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Chapter 4

Analysis and Results: Phase

space

In the previous two chapters the Centralized and Decentralized Stock Exchange

Models (CSEM and DSEM, respectively) were presented and in each case all but

two parameters were fixed. In this chapter the remaining parameter space will be

investigated and it will be demonstrated that both models exhibit phase transitions

for interesting values of these parameters. We begin with CSEM.

4.1 CSEM phase space

4.1.1 Review

The Centralized Stock Exchange Model (CSEM), presented in Chapter 2, consists of

a number N of agents which trade once daily with a centralized market maker. The

market maker chooses a trading price such that all orders are satisfied and the market

clears (supply exactly balances demand). The agents choose their orders based on a

forecast of the daily return-on-investment which has a stochastic component modeled

as a Gaussian deviate with standard deviation σε (defined as the forecast error). In

Chapter 2 the model parameter space was reduced leaving only N and σε as free

parameters. In this section the remaining two-dimensional parameter space will be

explored.

4.1.2 Data collection

To explore the phase space thoroughly simulations were performed on systems of

sizes N=50, 100, 200, 500, and 1000 with forecast errors in the range σε ∈ [0.01, 0.50]

for each N , with increments of 0.01 up to σε = 0.25 and increments of 0.02 thereafter,
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Parameters CSEM Dataset 1

Particular values

Number of agents N 50 100 200 500 1000
Investment limit δ 10−3 10−3 10−3 10−3 10−3

Run length (time steps) 10,000 10,000 20,000 20,000 30,000
Number of runs 38 38 38 38 38

Common values

Forecast error σε
0.01 to 0.25 by 0.01
0.26 to 0.50 by 0.02

Total cash C $1,000,000
Total shares S 1,000,000

Memory M 105± 95 (uniformly distributed)
Risk aversion a 2± 1 (uniformly distributed)
Degree of fit d 0 (moving average)

seed random

Table 4.1: Parameter values for CSEM Dataset 1. Some of the parameters were
established in Chapter 2 and are common to all the runs. Dataset 1 explores two
dimensions of phase space: N and σε.

for a grand total of 190 experiments performed. The complete list of parameter

values used can be found in Table 4.1.

The choices of parameter values used (other than N and σε) are justified in

Chapter 2. To introduce heterogeneity amongst the agents some of the parameters,

namely the memory M and risk aversion a, were chosen randomly for each agent

from the ranges indicated in the table (with the deviates uniformly distributed

within the ranges).

Each run consisted of at least 10,000 time steps (days) and larger systems

had longer runs to compensate for slower convergence to the steady state. (With

these run lengths the initial transient never accounted for more than one third of

the total run).

4.1.3 Phases

In most of the runs an initial transient period was observed before the price con-

verged to a steady state value around which it fluctuated. The only discrepancy was

for small forecast errors where the price climbed quickly until it reached a maximum

value which it often returned to. Representative plots of these behaviours are shown

in Fig. 4.1(a) and (b), respectively.
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Figure 4.1: The price series plots for CSEM with N = 100 agents and σε = 0.10 (a)
and σε = 0.05 (b) indicate a change of character of the dynamics.
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Parameters CSEM Dataset 2

Number of agents N 100 100 100
Investment limit δ 10−2 10−4 10−5

Number of runs 38 38 38
Run length (time steps) 10,000 10,000 10,000

Table 4.2: Parameter values for CSEM Dataset 2. These runs are a variation of
Dataset 1 (all unspecified parameters are duplicated from Table 4.1, N = 100)
exploring a range of investment limits δ.

The transition between these two behaviours was observed for all system sizes

near σε ≈ 0.08 and is most dramatic when looking at the maximum price observed

in a run.

Maximum price

As is demonstrated in Fig. 4.1(a) the price in each run converged to some steady-

state value after some time and then appeared to randomly fluctuate around that

value, never exceeding some maximum. As mentioned above, the only exception

was when the price reached a limit which interfered with its natural fluctuations.

The limit price is a consequence of the investment limit parameter δ intro-

duced in Section 2.4.3 where it was noted that the price may not exceed the limit

pmax = (1− δ)/δ (Eq. 2.44).

Fig. 4.2 clearly captures the distinct character of the dynamics on both sides

of σε ≈ 0.08. For larger σε the price fluctuates freely while for smaller values the

limit has a strong influence on the dynamics.

In the limit δ → 0 (which is disallowed because it can occasionally generate

singularities in the price series) it appears that the maximum price would diverge

at σε = 0 producing a phase transition. Although this cannot be tested by directly

setting δ = 0 the limit can be explored by studying smaller values of δ.

4.1.4 Investment limit

A subset of Dataset 1 with N=100 agents was simulated again, but this time with

δ = 10−2, 10−4 and 10−5 as shown in Table 4.2. It was suspected that reducing

δ would increase the limit price and thereby allow the price to fluctuate freely for

smaller values of σε, reducing the domain of the second phase.

However, as Fig. 4.3 demonstrates the threshold values of σε (see Table 4.3)
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Figure 4.2: The highest price in any given simulation increases as the forecast error
decreases until it reaches its theoretical limit, creating two separate phases for the
dynamics.

δ Threshold σε
10−2 0.08
10−3 0.06
10−4 0.06
10−5 0.08

Table 4.3: The threshold values of σε separating the two phases of CSEM shown in
Fig. 4.3 do not appear to depend on the investment limit δ.
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Figure 4.3: The maximum price in CSEM has a limit which depends on the invest-
ment limit δ. However, the threshold value of σε for which the limit is first reached
does not appear to depend on δ.

for which the price first reaches its limit remains constant, even though the price

limit increases. This suggests that there exists a critical forecast error σc > 0 at

which the maximum price diverges. Even though the critical point is only strictly

defined in the limit of δ → 0 the term will also be used here to refer to systems with

nonzero values of δ.

4.1.5 Critical regime

Critical points are heralded by power law relationships of the form f(x) ∝ (x−xc)
z

where xc is the critical point and z is known as the critical exponent. (For a thorough

explanation of critical phenomena see Ref. [61].) Many different quantities can play

the role of the critical variable f . In a thermodynamic system it could be an order

parameter such as the magnetization of a ferromagnet. Alternatively, f can be a

response function such as the susceptibility or the specific heat or it could be a

correlation time or time for thermalization. The control parameter x could be the

temperature or an external field. In the case of CSEM we will continue to use the

maximum price as the order parameter and σε as the control parameter.

To specify the transition in more detail it would be helpful to estimate the

critical point σc and the exponent from the data. We begin by reconsidering the
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data from Fig. 4.3 and fitting it to a power law

pmax = C(σε − σc)−b (4.1)

to estimate σc and b (C is unimportant).

The fitting algorithm used is a Levenberg-Marquardt nonlinear routine [20,

Section 15.5] and the fit is performed over the range σε ≥ 0.14. (Choosing a range

which is too near the actual critical point tends to reduce the quality of the fit

because critical points tend to be “blurred” on finite systems.) The fitting algorithm

attempts to minimize the sum-of-squares error between the curve and the data but

it can get stuck in suboptimal solutions which depend on the initial parameter

choices when performing the fit. For these fits the parameters were initially set to

C = exp(−3), σc = 0.08, and b = 2 because these values were observed to fit the

data reasonably well. (Though setting σc = 0.01 initially, the fit still converged to

the same solution.)

The resultant fits for each value of δ in Dataset 2 (all with N = 100) and for

N = 100 in Dataset 1 give the critical points and exponents shown in Fig. 4.4. The

weighted average of the exponents is b = 1.57± 0.10 and the mean critical forecast

error is σc = 0.120± 0.005. The fact that these values are similar for all values of δ

tested strengthens the conclusion that σc is a critical point.

Notice that the calculated value of σc is significantly higher than the 0.08

originally hypothesized. This is a common feature of experiments involving critical

phenomena and is due to the finite size of the system under investigation. A true

critical or second-order phase transition is characterized by a discontinuity in the

derivative of the order parameter. In finite systems the discontinuity is smeared out

and becomes more refined with larger systems. In this case the smearing resulted

in an inaccurate first guess of the critical point. After exploring some alternative

choices for the order parameter we will consider finite size effects in more detail.

4.1.6 Alternative thermodynamic variables

In the last section the maximum price over any run was chosen as the thermodynamic

property whereby the phase transition was detected. In this section we demonstrate

that a number of alternative variables would be equally suitable.

In particular, we consider two alternatives: the (logarithmic) average of the

price series

p̄ ≡ exp 〈log p〉 (4.2)

and the (logarithmic) variance around the average

σ2
p ≡ Var [log p] . (4.3)
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Figure 4.4: The best fits of power laws to CSEM Dataset 2 (and N = 100 from
Dataset 1) yield the critical points (a) and scaling exponents (b) shown. The lines
represent the weighted averages of the best fit values.
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The variance σ2
p measures the scale of the fluctuations and is analogous to magnetic

susceptibility in non-equilibrium systems.

Notice a phase transition in the average price p̄ is equivalent to one in the

(time-averaged) wealth per agent w̄ because they are related by

Nw̄ = C + p̄S (4.4)

where C and S are the total amount of cash and shares, respectively.

Fig. 4.5 demonstrates that both these properties exhibit scaling, diverging at

the critical point σc = 0.12 (from Fig. 4.4(a)). The critical exponent for the average

price power law is 1.11 ± 0.04 and the exponent for the fluctuations is 0.94 ± 0.02.

Clearly these properties would be equally suitable to determine the phase transition,

but the maximum price has the advantage that the transition becomes very clear

because it is a constant to the left of the critical point, being bounded by δ.

As mentioned before, the deviation from scaling observed in the variance plot

is due to finite size effects which we explore next.

4.1.7 Finite size effects

Now we return to the maximum price data in Fig. 4.2 and fit it to a power law

using the technique described before. The resultant estimates of the critical point

are shown in Fig. 4.6(a) which demonstrates that as the system size N increases

the critical point decreases systematically (neglecting the smallest system which

is plagued by noise). To derive the relationship between the system size and the

associated critical point we need to understand the role of correlations.

Correlations

Near a critical point the dynamics are dominated by correlations between elements

of the system (agents, in our case). The degree to which the elements are correlated

is measured by the correlation length ξ which, in CSEM, counts the typical number

of agents affected by any single agent’s decision. Far away from the critical point we

don’t expect one agent’s decisions to affect (many) other agents so the correlation

length is short. But near the critical point the correlation length diverges as [61]

ξ(σε − σc) ∝ (σε − σc)−ν . (4.5)

When dealing with a finite system the correlation length is attenuated by

the size of the system N . It should reach a maximum at the critical point for that

particular system size, denoted by σc(N), and we expect the maximum to grow

linearly with N ,

ξ(σc(N)− σc) ∝ N. (4.6)
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Figure 4.5: The average price (a) and variance of fluctuations (b) also exhibit scaling
near the critical point σc = 0.12 for the data from CSEM Dataset 2. The deviation
from scaling observed near the critical point in (b) is due to the finite size of the
system (N = 100) as will be seen in Fig. 4.7.
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1/ν = 0.55± 0.03
σc(∞) = 0.082± 0.002(a)
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Figure 4.6: The best fits of power laws to CSEM Dataset 1 yield the critical points
(a) and scaling exponents (b) shown. A finite-size scaling analysis (neglecting N =
50) reveals information on how the critical point changes with increasing investor
numbers (a). For reasons discussed in the text, the exponent for N = 1000 is
dropped from the estimate of the scaling exponent (b).
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As a consequence of these two equations we expect the finite-size critical point to

converge to the thermodynamic critical point as

σc(N)− σc ∝ N−1/ν . (4.7)

Applying this relationship to the data in Fig. 4.6(a) gives a finite-size scaling

exponent 1/ν = 0.55 ± 0.03 which means that the correlation length grows as ξ ∼
(σε−σc)−ν with ν = 1.82±0.10. It also allows a more precise estimate of the (limit)

critical point, giving σc = 0.082± 0.002.

Scaling exponent

The best estimates of the critical exponent b from Eq. 4.1 are shown in Fig. 4.6(b),

giving an average value of b = 1.73 ± 0.03. Notice the largest system size gives

a markedly different result and is not used to compute the average b. This is a

consequence of the range of forecast errors over which scaling applies:

Notice that the tails of the highest prices (pmax < 1) in Fig. 4.2 appear

slightly “flatter” than the rest of the data. In fact the tails fit quite well to the scaling

relation pmax ∝ σ−1
ε which is probably directly related to the inverse relationship

derived in Section 2.2.9. This inverse power law can obscure the critical scaling so

the range over which the scaling was tested for was constricted to pmax ≥ 1.

Unfortunately, since the run for N = 1000 had the lowest observed prices

at any given value of σε this restriction severely limited the available data and

compromised the fit. It appears that the tail is artificially drawing the estimate of

b down for this system size, so it was not included in the computation of b ≈ 1.73.

Fluctuations

In this section we briefly revisit the scaling seen in the fluctuation data (Fig. 4.5(b))

to demonstrate the round-off seen near the transition is a finite-size effect.

Since the fluctuations in the log-price series are due to stochasticity in each of

the N agent’s trading decisions it is reasonable to expect the variance of the log-price

to scale with system size as σ2
p(N) ∝ 1/N so that Nσ2

p should be independent of

system size. For the most part Fig. 4.7 confirms this hypothesis with some deviations

near the critical point. Notice these deviations diminish with larger system sizes so

these deviations are just finite-size effect—a “blurring” of the phase transition for

small system sizes.

The best estimate of the scaling exponent, taken from the largest system is

γ = 1.29± 0.02.
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Figure 4.7: The variance of the log-price largely collapses to a single curve when
multiplied by the system size N for CSEM Dataset 1. This curve diverges as the
critical point is approached with an exponent γ = 1.29 ± 0.02 calculated from the
largest system N = 1000. (The critical points were taken from Fig. 4.6(a).)
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Universality class

The main advantage of characterizing the critical point precisely is that the critical

exponents b, γ, and ν may tell us to which universality class the critical point

belongs. At a critical point many of the particular details of a system become

irrelevant and the scaling properties depend only on a few basic quantities, such

as the dimensionality and symmetry of the system [61]. As such, many disparate

systems are observed to behave in the same way at a critical point and may be

classified by their common exponents.

Discovering which universality class a system belongs to leads to further

understanding of the important features of the system. For instance, the author

has recently been involved in research into the “game of Life” (GL), a toy model

of interactions between spatially-distributed individuals. GL lies close to a critical

point in the same universality class as directed percolation, a model of the spreading

of a cluster through its nearest neighbours [14]. Making this connection teaches

us that the important factor determining the dynamics at the critical point near

GL is simply the probability of a disturbance spreading to its neighbours, not the

particular details of GL.

I do not know which universality class CSEM belongs to, but by computing

the exponents it is my hope that a reader will recognize them and classify the

model. The exponent b probably is unrelated to physical systems but the variance

of the fluctuations which gave γ ≈ 1.29 is analogous to magnetic susceptibility. The

exponent for the correlation length ν ≈ 1.8 may also be relevant even though the

model is mean field (each agent interacts with all other agents through the market

maker).

4.1.8 Transient

In this section we explore the critical phase transition discovered above from a

different perspective; namely, that of the transient period. A close inspection of

Fig. 4.1 will reveal that the price series had an initial transitory phase before it

settled down to its steady-state dynamics. In this phase the memory of the initial

conditions is slowly erased.

The transient can be systematically quantified by recognizing that the price

series eventually converged to some steady-state value. Then the transient is for-

mally defined as the period until the price first crosses its (logarithmic) average for

the entire series.

The above definition is satisfactory provided that the steady state price is

far from the initial price (on the order of $1, see Fig. 2.3) but becomes irrelevant
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for large σε when the steady-state price is on the same scale as the initial price (see

Fig. 4.2).

A plot of the transient duration of each run in Dataset 1, shown in Fig. 4.8,

exhibits some interesting properties. For large forecast errors σε À σc the transient

measure is quite unstable—large for some runs and small for others—with some

interesting system size dependence but these properties will not be analyzed further

because the transient is a poor measure in this region.

For small σε another interesting pattern is observed: the transient appears

to grow near the critical point declining away from it, on both sides. This behaviour

can be explained if the system does exhibit a second-order phase transition at σc.

Criticality arises from correlations between agents which extend further and further

as the system approaches the critical point. At the critical point the correlations

span the entire system such that a perturbation in any element can have a cascade

effect which may impact on any or all other elements. However, the correlations are

an emergent phenomena in critical systems and require time to set up—the initial

transient period. Away from the critical point the correlations do not span the

entire system so they require less time to set up and, correspondingly, the transient

is shorter.

Notice the maximum transient grows with the system size reflecting the

longer time required for the correlations to span the system. Critical theory predicts

the maximum transient should scale with the system size and Fig. 4.9 confirms it.

The associated scaling exponent is estimated to be 1.5 ± 0.1. Since this exponent

is greater than one the duration of the transient grows faster than N as the system

size is increased—a typical property of criticality, known as critical slowing down.

4.1.9 Summary

In this section the phase space of the Centralized Stock Exchange Model (CSEM)

was explored in detail. The main discovery was of a critical value of the forecast

error σc = 0.082 ± 0.002 above which the dynamics are relatively stable and below

which the price fluctuates over many orders of magnitude, up to the maximum

imposed by the investment limit δ. The transition exists for all values of δ explored

(10−5 ≤ δ ≤ 10−2) and appears to be universal. Naturally, the transition becomes

more pronounced for larger systems.

The economic interpretation of this transition is unclear. It is reasonable to

expect the price to rise as uncertainty decreases, reflecting increasing confidence in

the stock, but it is not obvious why the price would diverge for a non-zero uncer-

tainty.

No other interesting phenomena were observed as the parameters were ad-
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Figure 4.8: Duration of the transient period in CSEM (Dataset 1) before the price
series settles down to some steady-state value. The transient grows near the critical
point σc ≈ 0.08.
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Power law exponent = 1.5± 0.1
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Figure 4.9: The maximum transient in CSEM appears to scale with the system size
with an exponent 1.5± 0.1.

justed. In the next section, a similar analysis is performed on DSEM.

4.2 DSEM phase space

4.2.1 Review

The Decentralized Stock Exchange Model (DSEM), presented in Chapter 3, was

constructed as an alternative to CSEM, discarding the notion of a centralized con-

trol which sets the stock price. In DSEM the price is an emergent property of agents

placing and accepting orders with each other directly. The agents use a fixed in-

vestment strategy and place orders when their portfolios become unbalanced. The

fraction of one’s wealth each of the N agents keeps invested in the stock is affected

by (exogenous) news and price movements. The degree of influence each of these

factors has is parameterized by the news and price responsiveness, rn and rp, re-

spectively. In Chapter 3 arguments were presented which reduced the parameter

space, leaving only N and rp as free parameters. In this section the role each of

these parameters plays will be explored.
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Parameters DSEM Dataset 1

Particular values

Number of agents N 50 100 200 500 1000
Number of runs 39 39 39 39 39

Common values

Price response rp

–0.75 to 0.25 by 0.05
0.50 to 0.95 by 0.05
–0.34 to –0.31 by 0.01
0.91 to 0.94 by 0.01

Total cash C $1,000,000
Total shares S 1,000,000

News interval τn 1
News response rn 0.01± 0.01 (uniformly dist.)

Friction f 0.02± 0.01 (uniformly dist.)
seed random

Run length (“days”) 1,000

Table 4.4: Parameter values for DSEM Dataset 1. Some of the parameters were
established in Chapter 3 and are common to all the runs. Dataset 1 explores two
dimensions of phase space: N and rp.
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4.2.2 Data collection

The phase space was explored by varying the price response parameter rp and num-

ber of agents N . The choices of system sizes were N=50, 100, 200, 500, and

1000 agents while the price response was initially explored at a coarse resolution

with increments of 0.25 between −0.75 and +0.75 then again with a finer resolu-

tion of 0.05 in the ranges −0.75 to +0.25 and 0.50 to 0.95. Finally, the regions

rp ∈ [−0.34,−0.31] and rp ∈ [0.91, 0.94] were explored at a higher resolution of 0.01

because they exhibited interesting properties (to be discussed).

Although rp is an agent-specific parameter it was set to a single value for

all the agents reducing diversity somewhat. However, sufficient heterogeneity was

maintained through the news response and friction parameters which were each

spread over a range of values and each agent was randomly assigned a (uniformly

distributed) deviate from within that range. The complete list of parameters is

listed in Table 4.4.

Each run lasted for 1,000 “days” as defined in Section 3.2.10. Effectively,

this means longer runs (more trades) as the number N of agents increases because

of how time is scaled.

4.2.3 Phases

Fig. 4.10 shows sample price series for a strongly negative value of rp and a strongly

positive value indicating a change of character as rp is varied. For negative rp the

dynamics are dominated by high frequency fluctuations overlaying a relatively small

low-frequency component while the reverse seems to be true for positive rp. This is

not entirely surprising because the parameter rp acts as a kind of autocorrelation

between successive price movements. When rp is negative, an increase in the price

will lower the agents’ ideal investment fractions, decreasing demand which usually

results in a price drop. Conversely, price increases tend to be followed by further

increases when rp is positive because of increased demand.

Hurst exponent

To quantify the dynamics, then, an order parameter which characterizes the autocor-

relations is called for. The tickwise autocorrelation (between successive trades) was

considered but rejected because it was found to be “noisier” than the alternative—

the Hurst exponent. The Hurst parameter 0 ≤ H ≤ 1, discussed in Appendix C,

quantifies the proportion of high-frequency to low-frequency fluctuations and mea-

sures the long-range memory of a process. It is an alternative representation of

92



rp = −0.75

(a)

Time t

P
ri

ce
p
(t

)

10009008007006005004003002001000

2

1

0.5

rp = +0.75

(b)

Time t

P
ri

ce
p
(t

)

10009008007006005004003002001000

2

1

0.5

Figure 4.10: Sample price series for DSEM with N = 100. Negative values of
rp (a) produce an anticorrelated series while positive values (b) result in positive
autocorrelations.
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temporal correlations in a time series with H < 1/2 for anticorrelated series and

H > 1/2 for positively correlated data (H = 1/2 indicates no correlations).

The Hurst exponent was calculated by the application of dispersional analy-

sis, a simple and accurate method described in Section C.2.1, to the log-return series

of the price sampled at discrete intervals of four “minutes” (interpreting a trading

“day” to consist of 6.5 hours). Sampling the data at regular intervals did not signif-

icantly affect the estimates of H but it fixed the size of the dataset to be analyzed;

for large systems many trades could be executed within a few minutes, producing

exorbitantly large datasets which were cumbersome to analyze. (Before discretiza-

tion the largest dataset contained some 400,000 points.) With a fixed sampling rate

all system sizes generated the same volume of data, around 100,000 points.

As the price response parameter rp increases from −0.75 up to 1.00 some

interesting properties emerge: for large systems (N ≥ 200) the Hurst exponent is

effectively zero below rp ≈ −0.4, indicating very strong anticorrelations in the price

series (independent of rp). Suddenly, near −0.4, the anticorrelations break down

and the Hurst exponent climbs quickly (with increasing rp) to roughly H ≈ 0.4

(suggesting weakly anticorrelated data). It remains relatively constant until rp ≈ 1

where it climbs again, to H ≈ 0.8.

Interestingly, the Hurst exponent is less than one half at rp = 0 meaning that

price movements in one direction tend to be followed by opposite movements even

with no explicit price response coded into the agents’ behaviour. This arises from

corrections to initial over-reaction to news—agents with extremist news responses

react to news by placing orders with atypical prices which are corrected for when

moderate agents have an opportunity to trade.

Price response greater than unity

Apparently, DSEM exhibits three distinct phases: the first two are demonstrated

in Fig. 4.10 but the third (rp > 1) is not shown so it is briefly discussed here. It is

characterized by very strong positive correlations in the price series, such that the

price explodes or crashes exponentially, depending on the direction of the first price

movement.

Very rapidly (within a few “days”) the price hits a boundary imposed by a

mechanism identical to that in CSEM: the investment fraction in DSEM is actually

constrained by δ such that δ ≤ i ≤ 1−δ. The price is therefore bounded according to

Eqs. 2.43–2.44. This constraint was not mentioned in the development of the model

because, in DSEM, the limit is δ = 10−12, a value chosen only to avoid numerical

round-off errors. In practice δ was not observed to affect the dynamics whatsoever,

except in the region rp > 1.
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Figure 4.11: The Hurst exponent increases with rp in DSEM as expected but with
two surprising phase transitions emerging at larger system sizes: one near rp ≈ −0.4
and the other near rp ≈ 1.
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b = 0.185± 0.016
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Figure 4.12: The best fits of power laws to DSEM Dataset 1 yield the scaling
exponents shown. The average exponent is 0.185± 0.016.

The exponential growth of the price in this region indicates that the Hurst ex-

ponent (which cannot be accurately measured because the price reaches the bound-

ary too quickly) is identically one H = 1, the same value obtained from a straight

line (which this is, since we are analyzing the logarithm of the price).

4.2.4 Phase transition to H = 1 at rp = r1

In this section the phase transition for positive values of rp will be explored. This

phase transition is easier to characterize than the one to be discussed in Section

4.2.5 because we have reason to expect the transition to occur at rp = r1 ≡ 1 and

may therefore eliminate one adjustable parameter from the fitting function. (The fit

was also performed with r1 as an adjustable parameter (not shown) and the results

corroborate the hypothesis that the transition is at r1 = 1.)

From Fig. 4.11 it is clear that the phase transition at r1 is not first-order

(discontinuous) but appears to be second-order (critical). In the last section it was

argued that the transition is to H = 1 for rp > r1 so the power-law to be fit takes

the form

1−H(rp) = C(r1 − rp)b (4.8)

with fitting parameters C and b.

The fits were performed over the range 0.75 ≤ rp ≤ 0.95 for each value of N
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giving the exponents b shown in Fig. 4.12 with an average value of b = 0.185±0.016.

It is not known to what universality class (defined in Section 4.1.7), if any, this

transition belongs. Next we explore the phase transition observed for negative values

of rp.

4.2.5 Phase transition to H = 0 at rp = r2

Now we turn our attention to the other phase transition in the system, near rp ≈
−0.4. For the smallest systems N ≤ 100 the transition is not discernable in Fig.

4.11 but it comes into focus as the system size is increased. For intermediate agent

numbers, N = 200 and 500, the transition looks very much second-order (continu-

ous). However, in the largest system N = 1000 the transition is quite abrupt, so

particular care must be taken to establish whether it is first- or second-order.

Comments on phase transitions

The distinction between first- and second-order transitions is not merely academic;

it can greatly enhance our understanding of the underlying dynamics. First-order

phase transitions, characterized by a discontinuity in the order parameter, occur

via nucleation: small pockets of the new phase emerge within the old phase and

grow until the entire system is in the new phase. On the other hand, second-order

transitions, characterized by a continuous order parameter with a diverging deriva-

tive, exhibit system-spanning correlations such that the entire system undergoes the

transition as a whole.

In the context of the models presented here, correlations would indicate cor-

related behaviour amongst investors and nucleation would refer to a small sub-group

of investors acting differently from the larger population.

Classification of r2

To explore the phase transition in detail some more data were collected at interme-

diate system sizes as shown in Table 4.5 for a total of seven different values of N .

The datasets were analyzed by attempting to fit both first-order and second-order

transitions.

Assuming a first-order transition the fit becomes trivial: we can just assume

a linear dependence on rp in the neighborhood of r2. (In this case linearity was

observed over rp ∈ (−0.3, 0.1) for all runs.) The transition point is simply read off

the graph from the largest system N = 1000 (the transition is resolved with greater

accuracy as N increases) giving r2 = 0.33±0.01. The magnitude of the discontinuity

in the Hurst parameter H at r2 is then ∆H(r2) = 0.281± 0.008.
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Parameters DSEM Dataset 2

Particular values

Number of agents N 300 700
Number of runs 16 16

Common values

Price response rp
−0.35 to −0.30 by 0.01
−0.25 to 0.25 by 0.05

Run length (“days”) 500

Table 4.5: Parameter values for DSEM Dataset 2. These runs are a variation of
Dataset 1 (all unspecified parameters are duplicated from Table 4.4) exploring a
few other intermediate system sizes.

We now consider the possibility that the transition is second-order. If so,

then a power-law dependence

H(rp) = C(rp − r2)b (4.9)

should characterize the behaviour near the transition r2 with adjustable parameters

C and b.

Sample fits for N = 500 and 1000 are shown in Fig. 4.13 with a simple

linear fit representing a first-order transition for comparison. Notice that the N =

500 system is better described by a critical transition but N increases to 1000 the

transition becomes sharper, more like a first-order transition suggesting that the

scaling behaviour is only a finite-size effect.

Finite-size scaling

Assuming criticality, each system in Datasets 1 and 2 were fit to Eq. 4.9 and the

best-fit exponents b are plotted in Fig. 4.14. Clearly, the exponents exhibit a trend as

the system size N increases. On a log-log graph the trend appears linear suggesting

that the exponents scale with the system size as yet another power law b ∝ Nm.

(Be warned, this is not a traditional—nor rigorous—finite-size scaling argument.)

The scaling exponent is found to be m = −0.25 ± 0.04 meaning that the exponent

b will be halved every time the system size is scaled up by a factor of 16 and in the

thermodynamic limit (N →∞) b drops to zero.

To understand what is going on here, consider the general scaling function

y = c(x− xc)b (4.10)
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Figure 4.13: Sample fits of first- and second-order phase transitions to N = 500 (a)
and N = 1000 (b) near r2 in DSEM show that the power-law fits better for small
N but the first-order prevails for larger systems.
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m = −0.25± 0.04

System size N

B
es

t
fi
t

ex
p

on
en

t
b

100070050030020010050

1

0.1

Figure 4.14: As the system size N increases the critical exponent b tends to zero.
The line represents a power-law fit b ∝ Nm giving an exponent m = −0.25± 0.04.

which has a slope

y′ = bc(x− xc)b−1. (4.11)

If we demand that the scaling function mimic a first-order transition, requiring that

both y > 0 and y′ approach constants as x → xc then the scaling exponent must

vary such that

b =
y′

y
(x− xc). (4.12)

So a second-order transition “mimics” a first-order in the limit b→ 0.

Returning to the transition at rp = r2 in DSEM we see that the apparent crit-

icality is an artifact of finite simulation size and in the limit N →∞ the transition

is first-order.

Intermittency

As discussed above, there are important consequences of knowing a transition is

first-order. The foremost is that fluctuations are local, they do not spread through-

out the entire system (as is found for critical points). Another consequence is that

the transition is a change of quality not simply of quantity. That is, since the order

parameter exhibits a discontinuity the nature of the system changes qualitatively,

not just quantitatively. A third important feature of first-order transitions is nucle-

ation. Near the transition stochastic fluctuations can often give rise to small pockets
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which exhibit one phase while the greater system is within the other phase. A good

analogy to keep in mind is a pot of boiling water: steam bubbles form on the bottom

and sides of the pot where small variations of the surface exist.

The last interesting property of first-order transitions that will be mentioned

here is intermittency. As discussed above, near the phase transition bubbles of one

phase form at nucleation points within the other phase. In a spatially-extended

system this causes intermittent periods of either phase at any particular point in

the system. Since DSEM is nonspatial the intermittent behaviour is captured in

the price series which is observed to consist of periods of low activity separated by

periods of high activity, as demonstrated in Fig. 4.15.

4.2.6 Summary

In this section we explored the phase space of the price response parameter rp and the

number of agents N in DSEM. Two phase transitions were observed: at rp = r1 = 1

DSEM undergoes a critical transition to perfectly correlated price movements (the

Hurst parameter H goes to unity), and at rp = r2 ≈ −0.33 a first-order transition

is observed. Below the transition strong anticorrelations in the price series are

observed but above it only weak anticorrelations exist. Near the transition point

the system spends time in both regimes giving rise to clusters of high volatility.

4.3 Number of investors

Before comparing the models with empirical data we should complete our explo-

ration of the phase space. In both CSEM and DSEM we explored a variety of

system sizes (number of agents N) in order to enhance the resolution of the phase

transitions. In this section we will re-evaluate this data in light of the discovery that

in many market simulations the dynamics reduce to being semi-regular in the limit

of many investors [62, 63].

Most past simulations were performed with investors numbering between

25 and 1,000 [28–30, 32, 33, 47] with the largest ranging between 5,000 and 40,000

[17, 34, 35]. Even the largest of these are minuscule when compared with natural

systems exhibiting phase transitions, which have on the order of 1023 particles.

It is not clear that these market models (including CSEM and DSEM) are at all

interesting in the limit of many investors. In fact it has been discovered that the

dynamics of many of these models become almost periodic as the number of investors

grows [62,63].

Whether this behaviour detracts from the models is uncertain. The models

can only be tested by comparison with real markets but even the largest markets
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Figure 4.15: The price series (a) and daily volume (b) of DSEM with N = 200 and
rp = −0.45 is a good example of intermittency. The dynamics fluctuate between
two phases.
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Parameters CSEM Dataset 3

Number of agents N 10,000 10,000 10,000
Forecast error σε 0.01 0.08 0.15

Investment limit δ 10−2 10−2 10−2

Number of runs 1 1 1
Run length (time steps) 10,000 10,000 10,000

Table 4.6: Parameter values for CSEM Dataset 3. These runs are a variation of
Dataset 1 (all unspecified parameters are duplicated from Table 4.1) with many
agents N = 10, 000.

cater to an infinitesimal number of individuals when compared with natural systems.

After all, the natural world consists of only a few billion “agents” of which only a

minute fraction are actively involved in stock trading. Therefore, one may argue that

these models do not need to exhibit rich behaviour in the limit of many investors in

order to be realistic. They need only exhibit realistic dynamics on the same scale

as real markets.

Nevertheless, it is interesting and useful to understand how the models pre-

dict the dynamics to evolve with increasing investor numbers. One advantage is that

testable predictions may be made with regard to how a market will scale as more

investors come aboard. In the last few years the number of investors in the markets

have grown substantially, mainly due to the rise of the internet which allows traders

to monitor their portfolios in (almost) real time and execute trades promptly. The

only research the author is aware of to explore the consequences of growing markets

is a model which suggests that fluctuations increase with system size [18].

Thus, it is useful to explore the effect of increasing the number of agents in

both the Centralized and Decentralized models.

4.3.1 Centralized Stock Exchange Model

To test the effect of changing the number of agents N thoroughly a new dataset

(see Table 4.6) was collected with markets containing N = 10, 000 agents in three

regimes: far below the critical point σε = 0.01, near the critical point σε = 0.08, and

above the critical point σε = 0.15. The price series for the first and last of these are

shown in Fig. 4.16 and 4.17, respectively.

Far below the critical point the dynamics appear to be largely invariant under

change of the number of investors. Interestingly, the dynamics do display semi-

periodic intervals, as demonstrated in Fig. 4.16(b), but this occurs for all system
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Figure 4.16: The price series of CSEM for σε = 0.01 (a) appears unaffected by chang-
ing the number of agents N . In particular, occasional semi-periodic fluctuations (b)
are observed for all system sizes.

104



N = 10000
N = 1000
N = 100

Time t

P
ri

ce
p
t

1000080006000400020000

10

1

0.1

Figure 4.17: The price series of CSEM for σε = 0.15 exhibits smaller fluctuations
and a lower mean as the system size increases. (The lower mean may simply be
because the system has not reached a steady state yet.)

sizes and is not a stable phenomenon even for the largest system so it does not

appear that the dynamics converge to being almost periodic in the limit N →∞ as

found in other models [62, 63].

Above the critical point the most obvious feature is that the fluctuations

decline with the number of investors (see Fig. 4.17). But this is to be expected

since the trading price results from the interactions between N “noisy” investors.

Therefore we expect the fluctuations (measured as the standard deviation of the

log-price) to decrease as 1/
√
N , a hypothesis which was found to hold fairly well for

σε = 0.15 between N = 50 and N = 10, 000 but which held better further from the

critical point (as can be seen in Fig. 4.7 which demonstrates the variances multiplied

by system sizes nearly collapse to a single curve).

The main conclusion to be drawn from this analysis is that the dynamics

of CSEM do not appear to become trivial or converge to a semi-periodic pattern

as the number of investors becomes infinite. Above the critical point fluctuations

do diminish but as one approaches the critical point they reappear and below the

critical point the dynamics are largely independent of the number of agents.
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4.3.2 Decentralized Stock Exchange Model

Collecting data for N = 10, 000 in DSEM proved prohibitive since each run would

require a full week of computer run-time to collect sufficient data for analysis. This

occurs because DSEM requires on the order of N 2 operations per simulation “day”

(N calls per day with N potential replies each) whereas CSEM grows linearly with

N . Therefore the data collected in Table 4.4 will be used here.

Again, we observe the price series for a variety of system sizes—this time

N = 50, 200, and 1000 agents—and regions of phase space spanning the phase

transitions—rp = −0.75, 0.00, and 0.90—to estimate how the dynamics would

change as the system size grew without limit. In each region it was found that the

fluctuations actually grew with system size, especially below the first-order transi-

tion rp < r2 ≈ −0.33.

The two plots in Fig. 4.18 show the price series only for N = 50 and N = 1000

(N = 200 exhibited predictably intermediate fluctuations and was not plotted to

reduce clutter). The plots show that the fluctuations are somewhat larger for the

larger system when rp = 0.90 and significantly so for rp = −0.75. Thus the dynamics

do not reduce to semi-regular in the limit of many investors.

4.3.3 Summary

In this section we tested the effect of increasing the number of agents in both CSEM

and DSEM in light of recent research that indicates that some market models become

quasi-periodic in the limit of many agents [62,63]. It was found that fluctuations did

decline in CSEM when the forecast error σε was significantly above its critical value

but the dynamics were largely invariant under variation of the number of agents

below the critical point.

In DSEM the fluctuations actually grew as more investors were introduced,

especially below the first-order transition at a price response of rp ≈ −0.33. This

makes an interesting and testable prediction regarding empirical markets: it indi-

cates that fluctuations in stock prices should be greater in larger markets. (Some

caveats are required: the size of the market is measured in terms of the number

of independent investors (a fund group would be interpreted as a single investor)

and not the total value of the outstanding stock. Recall that in these simulations

the total cash and shares were held fixed: with more investors each held a smaller

portion of the total resources.)

Since the number of investors does not strongly affect the dynamics we are

free to choose values which correspond well with observed market fluctuations. Com-

paring the fluctuations with empirical data will be the subject of the next chapter.
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Figure 4.18: In DSEM the price series does not get more regular as the system size
is increased—in fact the fluctuation grow. This is especially true for rp = −0.75 (a)
but it is also indicated to a lesser degree at rp = 0.90 (b).
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