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Chapter 7

Concluding remarks

7.1 Review

Traditional economic theory interprets stock markets as equilibrium systems driven

by exogenous events. But this theory is incapable of explaining some peculiarities—

such as the prevalence of large fluctuations—which are observed to be universal

across all markets. Instead, these phenomena are traditionally attributed to the

exogenous driving factors. The goal of this thesis was to discover whether these

anomalies may arise directly from simple interactions between a large number of

investors, and not depend on extraordinary external influences.

7.1.1 Anomalous market properties

Some of the peculiarities observed in the markets and not explainable by traditional

economic theory follow:

Scaling

Firstly, the distribution of returns (be they price returns for a particular stock or

index returns) contain too many outliers to be adequately described by the de-

fault Gaussian distribution. In Chapter 5 some alternatives were presented which

properly capture the extra “weight” contained in the distribution tails. Empiri-

cal analysis suggests the distribution is best described by a Lévy distribution with

exponent α ≈ 1.40 [10] which is truncated for large returns by either a decaying

exponential or a power law with an exponent near three.
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Clustered volatility

Secondly, although the price series has no (significant) memory—supporting the

hypothesis that markets are efficient, containing no arbitrage opportunities—the

same cannot be said for market volatility. Volatility, which describes the degree of

excitation or uncertainty in the market and is quantified most simply by the absolute

value of the price returns, exhibits extremely long temporal correlations. High

volatility tends to follow high and low follows low, resulting in clusters of activity.

This conflicts with traditional economic theory which states that fluctuations should

be regular and uncorrelated.

To test the hypothesis that these properties may emerge spontaneously from

the interactions of many simple investors, two market simulations, the Centralized

and Decentralized Stock Exchange Models (CSEM and DSEM) were constructed in

Chapters 2 and 3, respectively.

7.1.2 Centralized stock exchange model

CSEM was a traditional simulation, building on similar models developed over the

last few years. Its main features include centralized trading (all traders deal with

a single market maker), synchronous updating and forecasting of returns. Each

forecast was deliberately nudged by a normally-distributed amount with standard

deviation σε, the forecast error. It was discovered that as the forecast error was

reduced the system underwent a second-order (critical) phase transition near σc ≈
0.08, below which the price diverged (or would have if it wasn’t artificially bounded).

When the distribution of the price returns was computed it was discovered

that CSEM was only able to produce an overabundance of outliers (compared with

the Gaussian) below the critical point, precisely in the regime where the price series

is known to be unrealistic. Above the critical point the distribution fit very well to a

Gaussian. Thus, CSEM is unable to capture the anomalous “fat tails” phenomenon

observed empirically. Since it failed this first test, it was not tested for any of the

other properties mentioned above. Instead, focus was shifted to the decentralized

model. (In retrospect, CSEM may have been abandoned too rashly. By allowing

multiple values of the control parameter, as in DSEM, more realistic dynamics may

be realizable. This hypothesis will be tested.)

7.1.3 Decentralized stock exchange model

DSEM arose from dissatisfaction with the structure of CSEM: synchronous, central-

ized trading was replaced with asynchronous, decentralized trading directly between

market participants and the need for forecasting was eliminated with a simple fixed
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investment strategy in which agents trade in order to maintain a balance between

stock and cash. To drive the dynamics the ideal investment fraction was allowed to

be affected by exogenous news events (modeled as a discrete Brownian process) and

endogenously by price movements.

The dynamics were observed to have three phases of existence, depending on

the strength of the agents’ response to price movements: when the price response

was in the region r1 > rp > r2 autocorrelations in the price series were relatively

weak but as the price response passed the critical point r1 = 1 very strong positive

correlations emerged and the price diverged rapidly. The third phase was found

when the price response dropped below r2 ≈ −0.33, revealing a first-order phase

transition. Below this point the price series was strongly anticorrelated.

When all agents were forced to share the same price response scaling in the

price return distribution could not be induced except in the phases which exhibited

unrealistic memory effects. However, if the price response was sampled from a two-

point distribution, scaling (with a realistic truncation for large returns) was found

for a number of simulations, the best predictor for scaling being that the upper

price response exceeded one, rhi > 1. For those runs which did exhibit scaling the

exponent was found to be α = 1.64±0.25, which compares favourably with the best

known empirical quantity 1.40± 0.05 [10].

Having found that DSEM could capture this anomalous property of empir-

ical markets it was also tested for memory effects, again using the two-point price

response distribution. It was found that the price series did not have a significant

memory provided that the lower bound of the price response was in the region

0.5 ≤ rlo < 1. Similarly, volatility clustering was observed when the upper limit

exceeded rhi > 1.25 or when the lower limit was below rlo < −0.5.

All three requirements were met when 0.5 ≤ rlo < 1 and rhi > 1.25. What

this means for real markets will be discussed below. But first we review the remain-

der of the thesis.

7.1.4 Fixed investment strategy

DSEM was constructed on the principle of the fixed investment strategy (FIS) which

states that one should adjust one’s portfolio in order to maintain a balance between

the capital invested in a risky stock and the capital held in a safe(r) asset. In

Chapter 6 the results of an experiment intended to test the credibility of the FIS in

a “real-world” situation (with trading costs, etc.) were reported.

It was discovered that the FIS actually underperformed when compared with

a simple “Buy-and-hold” strategy, at least over this particular realization. This

is probably due to the strong trend observed in the portfolio over the course of
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the experiment, in which the capital nearly doubled. The FIS is designed to take

advantage of fluctuations in the price series and is sub-optimal in the presence of a

long-term trend.

However, the experiment did reveal an interesting (and possibly advanta-

geous) feature of the FIS: it minimized the risk in the sense that it reduced the

frequency of large events (both up and down) as measured by the excess kurtosis.

By applying the FIS large fluctuations were scaled down bringing them in line with

the Gaussian distribution which is typically assumed. Of course, it should be re-

membered that these conclusions are less than rigorous, being the result of a single

brief experiment with a particular portfolio.

7.1.5 Log-periodic precursors

While the FIS experiment was running the hypothesis that market crashes are her-

alded by log-periodic precursors was also tested. The theory derives from discrete

scale invariance and suggests that, in some cases, systems approaching a critical

event may exhibit accelerating oscillations in the power law describing the critical

point.

It has been suggested that detecting these oscillations may improve predic-

tions of the critical event time and recent work in seismology is promising. But the

financial data from the FIS experiment indicate that, even if log-periodic precursors

do exist, technical optimization difficulties prevent any accurate forecasts of large

fluctuations therefrom.

7.2 Conclusions to be drawn from this research

The main point the reader should draw from this thesis is that it is possible to

replicate realistic market dynamics with a many-agent model with simple driving

forces. DSEM was driven by a simple (discrete) Brownian motion without fat tails

and having no memory, but through the interactions of the agents both fat tails

and long memories (in the volatility) emerged. Similarly, these properties may arise

endogenously in real economic systems, and appeals to anomalous external events

to explain them may be unwarranted.

Interestingly, the most realistic simulations were observed when the price

response (control parameter) was centered around a critical point at rp = r1 = 1.

If DSEM is assumed to properly capture the essence of real markets the question is

naturally raised: “Why are the markets tuned to this region of parameter space?”

The fact that this region encompasses a critical point is suggestive of a concept

called self-organized criticality (SOC) which claims that many dynamical systems
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spontaneously evolve towards a critical point [11, 12, 88]. The problem with this

description is that it adds nothing to our knowledge: it does not tells us how or why

the market self-organizes.

In a simple economic model involving producers and consumers it was dis-

covered that the system self-organizes to the critical state in order to maximize

efficiency [95, Ch. 11]. On one side of the critical point the supply outweighs de-

mand and on the other the reverse is true. In this example it is easy to see why the

market would self-organize. To test whether a similar process could drive DSEM to

the critical state DSEM has been extended to allow the agents to adjust their pref-

erences (news response and price response parameters) when their current choices

are performing poorly. This is discussed further below.

Another interesting consequence of the observation that the price response

is centered around rp = 1 is that—if DSEM is at all meaningful—real investors

do watch (and base decisions on) trends in stock prices. In DSEM, to get realistic

behaviour, even the least responsive agents had to have rlo ≥ 0.5 which can roughly

be interpreted as the perceived autocorrelation between successive returns. DSEM

suggests that there do not exist any (pure) fundamentalist traders (who respond

only to fundamental information about the company and are unconcerned with

the stock’s price movements) in real markets. Unfortunately, while an interesting

hypothesis, it is not clear how this assertion could be tested empirically.

7.3 Relation to other work in the field

Quite a few market models have been developed over the last few years. In this

section some of these models are contrasted with CSEM and DSEM.

We begin by comparing how the price is chosen in the models. Recall that

in CSEM the price is set by an auctioneer in order to balance supply and demand.

In DSEM, however, the price is simply the most recent trading price. In most of

the models reviewed the price was set by an external market maker as in CSEM

[17,27,28,30–36,96–99] the only exceptions being reaction-diffusion models [47,100]

in which buyers and sellers diffuse in price space and a trade is executed when they

meet. DSEM provides a new mechanism for allowing the price to emerge directly

from the agents’ decisions.

Another major difference between the CSEM and DSEM is in how they are

updated: in CSEM trades are executed synchronously, once per day while DSEM

allows trading in real time, with agents choosing their own activation times. On this

front it appears that asynchronous updating is becoming more prevalent [17,32,34,

98] with more of the older sources choosing parallel updating [27–30,33,35,47]. This

164



is fortunate because a mounting volume of evidence suggests that parallel updating

may introduce spurious artifacts into simulation dynamics [14,49–52].

The preferred litmus test for each of these models is whether they can repro-

duce fat tails in the price return distribution and many of them can [30, 31, 33, 34,

96–99,101].

The Cont-Bouchaud percolation model [31] has received a great deal of atten-

tion lately [34,96–99]. It is characterized by a network of information which produces

herding effects. The advantage of the model is that analytic results exist [31, 101]

which predict that the price return distribution should have a (truncated) power

law distribution (with a scaling exponent α = 3/2). It has also been demonstrated

to exhibit clustered volatility [97, 99]. DSEM provides an alternative explanation

which does not require herding. However, it would be interesting to know what the

consequences of herding would be, which brings us to directions for future research.

7.4 Avenues for further work

I conclude this thesis with some thoughts on how DSEM may be extended to produce

new insights and on further statistical properties which could be tested:

As discussed above, one of the most pressing issues is whether scaling and

clustered volatility can emerge spontaneously without requiring tuning of the price

response parameters. This can be tested by allowing the agents to choose their

preferences (response parameters) as they see fit. To do so, a meta-strategy is re-

quired which controls when an agent adjusts its preferences and by how much. An

arbitrary but reasonable choice is to allow preference adjustments when the agent’s

performance is demonstrably poor: for instance, if the agent sells shares at a price

below the average price it bought them for. When this occurs the agent randomly

shifts its preferences by some amount. This has been recently coded into DSEM

and research is ongoing.

Another interesting direction to explore is the extension of DSEM to support

multiple stocks. This idea was inspired by Bak et al. [47] in which they described

adding a new stock as adding a new dimension in price space. It is well known that

the dimensionality is one of the few factors which can impact the character of a

critical point [61] so it would be interesting to see how the critical point in DSEM

would be affected.

On the surface CSEM and DSEM are quite different. However, it should be

possible to modify DSEM such that all trades are handled by a centralized control

or market maker. The agents could respond to orders called out by an auctioneer in

similar manner to CSEM. Discovering whether scaling and clustered volatility are
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robust to these changes would be very informative.

On the experimentation side, there are a number of statistical properties

which could be tested for. One of these is an asymmetry between up- and down-

movements in the price series. Roehner and Sornette [102] found that peaks tend

to be sharp but troughs (lows) tend to be flat. Since DSEM is symmetric in its

response to up- and down-moves it would be surprising if this asymmetry could be

replicated.

Another interesting property which is currently being tested (but did not

make it into this thesis) is Pareto’s law for the distribution of incomes which states

that the richest segment of the population have incomes in excess of that predicted

by the log-normal distribution (which fits the majority of the population). This

is thought to be an amplification effect whereby the richest individuals are able to

leverage their wealth to increase their income faster than others [83]. Data are being

collected to test for this effect in DSEM.

Beyond that, the price series contains more information than just the dis-

tribution of returns. For instance, the intra-trade interval and bid-offer spread are

also interesting with testable distributions [48].

Finally, evidence is mounting that the distribution of empirical returns is

truncated by an inverse cubic power law [6,7,69] rather than the exponential assumed

in Section 5.1. It would be useful to determine which hypothesis DSEM obeys. To

do so, much larger datasets are required in order to determine the distribution of

very large returns (since it is difficult to distinguish the two hypotheses on scales

studied in this dissertation). Alternatively, the moments of the distribution could

be explored: if the exponential truncation holds then all moments should be finite

but the inverse cubic implies that the k-th moment should diverge as the index k

increases to three. Either way, it would be valuable to determine if the distribution

of returns in DSEM is truncated by an inverse cubic as appears to be the case for

empirical data.

In short, many exciting possibilities remain for future research into DSEM.
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