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Chapter 5

Analysis and Results: Empirical

results

In the last chapter we explored the phase space of the Centralized and Decentralized

Stock Exchange Models (CSEM and DSEM, respectively). This chapter is concerned

with contrasting the data from these models with empirically known qualities of real

markets. Some of the properties we hope to uncover are leptokurtosis in the price

returns and correlated volatilities. As we will see, the emergence of these properties

is closely related to the phase transitions discovered in the last chapter.

5.1 Price fluctuations

We begin by exploring the distribution of price fluctuations.

5.1.1 Background

It has long been known that stocks exhibit stochastic fluctuations in their price histo-

ries. Originally it was hypothesized that the markets exhibited (discrete) Brownian

motion and therefore had Gaussian-distributed price increments [64]. Later this

was adapted to account for the strictly positive nature of stock prices via geomet-

ric Brownian motion [46] with the logarithm of the price following a random walk.

Much theoretical work on derivative pricing assumes geometrical Brownian motion

including the famous Black-Scholes equation [65].

It was a startling discovery, then, when Mandelbrot pointed out that, empir-

ically, the logarithm of price-returns did not have a Gaussian distribution [5, 9]. In

fact, on short timescales, large (exceeding a few standard deviations) fluctuations

occurred much too frequently to be explained by the Gaussian hypothesis. These

108



large fluctuations contribute to the tails of the distribution resulting in “fat tails”.

Mandelbrot proposed the correct probability distribution function (on the

logarithmic scale) was not the Gaussian but its generalization—the stable Lévy

distribution. Lévy distributions (see Section C.2.3) drop off as power laws

p(x) ∼ 1

xα+1
, |x| → ∞ (5.1)

for 0 < α < 2, resulting in fatter tails than the Gaussian (α = 2). An attractive

feature of this hypothesis is that it scales: that is, the distribution (and the exponent

α) remains the same whether measured hourly, daily, or even monthly. Mandelbrot

measured the daily and monthly distribution of returns from cotton prices and found

both fitted well to a Lévy distribution with exponent α = 1.7 [9]. Studies of other

markets have had similar results concluding 1.4 ≤ α ≤ 1.7 [4, 10, and references

therein]. (Appendix B demonstrates it is possible to simulate fat tails by regular

sampling of a discrete Brownian process but Palágyi and Mantegna [66] demonstrate

this is not responsible for the fat tails observed in return distributions.)

Since then the adequacy of the Lévy distribution to describe price fluctua-

tions has been called into question because it implies that the fluctuations have an

infinite variance whereas experimental evidence indicates it is probably finite [7,67].

(Recent studies indicate the tails of the return distributions fall off fast enough that

the variance is finite.) Related to this is the observation that scaling is violated

on long timescales (of more than a week [4]) where the distribution converges to a

Gaussian (because the Central Limit Theorem applies if the variance is finite).

This discrepancy was initially resolved by arbitrarily truncating the power

law with an exponential weighting function for large events [4, 68]. According to

this theory, gradually truncated Lévy flight (GTLF), the tails of the cumulative

distribution of (normalized) returns r follow

C(r) ∼





r−α |r| ≤ lC

r−α exp

[
−
(
|r|−lc

k

)β]
|r| > lC .

(5.2)

with an exponential decay beyond some cut-off lC . While this did improve the

quality of the fit to observed returns it did so at the expense of three new fitting

parameters—the cut-off lC , the decay rate k, and the power of the exponential

β—bringing the total to five adjustable parameters.

An appealing alternative is the idea that the tails of the return distribution

do have a power law but with an exponent α ≈ 3. (An interesting, and testable, con-

sequence is that moments higher than three—such as the kurtosis—are divergent.)

Since the exponent is greater than two the distribution is not stable and converges
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to a Gaussian on long timescales. It also implies that the variance is finite. A very

comprehensive analysis was performed across 1,000 companies yielding a (huge!)

dataset of 40 million returns (Mandelbrot had only available 2,000 points) and the

results strongly support the inverse cubic (IC) hypothesis [6, 69].

To be precise, the theory is that a Lévy law (α ≈ 1.4) applies for small to

intermediate returns (less than a few standard deviations) but then the distribution

crosses over to the inverse cubic for larger returns. Thus we have two fitting pa-

rameters in either scaling regime and a crossover point, for a total of five adjustable

parameters, the same as GTLF. Although this research [6,7,69] is excellent the prac-

tical application of the theory is somewhat cumbersome and a simpler alternative

exists.

5.1.2 Alternative: Decaying power law

In this section an alternative which appears to explain the data almost as well but

with only three parameters is presented. Koponen [70]—expanding on work done by

Mantegna and Stanley [71]—demonstrated that a power law with a smooth expo-

nential cutoff has Lévy increments on short timescales which converge to Gaussian

after a long time. This process is equivalent to GTLF with lC = 0 and β = 1 so

there exists no cut-off point, the exponential truncation applies for all returns. The

hypothesis is that the tails of the cumulative return distribution obey

C(|ri| > r) ∼ r−αe−r/rc (5.3)

where α is the scaling exponent and rc is the decay constant, which sets a character-

istic scale over which the power law dominates—in the limit rc →∞ Mandelbrot’s

pure Lévy flight hypothesis re-emerges. (This functional form has been observed to

accurately describe the distribution of fluctuations in the “game of Life” [72].)

The use of this truncation hypothesis must be justified in light of the over-

whelming empirical evidence supporting the inverse cubic hypothesis [6,7,69]. To do

so it is necessary to explicitly formulate the goals of this section: (1) to determine

if the return distributions generated by the models scale with an exponent near

α ≈ 1.4 over some range of returns, and, if so, (2) to estimate the range of returns

over which the scaling holds.

In doing so we can determine if the models reproduces truncated Lévy flight

observed empirically. However, the amount of data collected will be insufficient to

adequately determine how the truncation occurs, whether it is an inverse cubic or

exponential decay. Further, this detail is not of central importance to this work so

it is left for future research.
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Therefore we are free to choose the most convenient form for the truncation

factor, that given by Eq. 5.3. This form has a few technical advantages over the

previously discussed methods. The first is that it requires a fit of only three pa-

rameters and the fit is linear in each of them when performed on the logarithmic

scale. Hence, only one optimal solution exists and a number of algorithms exist for

arriving there [20, Ch. 15].

Secondly, it is a single continuous function so it requires no manual searching

for a crossover point between two regimes (which is an art in itself). In fact, it

automatically determines the crossover from power law behaviour to exponential

decay with the fitted parameter rc. The larger rc is, the greater range the power

law is valid over.

Fig. 5.1 contrasts the fit of the inverse cubic hypothesis (a) with the decaying

power law (b). Both fit the high frequency exchange data quite well, but recall the

inverse cubic requires two additional parameters to do so. The decaying power law

hypothesis indicates a power law with exponent α ≈ 1.42 applies for returns less

than rc ≈ 8.11 (standard deviations), beyond which the power law is attenuated by

an exponential decay.

Also shown is the distribution of daily returns for the Nasdaq Composite in-

dex over almost 16 years [73, ticker symbol=∧IXIC] in Fig. 5.2. This figure demon-

strates an important point: when the crossover to the exponential occurs at a small

value of rc (less than a few standard deviations, as in the positive tail) the estimate

of the Lévy exponent is unreliable. The larger rc gets, the more meaningful the

value of α becomes.

While the claim that real market fluctuations actually obey Eq. 5.3 is largely

unsubstantiated, a weaker claim that this functional form is an effective method to

test for scaling in market data is also being made based on two observations: (1)

it is systematic and does not require any intervention (tuning of parameters) on

the part of the researcher, and (2) it characterizes both the range and exponent of

the Lévy region well with the parameters rc and α, respectively. For these reasons

this method will be used in the following sections to test for scaling in CSEM and

DSEM.

5.1.3 Methodology

To determine the distribution of returns over some time interval ∆t the price series

will be regularly sampled producing a series of returns

ri ≡ ln

[
p((i+ 1)∆t)

p(i∆t)

]
. (5.4)
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α = 1.42± 0.01, rc = 8.11± 0.04
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Figure 5.1: Ten minute returns (86,000 data points) of the Swiss franc–U.S. dollar
exchange rate [2] (negative tail) compared to power law with crossover to α ≈ 3 (a)
and power law with exponential drop-off presented in this section (b).
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Figure 5.2: Both tails of the cumulative distribution of daily (normalized) returns
for the Nasdaq Composite index between October 1984 and Jun 2000 (4,000 data
points) fit well to a decaying power law. The power law is truncated by two standard
deviations in the positive tail but extends almost to four in the negative tail.
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The mean r̄ and standard deviation σr will be computed and the returns normalized

r̂i ≡
ri − r̄
σr

. (5.5)

The cumulative distribution of the normalized returns will be calculated and

compared with the cumulative Gaussian (the error function). Of particular interest

are the tails of the distribution which are hypothesized to obey the scaling functions

C(r̂i ≥ r̂) ∼ r̂−α+ exp(−r̂/rc,+), r̂ → +∞ (5.6)

C(r̂i ≤ r̂) ∼ |r̂|−α− exp(− |r̂| /rc,−), r̂ → −∞ (5.7)

with exponents α+ and α− for the positive and negative tails and crossover val-

ues rc,+ and rc,−. (The cumulative distribution is preferred because cumulating

effectively “smooths” the data, making it more amenable to analysis.)

The adjustable parameters α± and rc,± will be acquired via a Levenburg-

Marquardt nonlinear fit to logC for returns exceeding |r̂| > 1 since we only want to

fit the tails. (A linear fit is also possible with a suitable choice of parameters.)

A small value of rc will be interpreted to mean that no scaling exists and the

parameter α is irrelevant.

5.1.4 Centralized stock exchange model

For this experiment we return to Dataset 1 (Table 4.1) and apply the analysis to the

largest system N = 1000. Fortunately, each run consists of over 30,000 days worth

of data so the scaling can be tested on a wide range of timescales. (In the analysis,

the initial transient will be discarded.)

Since CSEM contains the free parameter σε (the forecast error) we must sam-

ple a suitable spectrum of values in our search for scaling. Obviously, the dynamics

around the critical point σc ≈ 0.08 (from Fig. 4.6(a)) is of particular interest so

samples are chosen which span the critical point.

The scaling regime is indicated by the characteristic return rc: a small value

indicates that the exponential drop-off occurs for small returns (before scaling be-

comes evident) and a large value indicates the power law applies over a broad range

of returns. In this experiment a threshold value of rc = 3 was observed to adequately

distinguish between distributions which scaled and those which didn’t. This limit

was also used in Ref. [7] to estimate the scaling exponent α.

Plotting the characteristic return rc for a variety of forecast errors σε (Fig.

5.3) shows that scaling is only observed well below the critical point σc. The average

scaling exponent for all distributions with rc > 3 is α = 0.8 ± 0.4, which compares

poorly with the empirical value 1.4 ≤ α ≤ 1.7.
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Figure 5.3: Scaling in the distribution of returns is only observed well below the
critical point σε ¿ σc in CSEM as indicated by large values of the characteristic
return rc. For small σε scaling occurs in both tails for daily returns but only for
negative returns in monthly returns.
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Parameters DSEM Dataset 3

Particular values

News response rn 0.01 0.01 0.001
Price response rp -0.75 to 0.75 by 0.25 0.95 0.99

Number of runs 7 1 1

Common values

Number of agents N 100
Run length (“days”) 20,000

Table 5.1: Parameter values for DSEM Dataset 3. These runs are a variation of
Dataset 1 (all unspecified parameters are duplicated from Table 4.4) run out for
longer times (roughly 80 years). Also notice that for rp = 0.99 the news response
was reduced by an order of magnitude to keep the price within reason.

For positive returns scaling is found to disappear as the sampling interval is

increased from daily to monthly (20 days), as expected. Interestingly, the same is

not true for negative returns: instead the returns scale for even more values of σε

on a monthly timescale than they do daily.

The run σε = 0.03 sampled monthly is an interesting case because it exhibits

a strong asymmetry between up and down moves, having a characteristic return

above the threshold for negative returns and below for positive returns, so its return

distribution is plotted in Fig. 5.4. This effect is due to an asymmetry between

up- and down- movements which arises from the artificial price cap imposed by the

parameter δ. See, for example, Fig. 4.1(b) which shows that occasional large crashes

occur when the price approaches its upper limit while upwards movements are more

normally distributed.

Unfortunately, the above only serves to further call in to question the validity

of the CSEM model because scaling behaviour is only observed below the critical

point, in the regime where we have already seen (Fig. 4.1, for instance) the dynamics

are completely unrealistic. So we turn to DSEM in the hope that it is a more realistic

model of market dynamics.

5.1.5 Decentralized stock exchange model

In this section the distribution of returns in DSEM is analyzed.

To get the limit distribution a large quantity of data is required so DSEM

was run with the parameter values from Table 5.1, the most notable feature being

that the run length was extended from 1,000 days (≈ 4 years) to 20,000 days (≈ 80
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Figure 5.4: For σε = 0.03 in CSEM (N = 1000) the distribution of positive (monthly)
returns (upper) almost converges to a Gaussian but still has a slightly heavy tail.
The negative returns (lower), however, exhibit scaling for r < rc ≈ 5.4 with an
exponent α ≈ 1.1.
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Threshold = 3
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Figure 5.5: DSEM only begins to exhibit scaling, as measured by a characteristic
return exceeding three standard deviations, for price responses well below the first-
order transition r2 = −0.33 and as the price response approaches the critical point
r1 = 1.

years).

The distribution of price returns (sampled “daily”) was then cumulated and

fitted with Eq. 5.3. (Issues raised in Appendix B regarding sampling are addressed

on page 122, below.) The characteristic size of the returns for the different values of

rp is shown in Fig. 5.5. Notice that they are almost exclusively below the threshold

required to establish scaling indicating that the distributions do not exhibit scaling

properties observed empirically. The worst region appears to be intermediate values

of rp with better performance near the endpoints.

Recall that DSEM exhibits three behaviours as rp is varied: (1) when rp >

r1 = 1 the price is perfectly autocorrelated—every movement is followed by another

(typically larger) movement in the same direction; (2) in the intermediate region r1 >

rp > r2 the price series looks most realistic and has (at most) weak autocorrelations

on long timescales; and (3) when rp < r2 ≈ −0.33 the price fluctuations have a strong

negative autocorrelation extending over all timescales. Thus, the price fluctuations

appear only to obey (realistic) scaling distributions in the domains precisely where

the dynamics were observed to be unrealistic! To reconcile this dichotomy we need

to expand our experimental parameter space.
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Parameters DSEM Dataset 4

Number of agents N 100
Lower price response rlo –0.75 to 0.75 by 0.25

Higher price response rhi 0.50 to 1.50 by 0.25
Number of runs 35

Run length (“days”) 20,000

Table 5.2: Parameter values for DSEM Dataset 4. These runs are characterized by
a two-point distribution of the price response. Each agent chooses rp = rlo or rhi
with equal probability. (All unspecified parameters are duplicated from Table 4.4.)

Two-point price response

Thus far the price response had been fixed at a single value for all the agents. But

since realistic dynamics (characterized by both the lack of strong memory effects and

scaling in the distribution of returns) were not to be obtained by any single value

of rp I was forced to allow multiple price responses. Originally I explored allowing

rp to span a broad range which covered all three phases but the range required to

get scaling was so large that most of the agents were either in Phase 1 (rp > r1) or

in Phase 3 (rp < r2) with only a few in Phase 2. Therefore it seemed easier to just

require that rp take on one of only two allowed values, rlo and rhi.

Data analysis

Thirty five runs were executed spanning a two-dimensional region of parameter

space with each agent choosing a price response of either rlo or rhi (with equal

probability). The lower price response was varied between −0.75 ≤ rlo ≤ 0.75,

spanning the first order phase transition at r2 ≈ −0.33, and the upper value was

varied between 0.50 ≤ rhi ≤ 1.50, spanning the critical point at r1 = 1, as indicated

in Table 5.2.

For each run the cumulative distributions of returns (both positive and nega-

tive) were calculated and the tails (returns exceeding one standard deviation) fitted

to a decaying power law (Eq. 5.3). As before, the tail was determined to scale if

the decay constant rc exceeded three standard deviations, otherwise the region over

which a power law is suitable is insubstantial.

For returns smaller than the characteristic return rc the exponential in Eq.

5.3 is almost flat so the power law dominates. Larger values of rc indicate that

scaling spans a greater range of returns. As shown in Fig. 5.6(a), scaling is observed

for some parameter combinations. To test which parameter produces scaling a linear
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Figure 5.6: The characteristic returns in DSEM with a two-point distribution of price
responses (rlo and rhi) exceeds the required threshold of rc = 3 when rhi is large (a).
Neglecting the dependence on rlo (b) it becomes clear that the characteristic return
grows exponentially with the upper limit rhi, crossing the threshold near rhi ≈ 1.
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Variable Correlation with log rc
rhi 78%

rhi − rlo 76%
rlo –41%

Table 5.3: Linear correlation analysis between said variable and the logarithm of
the characteristic return from DSEM Dataset 4. The correlation is strongest with
the upper limit of the price response rhi.

correlation analysis was performed, as shown in Table 5.3, between the logarithm of

the characteristic return and a few obvious possibilities: the upper price response

rhi, the lower limit rlo, and the spread rhi − rlo. The best predictor for scaling over

a large range of returns was found to be rhi with a correlation of 78%. (The spread

also correlated well but, as will be seen later in this chapter, is unable to account

for other empirical qualities of the market.)

Fig. 5.6(b) shows the dependence of the characteristic return on the upper

price response. Notice that 85% of the data points lie in the upper-right and lower-

left quadrants if axes are drawn at rc = 3 (horizontal) and 1 < rhi < 1.25 (vertical).

Thus, the strongest condition for scaling appears to be that the upper price response

rhi > 1, above the critical point r1 = 1.

Of all the runs which exhibit scaling the average scaling exponent was cal-

culated to be α = 1.64± 0.25, in line with the empirical value α ≈ 1.40± 0.05 [10].

Recanting continuous heterogeneity

Some other market models characterize agents by types: either fundamentalists

or chartists. In the derivation of DSEM I claimed (Section 3.3.3) that allowing a

continuous range of the parameter rp would be superior, reflecting a greater diversity

of opinion as would be expected in the real world. However, as we saw above, DSEM

is only able to capture the essence of real market fluctuations (scaling) when rp is set

to two discrete values, rather than a continuum. (As mentioned before, a continuous

range of rp can also produce scaling but only if the spread is set to a much greater

value than required by the two point distribution.) In other words, scaling appears

to depend on the separation of agents into “types”.

121



Timescales

An interesting empirical property of scaling in real markets is that the exponent

appears to be invariant when measured on different timescales (except for timescales

exceeding a few days when the distribution converges to a Gaussian). To test if this

also occurred in DSEM the run rlo = 0.00, rhi = 1.25 was chosen for further analysis.

This run was chosen because it was observed to exhibit scaling on timescales of one

day, and because a value of rlo = 0 seems “natural”—it divides the population

into two types: one of which are pure fundamentalists, not responding to price

fluctuations at all.

This run was sampled at ten different intervals ranging from 0.02 days

(roughly 8 minutes, assuming a 6.5 hour trading day), to 20 days (one month, ne-

glecting weekends). As can be seen in Fig. 5.7(a) the characteristic return increases

with smaller sampling intervals, and drops below the threshold for detecting scaling

when the interval exceeds 5 days (one week). On longer timescales the distribution

indeed converges to a Gaussian (not shown).

As expected, (when scaling is detectable) the power law exponent does not

appear to depend on the sampling interval, fluctuating around α = 1.55± 0.11.

Tickwise returns

Appendix B demonstrates that it is possible to generate the illusion of fat tails in a

discrete Brownian process simply by sampling it at regular intervals, as was done for

DSEM. Therefore, it is important to establish that the fat tails discussed above are

not an artifact of sampling, but are inherent to the fluctuations themselves. This is

easily tested by simply sampling the process in trading time rather than real time.

That is, a sample is taken directly after every trade (or tick).

Clark [74] raised the issue of whether regular sampling may be producing the

fat tails observed empirically but Palágyi and Mantegna [66] demonstrated fat tails

are still observed when sampled in trading time. To test if this was also the case

for DSEM Fig. 5.6(a) was reproduced, using trading time instead of daily samples,

in Fig. 5.8. Clearly, scaling is still evident (in the same region of parameter space)

when sampling in trading time so it is not an artifact of the sampling interval.

5.1.6 Summary

The distribution of price returns, measured as the logarithm of the ratio of successive

prices, was the subject of investigation in this section.

Two theoretical curves meant to describe the tails of the distribution were

presented. An alternate form was also presented, whose main advantages are that it
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Figure 5.7: The characteristic return rc (a) and scaling exponent α (b) for DSEM
with rlo = 0.00 and rhi = 1.25. The characteristic return grows as the sampling
interval is shortened, but the scaling exponent α is fairly constant (1.55± 0.11).
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Figure 5.8: Fitting the decaying power law to DSEM with a two-point price response
using returns on individual trades (rather than per unit time, as in Fig. 5.6) shows
scaling still occurs in the same region of parameter space.

is linear in its parameters (of which there are two fewer than the competing models).

This curve appears to describe empirical data quite well, but even if it is found to

be inaccurate, it is still useful because it provides a simple, mechanical method for

estimating over what range the power law dependence applies (|r| < rc) and the

scaling exponent itself.

Both CSEM and DSEM were tested for “fat tails” with this functional form

with the requirement that the scaling extend for at least three standard deviations

(rc ≥ 3) to be deemed significant. CSEM was found only to exhibit scaling for

σε ¿ σc, in a region of parameter space where the dynamics are known to be

unrealistic.

DSEM provided some surprises: if all the agents maintained an identical

price response parameter rp then scaling did not occur except as rp moved into

regions known to produce unrealistic dynamics. However, if two values of rp were

allowed, with each agent randomly picking one or the other, scaling was observed

when the responses spanned the critical point rp = r1 = 1. A test for a variety of

values of rp established a scaling exponent α = 1.64 ± 0.25, with returns sampled

daily, comparing favourably with the empirical quantity α = 1.40 ± 0.05 [10]. The

scaling exponent was shown to be robust, independent of the sampling interval.

In short, DSEM was able to produce realistic return distributions while
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CSEM was not. Furthermore, DSEM implied the mechanism which produces scaling

is somehow related to having different “types” of agents interacting with each other:

fundamentalists versus chartists, for instance. The crucial determinant for scaling

appeared to be that the range of parameter values spanned the critical point.

In the next section we explore a related phenomenon: autocorrelations in the

price series.

5.2 Price autocorrelation

5.2.1 Background: The efficient market hypothesis

In this section we explore the possibility of serial correlations in the price series. As

discussed in the last section it has long been thought that the market behaves as

a random walk [46, 64]. Related to this is the efficient market hypothesis (EMH)

which, in its weakest form, states that new information received by investors is

reflected in the stock’s price almost instantly [75]. Since new information cannot

be predicted, neither can the future price of the stock so price movements should

be independent of their histories. If this were not the case then there would be a

riskless way to exploit one’s foreknowledge for profit (an arbitrage opportunity).

The presence of transaction costs allows an even weaker form of the EMH:

there may exist arbitrage opportunities (autocorrelations) but they are so small

(brief) that any potential profit would be absorbed by commissions. This form

of the EMH is supported by evidence: a number of studies have concluded that

autocorrelations in the price series decay exponentially over a scale of only a few

minutes [4, 33,36,76–81] (or a few trades [66]).

In this section we will look for correlations in the price series generated by

DSEM. (Since it was established in the last section that CSEM is not a realistic

market model an autocorrelation analysis of its price series will be dispensed with.)

Of interest are both short- and long-range correlations.

5.2.2 News

Before analyzing the correlations in the price series it should be reiterated that

the price series is driven by news releases such that the logarithm of the price p(t)

roughly follows the cumulative news η(t) as

log p(t) ∝ η(t). (5.8)

In Section 3.6.1 it was argued that the proportionality constant should be

rn/(1 − rp) but with a two-point price response distribution this is not applicable,
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Figure 5.9: Sample price series for DSEM Dataset 4 (rlo = 0.5, rhi = 1.5) showing
the price roughly tracks the exponential of the cumulative news eη. The propor-
tionality constant is estimated from the data.

especially given that the upper limit can be rhi ≥ 1. Nevertheless the relation still

holds but the proportionality constant is best estimated from the data as is done in

Fig. 5.9.

Since the news is a discrete Brownian motion we may naively expect the

price series to be a simple geometric Brownian motion but as we have already seen

the price series exhibits an abundance of outliers not observed in the news. As we

will see in the next section, the price series also contains a memory which the news

does not.

5.2.3 Short timescales

The analysis for short timescales is fairly straightforward. We need only compute

the autocorrelation between returns for different lags. For this analysis, trading time

(or ticks), defined as the number of transactions executed, will be used as the time

index since the quantity of interest is the correlation between successive trades. For

comparison, the autocorrelations between daily returns for the Dow Jones Industrial

Average for the last hundred years [3] is shown in Fig. 5.10, indicating no significant

correlations in support of the efficient market hypothesis. (Of course, this does not

preclude correlations existing on timescales of less than one day but data were not

available at this resolution.)
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Figure 5.10: The autocorrelation between daily returns for the Dow Jones Industrial
Average [3] decays rapidly to zero with an estimated characteristic timescale τc =
0.4± 0.2 days. (Being less than the sampling interval, this estimate is not precise.)

As demonstrated in Fig. 5.11 correlations also decay quickly for DSEM re-

gardless of the value(s) of the price response, with correlations only evident over a

few successive trades. This would seem to imply that the price series has no memory.

However, recall that in Section 4.2.3 we observed two phase transitions in DSEM

by directly measuring the memory of the price series, which challenges the results

presented here.

There are two possible reasons for the discrepancy: (1) the autocorrelations

are measured tickwise whereas the Hurst exponent was originally measured from a

daily sample, or (2) a plot of the autocorrelation does not fully describe temporal

dependencies in the data. To determine which is the case the long-range depen-

dencies are again estimated from the Hurst exponent, this time calculated from the

tickwise data.

5.2.4 Long timescales

To test for long-range temporal dependencies we again compute the Hurst exponents

for the price returns in DSEM. But first it should be mentioned that data from real

markets have been found to have no memory, with Hurst exponents near H ≈ 0.5.

Indeed, for the daily Dow Jones Industrial Average returns presented above, the

Hurst exponent is estimated at H = 0.484± 0.013 indicating no long-term memory
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Figure 5.11: The autocorrelation between tickwise returns for DSEM (with a two-
point price response distribution) decays rapidly to zero for all runs sampled.
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Figure 5.12: Sample dispersion plot (see Section C.2.1) demonstrating the phe-
nomenon of crossover in the Hurst exponent to H ≈ 1/2 on long timescales for
DSEM with a two-point price response distribution.

effects.

Crossover

On first glance the computed Hurst exponents appeared similar to the original re-

sults shown in Fig. 4.11 but on closer inspection some interesting qualities were

revealed. Namely, in almost all the runs there appeared to be two different scaling

behaviours: for small timescales one Hurst exponent dominated but as the timescale

grew there appeared a crossover to a different exponent. The latter of these was in-

variably near H = 1/2 indicating a lack of memory. A sample graph demonstrating

crossover is presented in Fig. 5.12.

The reader may be concerned that the timescale used for calculating the

memory is not linear but trading time—the cumulative number of trades executed

since the start of the experiment—and the crossover phenomenon may be an artifact

of this sampling. Evidence indicates that trading time is the more natural timescale

[66,74], reducing biases introduced by regular sampling (see Appendix B). However,

for completeness the data were also tested using regular sampling with largely the

same results. A sample plot is shown in Fig. 5.13 demonstrating crossover also

occurs when returns are sampled at regular intervals. The remaining discussion

refers to tickwise sampling.
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Figure 5.13: A reproduction of Fig. 5.12 except with regularly sampled returns at
an “hourly” interval (instead of tickwise). Short timescale anticorrelations crossing
over to uncorrelated returns at long timescales are still observed so the effect is not
an artifact of sampling tickwise.

The crossover to H ≈ 1/2 is not altogether surprising because on long enough

timescales we expect the news process to be an important determination of the price

movements, and the news is a simple, discretely-sampled Brownian motion with no

memory (H = 1/2).

Yet another phase transition

The crossover point gives another estimate of the duration of correlations, or memory

in the price series. Fig. 5.14 shows that the memory depends strongly on the lower

limit of the price response rlo. In fact, as this value crosses roughly rlo ≈ 0.5 a phase

transition is apparent. (While interesting, this transition will not be characterized

further in this thesis, but may be analyzed in future work.) For larger values of

rlo the memory effects disappear very quickly, conforming to the efficient market

hypothesis and empirical data. Further, in this range H is already quite close to one

half, which also suggests the lack of a memory for any significant period. (Personal

experience suggests that the Hurst exponent has a typical error margin of ±0.1 so

any value in 0.4 ≤ H ≤ 0.6 should be interpreted as potentially having no memory.)

Thus, the price returns in DSEM are observed to exhibit a realistic lack

of (significant) memory when rlo exceeds roughly 0.25. If DSEM is interpreted as
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Figure 5.14: Both the crossover point, or memory, (a) and Hurst exponent for short
timescales (b) indicate that memory effects are minimized when rlo ≥ 0.25 in DSEM
with a two-point price response distribution. (The high values of the Hurst exponent
for rlo > 0.5 (b) do not cause problems because the memory is very short in this
region (a).)
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representative of a real market, the question is naturally raised, “Why do the agents

choose this region of parameter space?” The simplest (but unjustified and hardly

satisfactory) explanation is simply that any other choice would provide arbitrage

opportunities which could be taken advantage of by watching for trends in the

price series. So a rational agent would choose a nonzero price response in the

expectation of these arbitrage opportunities, but ironically, in doing so, the memory

(and opportunities) disappear! In other words, expectations of information in the

price series erase that very information.

5.3 Volatility clustering

In the last section we observed that the price series in DSEM always crossed over to

a domain with no memory effects for long enough times. This would seem to imply

a lack of history-dependence in the time series. However, it has been empirically

observed that volatility (to be defined) has a very long memory. This leads to the

phenomenon of clustered volatility: high activity in the market is observed to cluster

together, separated by spans of low activity.

The simplest definition of volatility is the absolute value of the price return

over some interval. (This definition appears to be more prevalent than the square

of the returns [36, 77, 78, 80].) Clustered volatility, by this definition, means there

exists periods in which the price changes rapidly and dramatically, separated by

other periods where few/small changes in the price occur. Hence, there exist long-

range temporal correlations in the absolute value of price returns.

As before, the Hurst exponent is a promising quantity to measure these

correlations. For the daily returns of the Dow Jones Industrial Average [3] shown

in Fig. 5.10, the Hurst exponent of the volatility is measured to be H = 0.852 ±
0.009 demonstrating very strong positive correlations—high volatility tends to be

followed by further high volatility and low by low. Other studies measuring the

Hurst exponent of the volatility from empirical data have concluded H ≈ 0.9 [77],

0.63 ≤ H ≤ 0.95 [78], and H ≈ 0.85 [36]. Two other works I am aware of calculated

the exponent of the autocorrelation function which decays as a power law with

exponent 2H − 2 [82], giving H ≈ 0.9 [80] and H ≈ 0.8 [4]. (The latter defined

volatility as the squared return rather than its absolute value, but came to the

same conclusions.) These studies were performed on a variety of systems so, clearly,

clustered volatility is universal.

Again, we seek to know whether DSEM also exhibits this property. To

test it, we continue with our analysis on a tickwise (number of trades executed)

timescale and calculate the Hurst exponent for the absolute value of the returns. The
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Figure 5.15: The Hurst exponent of the absolute returns, which measures the degree
of clustered volatility, is strictly greater than one half for all parameter combinations
in DSEM. It is particularly high when the upper limit of the two-point distribution
rhi is large or when the lower limit rlo is small.

results are summed up in Fig. 5.15 which shows that the Hurst exponent measuring

volatility clustering is always above one half over the whole parameter space, but

significantly so when the upper limit rhi of the two-point price response distribution

is large or the lower limit rlo is small.

Overall, though, the Hurst exponents are somewhat smaller (the greatest

value was H = 0.77) than the empirical results (H ≈ 0.9), suggesting that our

search space should be expanded to larger values of rhi.

5.3.1 Shuffling

As a check of the analysis the absolute return data for a particular run (rlo = 0.75,

rhi = 1.5 with H = 0.72± 0.02) were shuffled and the Hurst analysis of the shuffled

data recalculated. Shuffling destroys temporal correlations so the expected value

of the exponent is one half. In fact, the Dow Jones Industrial Average data yields

H = 0.502 ± 0.010 for the absolute returns when shuffled. For the sample DSEM

data the resultant exponent is H = 0.520 ± 0.006. Both are very close to one half,

confirming that the high value for the unshuffled absolute-return data is due to

temporal correlations (clustered volatility).
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Figure 5.16: DSEM Dataset 4 (N = 100 agents) is able to capture three important
properties observed empirically when rlo > 0.35 and rhi > 1.25. The curves are
contours from previous plots: (1) characteristic return rc = 3 from Fig. 5.8 (solid
line); (2) memory in return series = 100 from Fig. 5.14(a) (dashed line); and (3)
Hurst exponent for the absolute returns H = 0.6 from Fig. 5.15 (dotted line).

5.4 Scaling and Clustered volatility

In real markets all three properties of (1) scaling, (2) uncorrelated returns, and (3)

clustered volatility are observed. As we have seen, DSEM can replicate each of these

features when the agents have a two-point price response (rlo and rhi) and the values

of these parameters are chosen appropriately. Of particular interest is whether there

is a region of parameter space in which all three of these phenomena are observed

simultaneously.

In some of the previous plots contour lines were drawn to indicate separation

into regions which did and did not exhibit the phenomenon of interest: Fig. 5.8

plotted the contour line rc = 3 to distinguish between parameter combinations

which did (rc > 3) and did not exhibit scaling in the return distributions. Fig.

5.14(a) separates parameter combinations that do not have a long memory (< 100)

in the return series from those that do. Finally, Fig. 5.15 measures, with the Hurst

exponent, the clustered volatility where H > 0.6 indicates the presence of clustered

volatility while H < 0.6 indicates its absence.

These three contour curves are plotted together in Fig. 5.16 showing that all
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three empirical properties are only observed in the upper right corner of the graph,

when rlo > 0.35 and rhi > 1.25. So DSEM is most realistic for these parameter

combinations.

One point to note regarding this region is that it spans the critical point at

rp = r1 = 1 with the low end of the distribution below and the high end above. It

is also interesting that the value rlo = 0 (characterizing agents that do not use the

return series as an indicator of performance) is not in the “realistic” region.

5.5 Wealth distribution

Thus far we have explored only the temporal dynamics of the stock price. But the

distribution of wealth among agents may be of interest as well. It is well known that

incomes in many populations are distributed log-normally [83] (with a particular

exception we will come to later). So it is natural to ask how wealth is distributed

in DSEM. (Again, we neglect the analysis of CSEM.)

5.5.1 Challenges

Determining the wealth distribution in DSEM is problematic because long runs of

many agents are required. The durations must be long because the wealth distri-

bution is initialized to a delta function (initially, all agents have the same amount

of cash and stock) so a long transient is to be expected before any steady-state

emerges.

But this constraint must be balanced against the need for many agents. Most

of the simulations presented in this thesis consisted of N = 100 interacting agents—a

rather small number for any statistical description. But computational limitations

prevent serious investigation of larger systems because the number of operations

grows as N2. So we must be content with the data we have collected so far.

5.5.2 Log-normal distribution

A rigorous analysis of the distribution of wealth will not be attempted. Instead,

it is merely reported that a log-normal distribution was suitable in most cases for

Datasets 1–3. However, Fig. 5.17—showing a typical distribution—highlights the

difficulties in establishing the proper distribution: the small agent numbers com-

bined with the narrow range of wealths observed allows one only to say that the

distribution is unimodal, but nothing more.

Even so, simply knowing that the distribution is unimodal is satisfactory.

Any other result would be surprising because the agents in Datasets 1–3 are all
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Figure 5.17: Sample distribution of agents’ wealth from DSEM Dataset 3 (N = 100,
rp = −0.50). There is insufficient data to distinguish between a normal and a
log-normal distribution.

of a similar character, varying (continuously) only in their news responses rn and

frictions f , as shown in Table 4.4.

5.5.3 Two-point price response

Worth further investigation are the data from Dataset 4 (Table 5.2) where the agents

varied discontinuously in their price responses. In this case the market consists of

two distinct populations with fundamentally different behaviours, so one would not

expect the wealth to be distributed unimodally. A reasonable alternative is that each

population has a log-normal wealth distribution producing a bimodal distribution

over the whole market.

A representative distribution is shown in Fig. 5.18, confirming the bimodal

hypothesis. Interestingly, the agents with rp = rlo = 0 outperform (have more

wealth) than their rp = rhi = 1 counterparts.

To determine the generality of this result the average wealth for each sub-

population was computed for all the simulations in Dataset 4. The hypothesis that

the sub-population with the smallest absolute price response |rp| would outperform

the more reactive agents was tested by comparing the difference between the absolute

values of the responses |rhi|−|rlo| and the ratio of wealth held by each sub-population

(w(rhi) vs. w(rlo)). If valid then we should find the ratio of the wealths obey
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Figure 5.18: Sample distribution of agents’ wealth from DSEM Dataset 4 (N = 100,
rlo = 0, rhi = 1). The log-normal curves are calculated from each sub-population,
revealing a strongly bimodal nature.
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Figure 5.19: In DSEM with a two-point price response the wealth of each of the
sub-populations w(rp) depends strongly on the magnitude of the price response |rp|.
The population with the smallest absolute price response (rhi to the left of zero and
rlo to the right) consistently has more wealth as indicated by the ratio of wealth
between the two sub-populations.
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w(rhi)/w(rlo) > 1 when |rhi| < |rlo| and vice versa. Fig. 5.19 demonstrates this

hypothesis holds very well—with a linear correlation for the plotted data of –76%—

suggesting that the “best” strategy is to ignore the price fluctuations, rp = 0.

This raises an interesting question: if a zero price response is best, why would

agents choose non-zero values? We have seen in previous sections that realistic

market phenomena such as scaling and clustered volatility only emerge in when the

price responses are set far from zero. If DSEM is meant to represent real investor

behaviour, why do investors base their decisions on price fluctuations when the

model indicates this is detrimental?

This issue is currently being investigated by allowing the agents to “learn”

from their past mistakes as will be discussed in Section 7.4. The purpose of this

research is to determine if nonzero values of the price response parameter emerge

spontaneously in the dynamics via the learning process.

Pareto’s law of income distribution

In 1897 V. Pareto noticed that incomes tend to be distributed log-normally over the

majority of the sample data excepting the tail of the distribution (the highest one

percent of the incomes) which decay as a power law, an observation which holds in

many countries to this day [83]. CSEM and DSEM were deliberately constructed

to keep a record of agents’ wealths so that this claim could be tested. However,

testing for this property requires even larger system sizes than we have explored so

far, since the highest percentile of a population of even N = 1000 consists of only

ten agents—inadequate for statistical analysis.

Larger systems are currently under investigation but insufficient data were

available as of completion of this dissertation.

5.6 Summary

In this chapter a number of unusual qualities of empirical markets were explored in

the context of the Centralized and Decentralized Stock Exchange Models (CSEM

and DSEM, respectively). CSEM was unable to reproduce even the first of these:

scaling in the tail of the price return distribution. DSEM was also unable to produce

this effect until the restriction that all agents maintain the same price response

parameter rp was relaxed and instead two values were allowed—rlo and rhi—thereby

splitting the population into two distinct “types.” Then, for particular values of the

parameters, scaling was observed over a range of returns in excess of three standard

deviations.
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Two other empirical phenomena were also explored: the lack of correlations

in the return series but the presence of long-range correlations in the volatility

(defined as the absolute value of the return). Having failed the first test CSEM was

not tested but DSEM was able to capture both these properties, again in a suitable

region of parameter space.

All three of these properties were observed simultaneously in DSEM when

0.5 ≤ rlo < 1 and rhi ≥ 1.25, spanning the critical point at rp = r1 discovered

in Section 4.2.4. The significance of this result is unclear but some thoughts on

the matter are discussed in Chapter 7. But first the results of some interesting

experiments with some real stocks are discussed.
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