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Chapter 6

Experiments with a

hypothetical portfolio

This chapter is somewhat of a departure from the rest of the thesis. It describes

some experimental results obtained purely to satiate my own curiosity. As such,

the experiments are less rigorous than they could be (in particular, the dataset

is quite small) and the results should not be taken too seriously. However, these

experiments may yield valuable insight for the reader because they describe a real-

world application of some of the theory discussed in prior chapters.

6.1 Motivation

The agents in Chapter 3 trade using a fixed investment strategy (FIS) which states

that they should keep a fixed fraction of their capital in stock and the remainder

as cash, to minimize risk and maximize returns. As was discussed, the theory

underlying it has two important assumptions: (1) that there are no costs associated

with trading, and (2) that moments of the return distribution higher than two (in

particular, the kurtosis) are negligible on short timescales.

I was curious how well FIS would work in a real market environment where

these assumptions may not hold so I constructed a hypothetical portfolio to track

real stocks. Sandbox Entertainment (http://www.sandbox.net/business/) pro-

vides an online simulated stock market called “PortfolioTRAC” which gives users

an imaginary bankroll of $100,000 and allows them to invest it in stocks listed on

the major American markets. The simulation uses real trading prices and allows

daily trades. Although it requires a few other idealizations, it is quite thorough and

supports such complexities as short positions, limit and stop orders, broker fees,

and daily interest on cash. Note that trades are only processed once per day (after
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Symbol Company Price Shares Value

AAPL Apple Comp Inc $41.25 244 $10,065.00
AMD Adv Micro Device $28.00 345 $9,660.00
AU Anglogold Ltd $19.56 514 $10,055.13
CHV Chevron Corp $82.06 120 $9,847.50
EK Eastman Kodak Co $71.19 141 $10,037.44
IMNX Immunex Corp $116.50 82 $9,553.00
MSFT Microsoft Corp $141.00 69 $9,729.00
NSCP Netscape Comm $63.25 157 $9,930.25
RG Rogers Comm $8.56 1139 $9,752.69

Cash $11,004.89
Total $99,634.89

Table 6.1: Initial holdings of a hypothetical portfolio on January 4, 1999.

closing) so limit and stop orders execute based on closing prices.

I began with $100,000 on January 4, 1999 and decided to divide my assets

uniformly among 9 stocks and one cash account. Table 6.1 lists my initial portfolio

after commissions have been accounted for. The FIS goal was to keep one tenth of

my total capital in each stock.

6.2 Choice of companies

My choice of companies was not completely random: I chose Apple Computers

(AAPL), Advanced Micro Devices (AMD) and Netscape Communications (NSCP)

because they were all “underdogs” in their respective industries and would have to

be innovative and aggressive to survive. Similarly, I chose Eastman Kodak (EK)

because, although currently a large, stable company, I expected the emerging digital

camera technology to threaten its dominance and I wanted to see how it fared. I

chose the cable company Rogers Communications (RG) because I was interested in

the newly available cable modem technology which they were investing in. Microsoft

Corporation (MSFT) seemed a low-risk choice to balance my high-risk portfolio.

My focus to this point had been in the high technology sector so I determined

to diversify: in the petroleum sector I chose Chevron Corporation (CHV) for its

apparent low-risk and because it was the most recent gas station I had visited,

and I chose Anglogold (AU) as a gold stock simply because of its catchy symbol.

I couldn’t think of a last company I was interested in so I let my wife choose

Immunex Corporation (IMNX) from the biomedical sector. Although these choices
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were biased by my own interests it was hoped that they would prove sufficiently

representative to test the performance of the fixed investment strategy. (As will be

seen, this portfolio correlated strongly with the Nasdaq composite index.)

6.3 Friction

The derivation of FIS in Chapter 3 and other sources [56, 57] neglected commis-

sions; they considered a completely fluid portfolio, capable of adjusting instantly to

infinitesimal price changes. This market simulation was more realistic, with com-

missions which were handled as follows: in each trade a $39.95 charge was levied

for the first 1000 shares traded (bought or sold) and $0.04 per share over 1000.

Obviously, it would be unprofitable to trade on every minuscule price fluctuation so

a friction f was introduced. Orders are not placed until a stock’s price p exceeds a

threshold as given by Eqs. 3.20–3.21.

6.3.1 Minimum friction

Under some particular conditions it is possible to estimate how large the friction

needs to be for profitable trading in a commission-enabled market. To calculate the

necessary scale of the friction consider an imaginary scenario: we begin with a total

capital of w divided uniformly between a cash account and N−1 stocks, so the ideal

investment fraction is i = 1/N . The scenario consists of

1. a single stock’s price moving to a trade limit (buy or sell),

2. the stock being rebalanced (traded),

3. returning to its original price, and

4. being rebalanced again.

In this scenario we assume all the other stocks are unchanged, each main-

taining a value iw. We are interested in what the minimum friction fmin can be

such that we don’t lose any money given an absolute transaction cost T .

We begin with the fluctuating stock at its ideal price

p∗ =
iw

s
, (6.1)

where s is the number of shares held of the stock.

So the limit prices are

p± = p∗(1 + f)±1, (6.2)

142



where p+ is the sell limit and p− is the buy limit.

If the stock moves to one of the limits while all others remain constant, then

our wealth (before trading) will become

w± = (1− i)w + sp± (6.3)

and the quantity to be traded, from Eq. 3.15, will be

∆s± = s∗(p±)− s (6.4)

= (1− i)s
[
(1 + f)∓1 − 1

]
(6.5)

maintaining the same notation (the upper symbol of ± and ∓ indicates an initial

rise in price, and the lower indicates an initial drop).

The trade also changes our cash holdings by

∆c± = −∆s±p± − T (6.6)

= −∆s±p
∗(1 + f)±1 − T (6.7)

where T is the transaction cost (in dollars).

Now we assume the stock’s price returns to its original value p∗ and we trade

to recover our original portfolio ∆s′± = −∆s± (for simplicity), yielding another

change in cash

∆c′± = ∆s±p
∗ − T (6.8)

so the net change is

∆ĉ = ∆s±p
∗
[
1− (1 + f)±1

]
− 2T. (6.9)

Inserting the computation for ∆s± gives a net change

∆ĉ = (1− i)iw
[
(1 + f)∓1 − 1

] [
1− (1 + f)±1

]
− 2T (6.10)

= (1− i)iw
[
f +

1

1 + f
− 1

]
− 2T, (6.11)

regardless of whether the stock price rose then fell or fell and then recovered.

After some algebra we find the condition requiring a profit ∆ĉ > 0 holds

when f > fmin where

fmin =
TN2

w(N − 1)


1 +

√

1 +
2w(N − 1)

TN2


 . (6.12)

which simplifies to

fmin ≈ N

√
2T

w(N − 1)
(6.13)
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Date Event

January 4, 1999 Experiment started
March 23, 1999 Takeover: 1 NSCP → 0.9 AOL
March 26, 1999 Stock split: 2-for-1 IMNX
March 29, 1999 Stock split: 2-for-1 MSFT

August 27, 1999 Stock split: 2-for-1 IMNX
November 11, 1999 Stock split: 2-for-1 AOL
December 10, 1999 Tolerance changed from 10% to 2fmin

March 21, 2000 Stock split: 3-for-1 IMNX
April 14, 2000 NASDAQ correction
May 12, 2000 Experiment ended

Table 6.2: Events relating to the hypothetical portfolio which occurred during the
course of the experiment.

in the limit w À T .

This informal derivation is only meant to set a scale for the minimum friction,

it is not meant to be rigorous. A more detailed calculation may be possible by

assuming each stock’s price moves as geometric Brownian motion but the derivation

would be cumbersome and the benefit dubious.

When I began trading with my hypothetical portfolio in the beginning of 1999

I arbitrarily chose f = 10%, a fortuitous choice, as it turns out, because anything

less than fmin = 9.90% might have been a losing strategy.

Since Eq. 6.12 sets the break-even friction it is best to set the actual friction

somewhat higher. Once the minimum friction for my portfolio had been estimated

(December 1999) I chose a dynamic value of f = 2fmin.

6.4 FIS Experimental results

In this section, the results of using the fixed investment strategy (with friction) on

a hypothetical portfolio will be discussed.

6.4.1 Events

The experiment began on January 4, 1999 and ran until May 12, 2000 for a total

of 343 trading days. The portfolio was rebalanced faithfully, as needed almost

every day (excepting a few rare and brief vacations). Note that the simulation only

executed trades after closing so intra-day trading was not supported and the trading

price was always the stock’s closing price. Also note that the simulation did not

constrain orders to be in round lots and most orders, in fact, were odd sizes.
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A list of important events occurring over the course of the experiment is

shown in Table 6.2. The majority of events consist of stock splits, a division of

the shares owned by each shareholder of a company such the stake held by each is

unchanged. For example, a 2-for-1 stock split means each share is split into two,

each worth half its original value. Although theoretically a stock split should not

affect an investor’s capital in a company, stock splits are considered good news and

often drive the stock’s price up both before and after the split. The main reason

is that a split lowers the price of a stock and thereby makes it accessible to more

potential investors—increasing demand.

Another interesting event which occurred during the experiment run was

the takeover of Netscape Communications by America Online in March, 1999. AOL

purchased Netscape for roughly $4 billion and each share of Netscape stock was con-

verted to 0.9 shares of AOL. Takeovers tend to engender a great deal of speculation

which can precipitate large fluctuations in the stock’s value.

On the book-keeping side, the only change in methodology was the move

from a constant friction of f = 10% to a floating value of f = 2fmin, as given by Eq.

6.12, on December 10, 1999 (giving f = 15% at the time). The main consequence

was a somewhat decreased trading frequency.

The most exciting event was the correction in the high-technology sector

(which dominates my portfolio) in the week of April 14, 2000, evinced by an over-35%

drop in the Nasdaq Composite index from its all-time high only weeks earlier [84].

This is a particularly fortunate occurrence because it tests the ability of the FIS

to handle drawdowns. Market-wide fluctuations of this magnitude are rare but

an important consideration when devising a trading strategy. This aspect of the

experiment will be discussed below.

6.4.2 Performance

The final state of the portfolio at the end of the experiment is shown in Table 6.3.

In this section the performance of the fixed investment strategy will be evaluated.

As a control, a simple “Buy-and-Hold” Strategy (BHS) with the initial portfolio

shown in Table 6.1 held fixed, will be contrasted with the fixed investment strategy

(FIS).

Fig. 6.1, which shows the evolution of total capital for both strategies, on the

surface seems to indicate BHS outperforms FIS. BHS reaches a high of $237,000,

a full 14% higher than the maximum achieved with FIS. Also, BHS maintained a

higher capital on 292 of the 343 days (85%) the market was open. Evidently, FIS

does not perform well in real-world applications.

However, a closer inspection suggests FIS should not be discarded too rashly.
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Buy-and-hold strategy
Fixed investment strategy(a)

April 14, 2000

Date

W
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h

07/0005/0003/0001/0011/9909/9907/9905/9903/9901/99

$250 k

$200 k

$150 k

$100 k

Nasdaq composite index
Fixed investment strategy(b)

April 14, 2000

Date

W
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h

07/0005/0003/0001/0011/9909/9907/9905/9903/9901/99

$250 k

$200 k

$150 k

$100 k

Figure 6.1: Historical wealth using FIS versus (a) the Buy-and-Hold strategy and
(b) the Nasdaq Composite Index over the same interval (rescaled to be equal at the
start of the experiment).
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Symbol Company Price Shares Value

AAPL Apple Comp Inc $107.63 159 $17,112.38
AMD Adv Micro Device $85.69 216 $18,508.50
AOL America Online Inc $55.38 325 17,996.88
AU Anglogold Ltd $20.06 965 $19,360.31
CHV Chevron Corp $94.25 190 $17,907.50
EK Eastman Kodak Co $56.13 310 $17,398.75
IMNX Immunex Corp $35.00 456 $15,960.00
MSFT Microsoft Corp $68.81 269 $18,510.56
RG Rogers Comm $25.56 732 $18,711.75

Cash $18,792.39
Total $180,259.02

Table 6.3: Final holdings of a hypothetical portfolio on May 12, 2000.

For example, consider the market correction on and around the week of April 14,

2000. The Nasdaq Composite peaked at 5,049 points on March 10 and fell to a low

of 3,321 on April 14, a drop of 34%. The Buy-and-hold strategy fared somewhat

better, dropping to $180,000 for a drawdown of 25%. But the fixed investment

strategy suffered the smallest decrease—down only 15% to $176,000, finishing with

almost the same value as BHS. (It should be noted that Maslov and Zhang [85]

demonstrated that the FIS is the most aggressive possible strategy that keeps the

risk—measured as the expected drawdown from the maximum—bounded.)

This suggests FIS is less susceptible to large fluctuations. By rebalancing the

portfolio, one moves capital out of stocks which may be overvalued and into safer

companies which may be more resilient to perturbations. In this sense, FIS reduces

risk.

This can be seen in Fig. 6.2 which demonstrates that BHS is more prone to

large fluctuations (both positive and negative). To test whether these histograms

are compatible with the Gaussian hypothesis [46] the first four moments of the

distributions are calculated in Table 6.4. The moments of the daily returns of the

Nasdaq Composite index and each of the stocks in the portfolio over the same

interval are also shown.

The means for all the distributions are all small, negligible in comparison to

the standard deviations (which had an average of 3% daily). The skewness, given

by

Skew({ri}) =
1

N

∑

i

[
ri − r̄
σr

]3
(6.14)
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Buy-and-hold strategy
Fixed investment strategy

Log-returns log(wt+1/wt)

P
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b
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0.080.060.040.020-0.02-0.04-0.06-0.08

0.1

0.08

0.06

0.04

0.02

0

Figure 6.2: Histograms of log-returns of capital rt+1 = log(wt+1/wt) for both strate-
gies. Notice BHS exhibits more large fluctuations (fatter tails) than FIS.

Symbol Mean Std. Dev. Skewness Kurtosis

FIS 0.00178 0.016 -0.18 0.12
BHS 0.00183 0.021 -0.23 0.82

Nasdaq 0.00119 0.022 -0.58 1.65

AAPL 0.00274 0.040 0.04 0.54
AMD 0.00342 0.046 0.23 2.76
AOL 0.00134 0.044 0.33 1.32

AU 0.00042 0.029 0.60 3.93
CHV 0.00050 0.020 0.39 0.95

EK -0.00062 0.019 0.25 5.40
IMNX 0.00375 0.064 0.29 1.80
MSFT -0.00010 0.029 -0.90 5.18

RG 0.00361 0.034 0.66 0.80

Averages 0.00166 0.032 0.08 2.11
Significance 0.21 0.53

Table 6.4: First four moments of the distribution of log-returns for each stock,
the two trading strategies under review and the Nasdaq Composite Index. The
skewness characterizes the asymmetry of the distribution and the kurtosis indicates
the presence of outliers. The average skewness is not found to be significant but the
kurtosis is.
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where σr is the standard deviation of the returns, indicates the degree of asym-

metry in the distribution. The sign of the skewness indicates which tail of the

distribution contains more outliers. The skewness uncertainty for a (symmetric)

Gaussian-distributed sampling of N points is
√

15/N [20, Ch. 14], thereby setting a

scale for deciding if a particular skewness is significant or not. Interestingly, Table

6.4 indicates that individual stocks tend to be skewed positively but the portfolios

and the Nasdaq index are negatively skewed. This suggests that negative movements

tend to be correlated between stocks but positive movements are not.

The (excess) kurtosis is a measure of the spread of the distribution. A positive

kurtosis indicates the presence of many outliers or “fat tails”. The kurtosis is defined

as

Kurt({ri}) =

{
1

N

∑

i

[
ri − r̄
σr

]4}
− 3 (6.15)

where 3 is subtracted in order to fix the kurtosis at zero for a normal distribution.

The standard deviation of the kurtosis from a dataset of size N sampled from a

Gaussian is
√

96/N so the Gaussian hypothesis is rejected if the kurtosis if found

to be greater.

The table shows that almost every calculated kurtosis is significant, indicat-

ing fat tails for these daily return distributions. The only exception is the fixed

investment strategy which only has a kurtosis of 0.12 (versus a significance level of

0.53). This further confirms the hypothesis that FIS reduces risk: by rebalancing

the portfolio the frequency of large fluctuations is reduced. (Another favourable

consequence is that the return distribution appears to converge to a Gaussian, as

was assumed in the derivation of FIS.)

Nevertheless, it is undeniable that BHS outperformed FIS in the experiment.

But given the atypical trend seen in the portfolios, this conclusion may not be

generalizable. Both portfolios realized almost a 100% growth over the first year, a

gain which can hardly be expected to be repeated often (except, perhaps, during

other speculative bubbles). A more typical realization may have proven FIS superior.

By more typical is meant a smaller trend, relative to the scale of the fluctuations.

As can be seen in Fig. 6.1 FIS performs best in the presence of fluctuations and

slowly loses ground against BHS in the presence of an upwards trend.

Even if this experiment doesn’t demonstrate that FIS is optimal it still shows

that it is a reasonable investment strategy, and a suitable choice for the agents in

DSEM (Chapter 3). The striking feature of FIS is that it reduces the kurtosis (risk

of large events) and thereby misses large downturns (and upturns) in the market.
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6.5 Log-periodic precursors

In this section the results of another experiment performed, using the same hy-

pothetical portfolio, will be examined. At issue is whether there exists a reliable

method to forecast imminent crashes in the market. First, some background theory

is necessary.

6.5.1 Scale invariance

Scale invariance is a property of some systems such that a change of scale in a

parameter x′ = λx only has the effect of changing the scale of some observable

F ′ = F/µ, such that

F (x) = µF (λx). (6.16)

The above scaling relation has a power law solution F (x) = Cxz where

z = − log µ

log λ
(6.17)

and C is an arbitrary constant.

The important point to notice is that the scalings along both axes are related

by µ = λ−z. No matter how much the control parameter x is scaled by (even

infinitesimally, λ → 1), it is always possible to rescale the observable so that it is

invariant. This is known as continuous scale invariance.

6.5.2 Discrete scale invariance and complex exponents

In contrast, discrete scale invariance only allows fixed-size rescalings of the parame-

ter. To see how this comes about we begin by substituting the solution F (x) = Cxz

into the renormalization equation (Eq. 6.16),

Cxz = µCλzxz (6.18)

⇒ 1 = µλz. (6.19)

Now notice that 1 = e2πin for any integer n. Applying this and taking the

logarithm of both sides gives

2πin = log µ+ z log λ (6.20)

which has the solution

z = − log µ

log λ
+ i

2πn

log λ
. (6.21)

For the scaling relation to hold z must be a constant, which can only hold

when n = 0 (which allows λ to take on any value, recovering continuous scale
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invariance) or when λ is some fixed constant, the preferred scaling ratio. Hence, the

only invariant transformations are the discrete rescalings x′ = λx with corresponding

scalings in the observable F ′ = F/µ (for some fixed µ).

6.5.3 Log-periodic precursors

So far this might all look like mathematical trickery to the reader but the theory

does have testable consequences. If we use the notation zn = α + iωn with

α = − log µ

log λ
(6.22)

ωn =
2πn

log λ
(6.23)

then Fn(x) = Cnx
αxiωn is a solution to the scaling relation for each n and the

general solution is the linear combination over all integers n,

F (x) = xα
∑

n

Cnx
iωn (6.24)

= xα
∑

n

Cn exp(iωn log x) (6.25)

= xα


C0 + eiω log x

∑

n6=0

Cn exp(iω(n− 1) log x)


 (6.26)

where we have defined ω = 2π/ log λ, for convenience.

The final form of F (x) indicates that the function has a periodic component

with angular frequency ω. Expanding the periodic component as a Fourier series

gives, to first order,

F (x) ≈ xα
[
C0 + C ′

1 cos(ω log x+ φ)
]

(6.27)

where φ is an unknown phase constant.

This argument, a variation of those presented in Refs. [13, 86, 87], concludes

that discrete scale invariance leads naturally to log-periodic (in x) corrections to the

scaling function F .

6.5.4 Critical points

Near a critical point many properties of a system exhibit power law scaling relations

as described above. Therefore they are prime test-cases for the existence of complex

exponents characterized by log-periodic precursors.

Seismicity, studied in the context of critical phenomena, have been success-

fully modeled as self-organizing (with the build up of stress) to a critical point in
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time tc characterized by an earthquake, a sudden release of energy [13,88,89]. In the

neighbourhood of the critical time (small |tc − t|) the stress exhibits classic power

laws seen in critical phenomena. One important goal in seismology is forecasting

the time of occurrence tc of large earthquakes. It has been argued that log-periodic

fluctuations are present both before (foreshocks) and after (aftershocks) large events

and that the precursors improve earthquake forecasts considerably [86,90,91].

The premise is that the rate of change of the regional strain ε exhibits critical

scaling near the critical point,

ε̇ = F (|tc − t|) (6.28)

so that the strain (a measurable quantity) obeys

ε = A+ |tc − t|α+1 [B + C cos(ω ln |tc − t|+ φ)] (6.29)

in the vicinity of tc. The curve is fit to known data by tuning the seven model pa-

rameters (A, B, C, tc, α, ω, and φ) and the forecast of tc is read off from the

best fit to the data. This method has significantly improved precision over curve

fits neglecting log-periodicity (C = 0), validating the adoption of the three extra

parameters.

6.5.5 Application to financial time series

The same group of researchers who developed the concept of log-periodic precursors

in seismology have recently turned their attention to the stock market, arguing that

market crashes should be predictable by the same methodology [1, 84,92].

Johansen et al. [92] construct a theory for price fluctuations with the risk of

crash such that price series obeys precisely the relationship given in Eq. 6.29. The

basic argument is that stock prices enjoy exponential growth but with some risk

of crash. As time progresses the risk accumulates and the exponential growth rate

increases to compensate for the risk (to remunerate rational investors for their risk).

At some point in time the risk diverges and a critical point emerges.

The fundamental component of the theory is that the instantaneous risk of

crash (which they call the “hazard rate”) is assumed to obey a scaling relation like

Eq. 6.16 with a control parameter tc − t. Since it is related to the rate of change of

the price, Eq. 6.29 arises.

In theory then, financial crashes should be predictable by curve fitting to the

price series. In practice, though, this is an extremely difficult task: while searching

through the seven-dimensional parameter space for the optimum fit one often gets

stuck in local optima, missing the global one. This complaint has been raised against

the theory [93] and is acknowledged by Johansen et al. [84].
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Another problem with the research is that the experiments are all performed

on known crashes after they have occurred! This introduces two problems: Firstly—

with no disrespect intended—it may bias the results. If one knows there was a crash

at such-and-such a time it would be very difficult to be satisfied with a curve-fit

which made no such prediction. One would probably suspect the parameters were

stuck in a local minimum and tweak them. This is perfectly natural but without

foreknowledge one might have accepted the results without prejudice.

Secondly, all the curve fits were performed around well-established crashes.

It would be as useful to test the theory during other periods when no crashes occur

in order to test for “false positives.” If the theory predicts too many crashes when

none actually occur it is of no use.

In order to avoid these pitfalls I conducted a “blind” experiment to test the

ability of Eq. 6.29 to forecast crashes. As I was already running my FIS experiment

it was convenient to use it as my input data for the curve fit. Instead of forecasting

a crash in a single stock, then, I was attempting to forecast a crash in a portfolio

of nine stocks (and one cash account). But this is not seen as problematic since

the other studies used composite market indices instead of individual stocks, as

well [1, 84, 92,93].

6.5.6 Experimental design

The experiment consisted of collecting portfolio wealth data wt and fitting the curve

given by Eq. 6.29 with ε = w. The experiment began on February 14, 2000 and ran

through May 12, 2000 but the dataset used was the entire historical set from the

FIS experiment (which began on January 4, 1999).

The dataset consisted of sets of date-wealth pairs which were only collected on

days when a trade was executed. At the beginning of the experiment this consisted

of 113 points which grew to 134 points by the close of the experiment.

The fitting over the seven model parameters was performed using Microsoft

Excel’s Solver Add-in which uses the Generalized Reduced Gradient (GRG2) non-

linear optimization technique [94]. The GRG2 method is suitable for problems

involving up to 200 variables and 100 constraints. The optimization condition was

the minimization of the sum of the squared deviations (χ2 nonlinear least-squares

fitting).

The fit was performed on a logarithmic price scale on the basis that it is the

relative (fractional) fluctuations in capital which are fundamental, not the absolute

variations. Fitting on a linear scale, then, would significantly bias the curve to

fit better at greater wealths at the expense of the fit at lesser wealths. So the fit
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consisted of minimizing

χ2 =
∑

t

[lnw(t)− lnwt]
2 (6.30)

where wt is the actual wealth at time t and w(t) is the fitting function as given by

Eq. 6.29.

The Solver routine did not provide a measure of the quality of the fit or an

estimate of the fitted parameters’ uncertainties but an estimate of the quality is

provided by the χ2 measure itself. If the fit is of high quality then the data should

be randomly distributed around the curve with a total χ2 variance proportional to

N−7 [20, Ch. 15]. Hence, the ratio (N−7)/χ2 should be independent of the number

of data points N acquired. A small value indicates a large χ2 variance and a poor

fit, while a large value indicates a good fit. Hence, the quality of the fit Q, defined

as

Q ≡ N − 7

χ2
, (6.31)

is a dimensionless (strictly positive) quality which increases as the fit gets better.

Using Q allows us to compare fits at different times t with different amounts of data

N . Note that the parameter Q is only useful so far as ordering the fits: if Qi > Qj

for fits i and j (possibly at different times) then i is a better fit—more likely to

explain the data and with more meaningful parameter values (in particular, the

forecasted crash date tc).

Every day of the experiment a new data point was recorded (if a trade had

been executed) and then the curve was refit to the dataset generating a new forecast

for the next market crash tc. The forecasted date of the crash, date the forecast

had been generated and the quality of fit Q were then recorded. A new forecast was

made everyday, even in the absence of new data, because the critical time tc was

constrained to occur in the future.

Nonlinear curve fitting is basically a parameter space exploration which de-

pends crucially on the initial choice of parameters. The initial parameter set, at the

initiation of the experiment, was chosen by first trying to establish a good power

law fit (with C = 0) and then refitting over all seven parameters. Subsequent fits

all began with parameter values that were produced by the last fit with one im-

portant exception: the critical point tc was always initialized to be the current day.

The motivation was to avoid getting stuck in sub-optimal solutions at later times

and miss an impending crash. It was preferable to impose a bias towards imminent

events. It is still possible to converge to sub-optimal solutions but it was decided

that false positives were preferable to false negatives.

It is important to stress that all the forecasts from this experiment were

true predictions, tabulated as the experiment progressed for analysis later. The
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Figure 6.3: Sample fit of Eq. 6.29 to portfolio wealth on May 12, 2000. The best fit
parameters indicate a crash is anticipated on or around tc =July 4, 2000.

calculations were not performed after-the-fact so the results are not biased by fore-

knowledge.

6.5.7 Results

Each day, a fit of Eq. 6.29 to the portfolio wealth data was performed giving a fitted

curve similar to the one shown in Fig. 6.3 and the value of tc the fitting procedure

converged upon was interpreted as a forecast of the time of the next crash.

The experiment ran for 63 (week-)days and predicted a remarkable 30 crashes

in that period. Obviously, the theory predicts too many false positives. However, it

may still have some merit if the false positives have some correlation with returns.

The dates of forecasted crashes and their actual returns (fractional change

of wealth) are plotted in Fig. 6.4. Notice the increased numbers of forecasts for a

crash in early April, in agreement with the observed decline on the 14th. However,

besides that, it is difficult to discern any pattern from the graph so some further

statistical analysis is in order.

We want to determine if there is a statistically significant signal in the returns

on the days the market was forecasted to crash versus other days so the dataset is

split into two: “Forecasted” and “Not Forecasted.” The mean returns and standard

deviations were computed for both data sets (and the entire dataset) as shown in
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Figure 6.4: Daily wealth returns (wt/wt−1 − 1) are shown along with the dates
forecasted to crash in (a). The qualities of the curve fits corresponding to the
forecasted crashes, which suggest the reliability of the predictions, are shown in (b).
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Data set Mean return Std. Dev.

All data 0.0% 1.8%
Forecasted −0.2% 1.5%

Not Forecasted 0.2% 1.9%

Table 6.5: Average values and standard deviations of the daily portfolio returns
(wt/wt−1 − 1) for all data and separately for days a crash was forecasted and not
forecasted.

Data set Mean return Std. Dev.

Forecasted −0.4% 1.4%
Not Forecasted 0.5% 1.9%

Table 6.6: Same as Table 6.5 except only including data up until the observed decline
on April 14.

Table 6.5. There does appear to be a small deviation between returns on forecasted

days versus not-forecasted days but the deviation is insignificant when compared to

each dataset’s standard deviation.

The likelihood that the two datasets come from the same underlying distri-

bution can be calculated using the Kolmogorov-Smirnov (K-S) test which compares

the cumulative probability distribution of the two samples [20, Ch. 14]. The calcu-

lation estimates a 24% chance that the underlying distributions are the same, which

is still statistically significant so the log-periodic precursor prediction method is not

conclusive.

Recall that there was a (fortuitous) correction in the markets on and around

April 14 as indicated by Fig. 6.1(b). It would be interesting to know whether this

forecasting method “saw it coming.” Interestingly, Johansen and Sornette submitted

a paper to the LANL preprint archive on April 16 claiming to have predicted, as

early as March 10, a major event between March 31 and May 2 [84].

To test whether the crash around April 14 was predictable the data from Fig.

6.4 are reused neglecting everything after April 14. (Notice the quality of the fit

declined markedly after April 14, suggesting the reliability of the later predictions is

dubious.) The average returns and their standard deviations for both “Forecasted”

and “Not forecasted” dates is again shown in Table 6.6, with a somewhat more

significant difference betweens the means (the standard deviations are almost un-

changed). Applying the K-S test now yields a much less significant 11.7% likelihood

that the datasets are samples from the same underlying distribution.

In conclusion, it appears that there may be some value in interpreting mar-

ket crashes as critical phenomena with log-periodic precursors but the predictive

157



advantage of doing so is limited. The main difficulty lies in fitting seven nonlinear

model parameters to a given dataset—often the fitting algorithm converges to a

suboptimal solution, thereby forecasting an erroneous crash date tc.

6.5.8 Universality of scaling ratio

In this section an open problem in the theory of log-periodic precursors will be

presented.

It has been observed that the scaling ratio λ in Eq. 6.29 seems to be universal,

almost always converging to a value near λ ≈ 2.5 − 3.0 [1, 84, 90–92]. (Note this

corresponds to a universal log-periodic frequency ω = 2π/ lnλ ≈ 5.5 − 7.0.) The

emergence of a universal scaling ratio has come as a surprise to researchers [84, 92]

since it describes some natural hierarchy within the specific system of interest and

is not expected to be general.

Another peculiarity is that log-periodic fluctuations occur in some systems

which do not have an obvious discrete scale invariance, such as the stock markets.

In the derivation of log-periodicity, discrete scale invariance was a fundamental

ingredient, without which it did not emerge. Why then might markets, which are

not suspected to have any discrete scale invariant structures, exhibit log-periodicity?

It is my belief that these two idiosyncrasies are tied together: with the lack

of a preferred scaling ratio a natural ratio is chosen, Euler’s constant, λ = e ≈ 2.72.

The log-periodic frequency is then ω = 2π ≈ 6.28, in agreement with observation.

A mechanism that might produce this preferred scaling ratio is unknown and this

issue is only discussed here to generate interest in the problem. The discovery of

a mechanism whereby ω is fixed would be a great boon to forecasting because this

parameter is one of the most problematic for the optimization routine. (Incidentally,

fixing ω = 2π, the next crash (in the hypothetical portfolio) is forecasted to occur

in the third week of October, 2000.)

6.6 Summary

In this chapter two experiments were performed with a hypothetical portfolio of nine

stocks. In the first experiment it was observed that the fixed investment strategy

(FIS) performs sufficiently well to justify its application in the Decentralized Stock

Exchange Model (DSEM). Although it underperformed when compared to a trivial

“Buy-and-hold” strategy, this is attributed to the strong upward trend in the portfo-

lio over the course of the experiment. In each case when the climb was interrupted

the FIS managed to “catch up to” and surpass the Buy-and-hold strategy, only

to lag behind again when the trend re-emerged. The FIS also had the favourable
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property that it significantly reduced the kurtosis of the distribution of returns, es-

sentially taming the largest fluctuations. This may be relevant to derivative pricing

theory [65] which assumes Gaussian-distributed increments with no excess kurtosis.

The second experiment tested a method for forecasting financial crashes.

The method relies on log-periodic oscillations in the price series which accelerate

as the time of the crash approaches. The data suggest that log-periodic precur-

sors probably do exist but they offer little, if any, prediction advantage because the

method requires solving an optimization problem involving seven nonlinear param-

eters. Thus, the optimization procedure tends to get stuck in local, sub-optimal

regions of the parameter landscape, frequently producing false-positive forecasts. It

would be interesting to discover whether stochastic optimization techniques, such

as simulated annealing [61], could provide better forecasts.
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