions $C_{\pm}(r)$,

$$C_{\pm} + (r) = \int_{r}^{\infty} p(r') dr' = \text{prob. sample} > r \qquad (2)$$

$$C_{-}(r) = \int_{-\infty}^{r} p(r') dr' = \text{ prob. sample } < r.$$
 (3)

Then

$$C_{\pm}(r) \sim \frac{1}{|r|^{\alpha}} \text{ as } |r| \to \infty.$$
 (4)

Want to fit this distribution to empirical data. But first...

Power-law tails mean variance diverges. Cannot be true for finite dataset.

Since variance finite, should obey Central Limit Theorem on largest scales. Find good fitting function is [1, 2]

$$\log C_{\pm}(r) = -\alpha \log |r| - \beta |r| + \gamma, \tag{5}$$

because fit is linear in parameters $(lpha,eta,\gamma)$.

Effect of finite system size is to truncate power law tail by an exponential cut-off at $r_c \sim 1/\beta$. Well established, empirically.

2.1 Data analysis: Zipf plot

Good choice because the Zipf plot method will not be tricked by other self-affine signals, like fBm (since it shuffles the data).

Recipe

- 1. Rank order increments r.
- 2. (Transposed) Zipf plot: Rank versus r.
- 3. Fit Eq. (5) to data.
- 4. Interpret results.

Comments

Rank order (sort) increments in both increasing/decreasing orders (to analyze both tails). $\operatorname{Rank}_i \approx NC(r_i)$ for each tail.

Reasonable choice for uncertainty in $\log({\rm Rank})$ is

$$\sigma_i = \sqrt{\frac{N - \operatorname{Rank}_i}{N \cdot \operatorname{Rank}_i}},\tag{6}$$

from binomial distribution. (Not certain if this improves fit.)

Only want to fit over tail. Start at 2 std. devs., $Rank_{lo} = 2.5\% N$, then increase lower bound of fit, lo, to minimize reduced chi-squared statistic.

Interpreting results

Must have $0 < \alpha < 2$ [3].

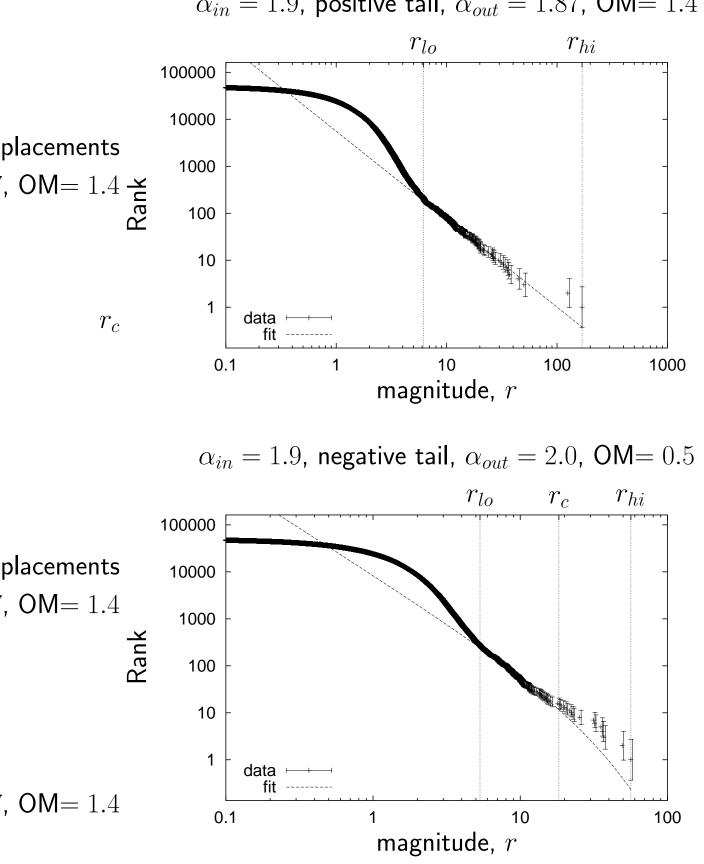
Power law (straight line on log-log graph) must hold over at least one order of magnitude to be significant,

$$OM = \log_{10} \frac{\min(r_{hi}, r_c)}{r_{lo}} > 1.$$
(7)

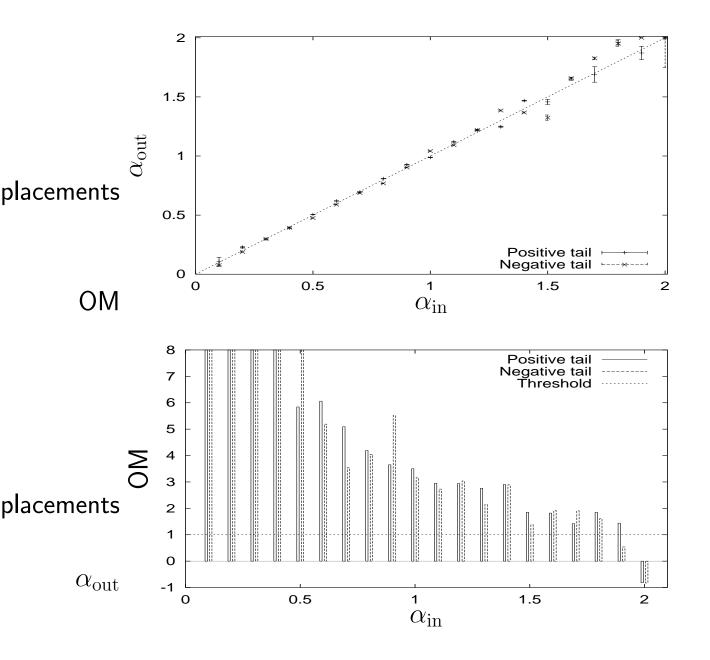
If either condition fails then Lévy tail not significant so take $\alpha\equiv 2$ (Gaussian).

2.2 Test: Synthetic Lévy series

Synthesized timeseries of N = 100,000 datapoints for $\alpha_{in} = 0.1, 0.2, \ldots, 2.0$.

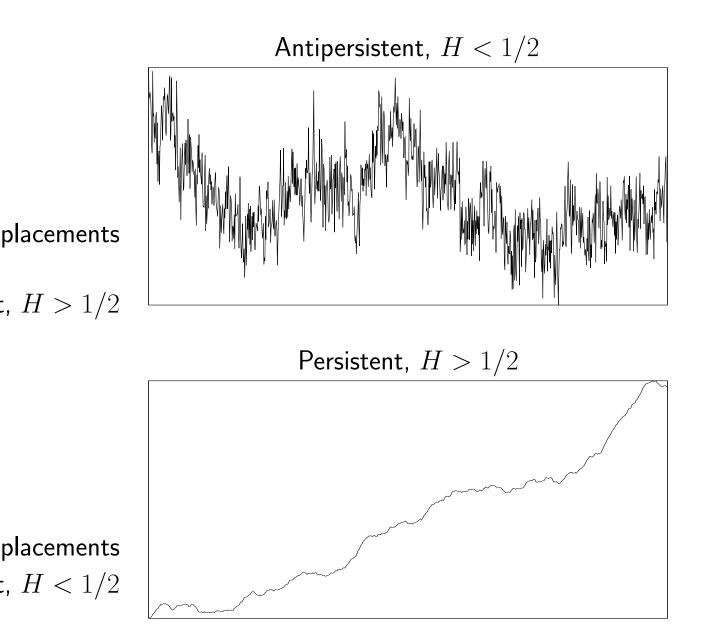


 $\alpha_{in}=1.9$, positive tail, $\alpha_{out}=1.87$, OM=1.4



So one out of 40 tails is mis-characterized: for $\alpha_{in} = 1.9$ found OM < 1 so could not confirm Lévy tail. Need very large datasets to distinguish α near 2 from Gaussian.

Also tested synthetic fBm series—always returned OM < 1 indicating no Lévy tail.

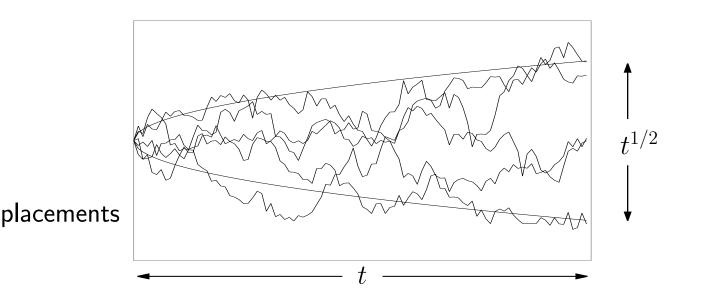


Fractal dimension, D = 2 - H, is space filled by signal.

Correlations extend over entire history of series.

3.1 Diffusion

Standard Brownian motion, or random walk, diffuses as $\sigma \sim t^{1/2}$.



In general, fBm diffuses as $\sigma_H \sim t^H$. $(H > 1/2 \Rightarrow$ superdiffusion, $H < 1/2 \Rightarrow$ subdiffusion.) Can use this to estimate H from dataset.

3.2 Data analysis: Dispersion

Methods *not* to use (and why):

- Rescaled range (Hurst, R/S): strong bias $H \rightarrow 0.7$.
- Scaled window variance/detrended fluctuation: tricked by Lévy flight.

 Autocorrelation: only for persistent series H > 1/2. (Might hold for antipersistent series but would need *huge* datasets, eg. 10⁶ - 10⁹ points.)

Dispersional analysis will not confuse Lévy flight with fBm and works for all 0 < H < 1 with moderately sized datasets.

Slight bias if H > 0.9. (Underestimates H.)

Recipe

- 1. Get increments r.
- 2. Dispersional analysis.
- 3. Fit curve.
- 4. Interpret results.

Comments

As before, work with the increments r_i , called fractional Gaussian noise (fGn).

Again, need N > 1,000 data points. Prefer N > 10,000.

Dispersional analysis

Start with bin size L = 1.

Estimate of diffusion on scale \boldsymbol{L} is given by

$$\sigma(L) \sim \sqrt{\operatorname{Var}\left[r\right]}.\tag{8}$$

Plot deviation, $\sigma(L)$ versus bin size L on log-log scale.

Double bin size $L \rightarrow 2L$ and compute increment r over new L,

$$r_i = r_{2i-1} + r_{2i}. (9)$$

Repeat.

Interpreting results

On log-log scale should have linear relationship

$$\log \sigma(L) = H \log L + C \tag{10}$$

where slope is Hurst exponent H.

In practice, finite data series means memory finite so best to skip last five datapoints when fitting.

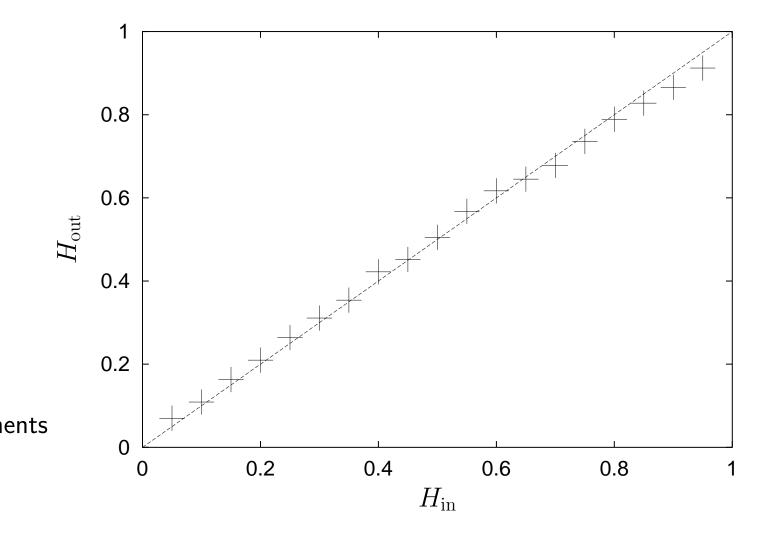
Series might be multifractal, with distinct H values on different L-scales.

If concerned H may be due to artifacts, shuffle data to break correlations and reanalyze. Should get $H \approx 1/2$.

3.3 Test: Synthetic fBm series

Synthesized timeseries of N = 100,000 datapoints for $H = 0.05, 0.10, \ldots, 0.95$.

Compare fitted H_{out} to input H_{in} .



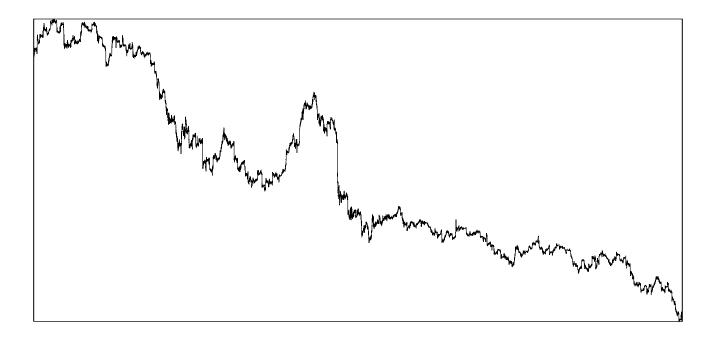
Also tested synthetic Lévy flight series. Returned $H = 0.49 \dots 0.51$ for all α .

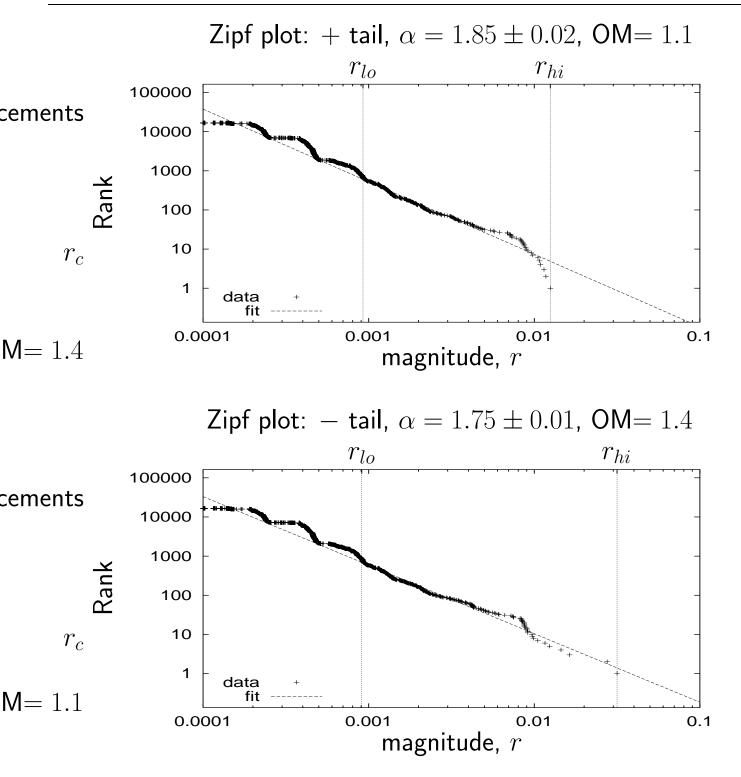
4 **Empirical examples**

4.1 Swiss Franc versus U.S. Dollar exchange rate

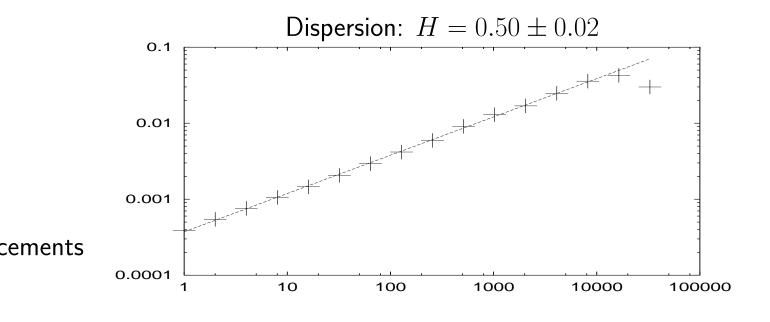
Tickwise data [4] sampled at 1 minute intervals. N = 99,985.

Price is multiplicative process so convert to log-price before processing. (Brownian motions are additive.)





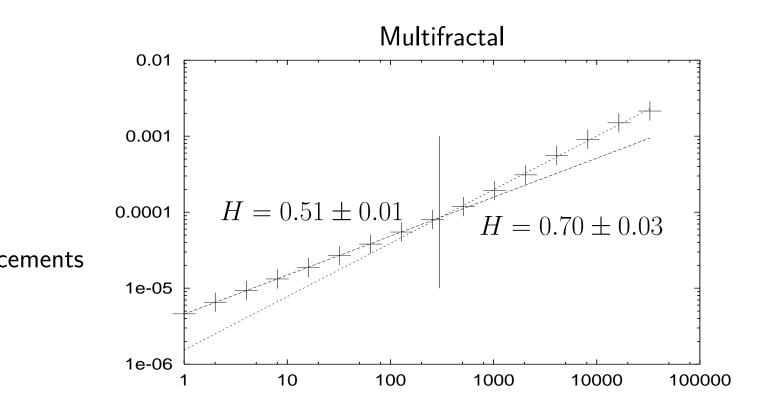
Evidence of a stable Lévy distribution with exponent $\alpha \approx 1.8$.



No memory in price/return history.

Volatility

However, consider squared returns r^2 , known as volatility(?) [5, 6]. Measures how much price is fluctuating without regard for direction of movements.



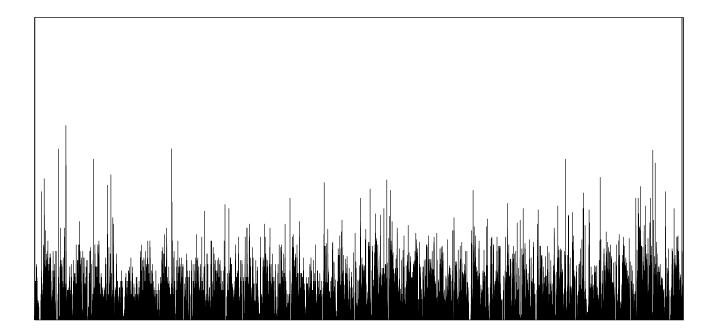
No memory on short timescales but crosses over to positively correlated volatility for timescales > 300 minutes.

Not an artifact of Lévy distribution—synthetic series maintained $H \approx 1/2$ when squared.

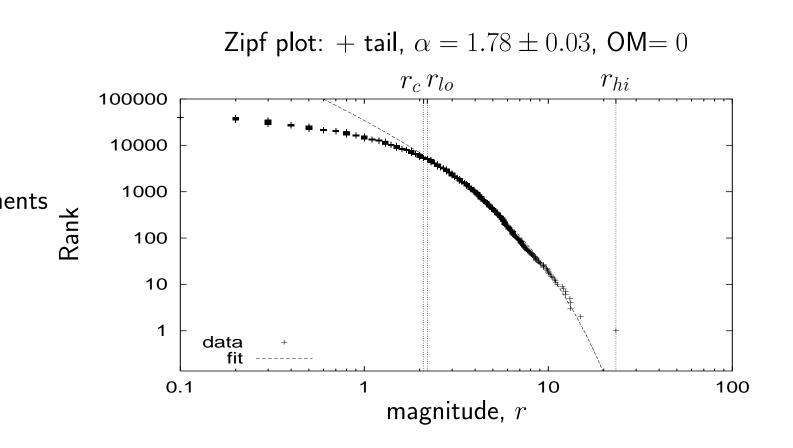
In summary, series exhibits fat tails with Lévy exponent $\alpha \approx 1.8$, no memory in returns, but persistence in volatility (H = 0.7) for timescales longer than \sim 5 hrs.

4.2 Vancouver precipitation

Hourly precipitation at Vancouver International Airport, 1960–1999. N = 335, 273.

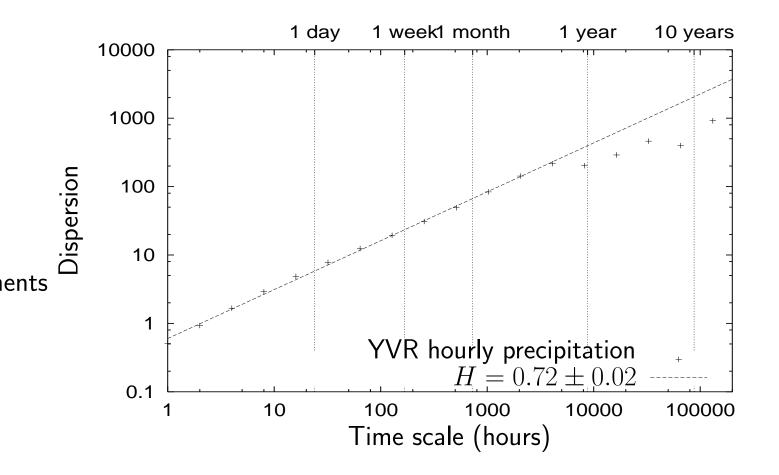


Bounded below by zero so only expect possible Lévy distribution for positive tail:



OM < 1 so does not appear to be Lévy (despite $\alpha < 2$).

Dispersional analysis:



Precipitation has a long ($\sim 1/2$ year) memory. Can confirm this by shuffling data and repeating analysis. Gives $H \approx 1/2$ so effect is due to correlations.

References

- Ismo Koponen. Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. *Phys. Rev. E*, 52:1197– 9, 1995.
- [2] Hendrik J. Blok. Statistical properties of financial timeseries. PIMS-MITACS Math Finance Seminar, U.B.C., http://rikblok.cjb.net/lib/blok02. html, 2002.
- [3] Rafał Weron. Levy-stable distributions revisited: Tail index > 2 does not exclude the Levy-stable regime. Int. J. Mod. Phys. C, 12(2):209–23, 2001. arXiv:cond-mat/0103256.
- [4] Swiss Franc-U.S. Dollar tickwise exchange rate data, 1985-1991. Available from http://www.stern.nyu.edu/~aweigend/Time-Series/Data/ SFR-USD.Tickwise.gz, provided by Andreas Weigend.
- [5] Yanhui Liu, Pierre Cizeau, Martin Meyer, C.-K. Peng, and H. Eugene Stanley. Correlations in economic time series. *Physica A*, 245:437–40, 1997.
- [6] Rosario N. Mantegna, Zoltán Palágyi, and H. Eugene Stanley. Applications of statistical mechanics to finance. *Physica A*, 274:216–221, 1999.