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Chapter 3

Decentralized Stock Exchange

Model

3.1 Inspiration

I was growing disillusioned with CSEM when a collaboration with—then undergrad-

uate student—Casey Clements inspired me to consider a radically different approach.

Casey also expressed dissatisfaction with the price being set by a centralized control

(market maker) and wondered how real markets worked. I explained to him that the

stock (ticker) price was simply the last price at which a trade had occurred. Casey

expressed an interest in modeling this approach but I explained to him the hurdles:

namely that the agents would have to be a great deal more complicated than in

current models because they would have to make complicated decisions involving

two or more parameters.

Previously, agents were simple utility maximizers, applying Eq. 2.11 in order

to calculate the quantity of shares they wanted to trade in response to a given price

(set by the centralized control) but these new agents would have to decide on both

the volume to trade and the price they wanted to trade at.

Nevertheless, Casey was enthusiastic so I obliged him and we constructed

a simple event-driven model of stock exchange (neglecting the difficulties with the

agents’ decision processes) with the following properties:

1. agents trade by calling out and replying to orders,

2. trades can be called at any time (continuous time), and

3. agents can choose both the volume of the trade and the price.
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In this model prices would be decentralized, arising directly from the agents

decisions rather than being governed by a market maker. Thus was born the De-

centralized Stock Exchange Model (DSEM).

3.2 Basic theory

This model is of a more original nature than CSEM was and, therefore, requires

more explanation. For this reason the theory is divided into two sections, one

which explains the basic structure of the model and another which describes how

fluctuations are incorporated. First, the structure of the model will be developed.

3.2.1 Assumptions

The decentralized model discussed here contains many of the same assumptions as

CSEM (heterogenous agents; the market is composed of a single risky asset and

a single riskless asset; cash and shares are both conserved; et cetera). For the

sake of brevity, only the differences in assumptions between the two models will be

discussed.

Decentralization

The primary difference between the two models is, obviously, the move to a decen-

tralized market. This means that the agents are allowed to trade directly with one

another without any interference from a market maker or specialist. The market

maker may be interpreted as having been relegated to the mechanical role of match-

ing buyers with sellers, with no influence on the price. This interpretation resembles

intra-day trades of a fairly active stock [26]. CSEM, in contrast, was meant to mimic

low-frequency trading, on timescales no shorter than a single day.

Continuous time with discrete events

By moving to intra-day trading, the natural periodicity of the market opening and

closing daily, which gave rise to discretized time in CSEM, is eliminated. In fact,

in DSEM it is assumed that the market never closes; it is open around the clock,

24 hours per day. Trades may be executed at any instant and time is a continuous

variable. (Another interpretation is that the market does close but when it re-opens

it continues from where it left off without any effect from the close.)

To implement continuous-time (at least to some fine resolution) on fundamen-

tally discrete devices (digital computers) a shift of paradigms is required. Tradition-

ally, time evolution is simulated by simply incrementing “time” by a fixed amount
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(as in CSEM). This approach is cumbersome and inefficient when the model consists

of discrete events (eg. trades) occurring at non-uniform time intervals. Instead, an

event-driven approach is preferred [54] in which waiting times (delays) for all pos-

sible events are calculated and “time” is immediately advanced to the earliest one.

(As each event time is calculated the event is placed in an ordered queue so the

earliest event is simply the first event in the queue.) The basic algorithm follows:

1. Calculate waiting times for all events.

2. Find event with shortest waiting time.

3. Advance time to this event and process it.

4. Recalculate waiting times as necessary.

5. Return to Step 2.

Separation of time scales

The model allows two types of events: call orders and reply orders. By distinguishing

between the two a simplifying assumption can be made: no more than one call order

is active at any time.

In many real markets orders are good (active) until filled or until they expire.

When new orders are placed they are first treated as reply orders by checking if they

can satisfy any outstanding orders, and then, if they haven’t been filled, they are

placed on a auction book, and become call orders until they are removed.

In DSEM, however, it is assumed that reply orders occur on a much faster

timescale than calls. As soon as a call order is placed, all reply orders are submitted

and executed (almost) instantaneously and the call (if not filled) can immediately

be expired (because no more replies are expected). Hence, the probability that two

(call) orders are active simultaneously becomes negligible and it is assumed that at

most one is ever active at any given time.

This assumption improves performance at the cost of realism. Allowing

multiple orders to be simultaneously active would require more complicated book-

keeping and would degrade simulation performance. (It was observed that DSEM

exhibited rich enough behaviour that the assumption did not need to be discarded.)
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3.2.2 Utility theory

As with CSEM, we again begin with a game theoretic approach. However, instead

of an exponential utility function, a power-law is used,

U(w) =

{
1

1−aw
1−a a 6= 1

lnw a = 1.
(3.1)

Notice these forms are effectively identical as a → 1 because lima→1 U
′ = w−1 for

both, and utility is only defined up to a (positive) linear transformation.

The advantage of the power-law utility (sometimes known as the Kelly utility

[55]) is that it has a constant relative risk aversion

R(w) ≡ −wU
′′

U ′
= a, (3.2)

unlike the exponential utility which, from Eq. 2.4, has constant absolute risk aversion

A(w) ≡ −U ′′/U ′ = 1/wgoal. The constant relative risk aversion eliminates the

scaling problems which had to be worked around in Section 2.2.4 and keeps an

agent equally cautious regardless of its absolute wealth. (See Ref. [56] for a more

detailed description of absolute and relative risk aversion).

3.2.3 Optimal investment fraction

Let us assume an agent is interested in holding a fixed fraction i of its capital in the

risky asset. If the price moves from p(0) to p(t) the return-on-investment is

r(t) =
p(t)− p(0)

p(0)
(3.3)

and the final wealth can be written as

w(t) = w(0)(1− i) + w(0)i(r + 1) (3.4)

= w(0)(1 + ir). (3.5)

The goal is to find the value of i which maximizes the expected utility at

some future time t. First, the expected utility must be calculated:

〈U〉 =
w(0)1−a

1− a
〈

(1 + ir)1−a
〉
. (3.6)

Unfortunately, finding a closed-form solution for 〈U〉 is difficult, even with very

simple probability distributions.
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However, if we assume the timescale is relatively short then we expect the

returns to be small and the above equation can be expanded around r = 0, as

〈U〉 ≈ w(0)1−a
〈

1

1− a + ir − 1

2
ai2r2 + · · ·

〉
. (3.7)

Thus, the optimization condition becomes

0 =
d 〈U〉
di

(3.8)

= w(0)1−a
[
〈r〉 − ai∗

〈
r2
〉]

(3.9)

= w(0)1−a
[
〈r〉 − ai∗(Var [r] + 〈r〉2)

]
, (3.10)

giving an optimal investment fraction

i∗ =
〈r〉

a(Var [r] + 〈r〉2)
(3.11)

with the constraints 0 ≤ i∗ ≤ 1. (This derivation implicitly assumed that the higher

moments in the expansion are negligible—an assumption which may not be valid

even for short timescales, as will be seen in Chapter 5).

Note how closely this corresponds with Eq. 2.19 in CSEM, differing only by

an extra term in the denominator. However, the use of a power-law utility allowed us

to drop many of the assumptions originally required, such as explicitly hypothesizing

that the returns were Gaussian-distributed.

3.2.4 Fixed investment strategy

Eq. 3.11 states that, given some expectation and variance of the future return, one

should hold a constant fraction of one’s capital in the risky asset. The same result

was derived by Merton [56, Ch. 4] assuming a constant consumption rate (which can

be taken to be zero, as in DSEM). Further, Maslov and Zhang [57] demonstrated that

keeping a fixed fraction of one’s wealth in the risky asset maximizes the “typical”

long-term growth rate (defined as the median growth rate).

These references suggest that the optimal strategy is to keep a fixed fraction

of one’s wealth in stock—a Fixed Investment Strategy (FIS). The FIS is empirically

tested with a hypothetical portfolio in Chapter 6 and developed, here, for use with

DSEM. The strategy discards the attempt to forecast returns (which proved prob-

lematic in CSEM) in favour of the basic principle of maintaining some fixed fraction

invested in stock.
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Ideal price

The total value of a portfolio consisting of c cash and s shares at price p is

w(p) = c+ ps. (3.12)

The goal of FIS is to maintain a balance

ps = iw(p) (3.13)

by adjusting one’s holdings s. (The ideal investment fraction is simply denoted by

i henceforth, without the cumbersome asterisk.) If an agent currently holds c cash

and s shares then the agent would achieve the optimal investment fraction i if the

stock price was

p∗ =
ic

(1− i)s , (3.14)

which will be called the agent’s ideal price.

If the price is higher than the ideal price then the agent holds too much

capital in the form of stock and will want to sell and, conversely, at a lower price

the agent will buy in order to buoy up its portfolio.

Optimal holdings

The fixed investment strategy specifies not only what type of order to place at a

given price, but also precisely how many shares to trade. At a price p an agent

would ideally prefer to hold stock

s∗ =
iw(p)

p
. (3.15)

Given the ideal price above, the agent’s wealth can be written

w(p) =
1− i
i

p∗s+ ps. (3.16)

Hence, an agent’s optimal trade at price p is

s∗ − s =
iw

p
− s (3.17)

= (1− i)sp
∗

p
+ is− s (3.18)

= (1− i)
(
p∗

p
− 1

)
s. (3.19)

The fractional change of stock (s∗− s)/s is plotted as a function of price in Fig. 3.1.

So, given a portfolio (c,s) and an optimal investment fraction i, FIS prescribes

when to buy and sell and precisely how much.
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Figure 3.1: The fixed investment strategy specifies how many shares to trade at a
price p given an investment fraction i and an ideal price p∗ (from Eq. 3.14). As the
current price drops toward zero the fractional change in shares diverges.
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3.2.5 Friction

The derivations of the fixed investment strategy here and elsewhere [56,57] assume

no transaction costs, which makes it impractical in real markets. Every minuscule

fluctuation of a stock’s price would require a trade in order to rebalance the portfolio

but if the fluctuation was too small the trade would cost more than the value of the

shares traded, resulting in a net loss.

To circumvent this problem in a simulated portfolio with a commission on

every trade (see Chapter 6) I imposed limits on the buying and selling prices:

pB = p∗/(1 + f) (3.20)

pS = p∗(1 + f) (3.21)

where f is defined as the trading friction.

The same approach can be used here: don’t buy until the price drops below

the limit pB and don’t sell until it rises above the limit pS . This allows the simulation

to mimic the effect of transaction costs while conserving the total cash. It is also

required to make the simulation a discrete-event model. Without it, agents would

trade on a continuous-time basis and the model would be difficult to simulate (and

less realistic).

Obviously, the larger the friction, the larger a price fluctuation will be re-

quired before an agent decides to trade. So increasing friction decreases the trade

frequency and hinders market activity—which explains why the term “friction” is

used.

Each agent’s friction must be strictly positive because a zero value would

allow an agent to place an order to trade zero shares at its ideal price—a null order.

The simulation does not forbid this but, as will be seen, such an order would never

be accepted.

There is no fixed upper limit on the friction but it seems reasonable to impose

f < 1. This would mean an agent places buy and sell limits at one half and double

the ideal price, respectively. (It would be peculiar for an investor not to sell when

a stock’s price doubles!)

Thus, the friction f is the first agent-specific parameter in DSEM and it is

chosen such that f ∈ (0, 1).

3.2.6 Call orders

As mentioned above, DSEM is a discrete-event simulation. The events are orders

which are called out. An order consists of a price po, type (“Buy” or “Sell”) and
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Figure 3.2: Call orders po are placed at either the current price p or the limit prices
pB or pS , whichever is better. The spread between the limits increases with friction
f .

quantity of shares to trade.

The agents use the limit prices discussed in the last section to set their trad-

ing prices, thereby solving the problem of how to design agents which can choose

both a trade volume and price. (The volume is set by Eq. 3.19.) Of course, if the

current market (last traded) price p is “better” than the limit price (p > pS or

p < pB) then the agents rationally choose to trade at that price:

po =

{
min(p, pB) for “Buy” orders

max(p, pS) for “Sell” orders.
(3.22)

These order prices, shown in Fig. 3.2, are substituted into Eq. 3.19 to compute

the volume of shares to trade. Notice that there are two options (buy or sell) for

every price. Before discussing how the agent decides which action to take, we must

understand the process which governs most discrete-event simulations.
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3.2.7 Poisson processes

A Poisson process is a stochastic counting process defined by the probability of an

event occurring in an infinitesimal interval dt,

π(dt) = dt/τ (3.23)

where τ is the average event interval [58]. All events are assumed to be independent.

The cumulative probability of no events having fired within a finite interval t is then

given by

Pr(0, t) = e−t/τ (3.24)

which accurately describes many natural processes, such as radioactive decay of

nuclei.

The advantage of the Poisson process from a simulation perspective is that

it may be interrupted. Consider a time interval t which is divided into two intervals

t1 and t2 (t = t1 + t2). The probability of no events within t can be written

Pr(0, t) = e−(t1+t2)/τ (3.25)

= Pr(0, t1) Pr(0, t2) (3.26)

which simply means that if the event did not occur within the interval t then it must

not have occurred within either of the sub-intervals t1 or t2.

This equivalence relation may be interpreted to mean that a clock which

measures the stochastic time to a Poisson event may be reset at any time before

the event fires, without changing the probability distribution. This property is very

useful for discrete-event simulations because it allows one to proceed to the first

event time, update the system, and recalculate all the event times from this point

without disturbing the process. (Event times would need to be recalculated, for

instance, if their average rate τ was affected by the event which transpired.)

We now have the background necessary to discuss how an agent chooses

which action to take.

3.2.8 Call interval

Agents always have two options when deciding on a call order: place a “Buy” or

a “Sell” order. Since the simulation is event-driven, the easiest way to handle this

is to allow both possibilities. Each is an event which will occur at some instant

in time. The events of calling orders is modeled as a Poisson process, as discussed

above.

More precisely, “Buy” and “Sell” orders are modeled as independent Poisson

processes, each with its own characteristic rate. Intuitively, if the current stock price
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p is very high then we expect agents will try to sell at or near the current price,

rather than trying to buy at a much lower price, and vice versa if the price is low.

This intuition can be captured by making the Poisson rates for the “Buy” and “Sell”

calls price dependent [26], as

τB(p) =
p

pB
τ (3.27)

τS(p) =
pS
p
τ (3.28)

where τ is an unspecified (constant) timescale and τB and τS are the average times

between each type of call order.

The above linear price dependence is justified only on the basis of its sim-

plicity, but it also has some reasonable consequences. An agent makes the fewest

calls (of either type) when the call rate 1/τB+S is minimized,

0 =
d

dp

1

τB+S
(3.29)

=
d

dp

(
1

τB
+

1

τS

)
(3.30)

= −pB
p2

+
1

pS
(3.31)

which occurs at a price p =
√
pBpS = p∗, the agent’s ideal price. Hence, when

an agent is satisfied with its current portfolio, it will place the fewest (speculative)

orders.

As the price moves away from the agent’s ideal price the call rate increases

reflecting an increased urgency. With many agents independently placing call orders,

the agent with the greatest urgency (shortest waiting time) will tend to place the

first order, so urgency drives market fluctuations [59]. This is in contrast with

CSEM and many other simulations in which fluctuations are driven by supply vs.

demand [27–36].

Incidentally, the minimum call rate is

1

τB+S(p∗)
=

1

τB(p∗)
+

1

τS(p∗)
(3.32)

=
2

(1 + f)τ
(3.33)

which decreases as the friction f is increased, as discussed previously.

Eqs. 3.27–3.28 were introduced to increase the probability of buying if the last

trading price was low and selling if the last trading price was high. The probability
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Figure 3.3: “Buy” and “Sell” call orders are modeled as independent Poisson pro-
cesses with price-dependent rates. As the last trading price increases, the probability
of a “Sell” order being called becomes much more likely than a “Buy.”
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of the next call being a “Buy” can be explicitly calculated: consider the probability

of a Buy order being placed between times t and t + dt with neither a Buy nor a

Sell having occurred yet. Then, marginalizing over all t gives the probability of a

Buy occurring first,

Pr(Buy) =

∫ ∞

0

dt

τB
e−t/τB−t/τS (3.34)

=
1/τB

1/τB + 1/τS
(3.35)

=
p∗/p

p∗/p+ p/p∗
. (3.36)

Of course, the probability of a Sell order being placed first is the complement,

Pr(Sell) = 1−Pr(Buy). Fig. 3.3 shows that Buy orders are much more likely at low

prices and Sell orders more likely at high.

3.2.9 Reply orders

Orders are divided into two types: call orders and reply orders. The call orders have

been discussed above. Reply orders are handled in much the same manner with two

important changes:

1. When replying to a call order, the replier is not free to set a price but must

accept the called price.

2. Reply orders happen on a much faster timescale than call orders.

The first item requires that reply orders be handled slightly differently than

call orders. The agent still calculates price limits according to Eqs. 3.20–3.21 but

now this is used as the criterion for whether to place an order or not. If the order

price meets the Sell limit po ≥ pS then a “Sell” reply is placed and if the price meets

the Buy limit po ≤ pB then a “Buy” reply is placed. Otherwise the agent does not

reply to the called order.

It is assumed that a called order is completely transparent; all potential

repliers have full information about the order including the price, type of order

(Buy or Sell) and quantity of shares to be traded. This provides another criterion

whether to reply or not: the quantity of shares in the called order must be sufficient

to completely fill the replier’s demand. Although this requirement may seem too

strict, it is useful because it prevents callers from swaying the price series with

negligible orders (as could occur with zero friction or if the caller has negligible

wealth compared to the replier).
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Like call orders, replies receive stochastic execution times with average in-

tervals from Eq. 3.27 or Eq. 3.28 depending on whether the reply is a Buy or Sell

order. Replies compatible with the call order are then processed in a “first come,

first served” queue until the call order is filled or all repliers are satisfied (partial

orders are processed).

As mentioned above, replies occur on a much faster timescale than call orders,

such that no more than one call order is ever active at a time. The time for all replies

to be processed is assumed to be infinitesimal compared to the calling time interval.

3.2.10 Time scale

If each agent places Buy and Sell call orders at rates 1/τB and 1/τS , respectively,

then the net rate ρ of call orders being placed (for all agents) is

ρ =
∑

i∈agents

(
1

τB,i
+

1

τS,i

)
. (3.37)

Let us assume that all agents are satisfied with their current portfolios; an assump-

tion which, by Eq. 3.33, minimizes the net event rate,

ρmin =
2

τ

∑

i

1

1 + fi
. (3.38)

Now we can identify the minimum event rate with a real rate in order to

specify the timescale τ . Note that fixing τ is only necessary in order to set a scale

for comparing simulation data with empirical market data. An arbitrary but con-

venient choice is to assume each agent trades once each day (on average). Then, if

the market contains N agents, we expect ρmin = N/2 (because each call order is a

trade between at least two agents) so the timescale τ should be

τ =
4

N

∑

i

1

1 + fi
. (3.39)

Hence, one time unit is meant to represent one day. This is a particularly

useful choice because it allows us to draw some parallels between DSEM and the

original model, CSEM, in which agents were constrained to exactly one trade per

day. Notice the parallel is not perfect for two reasons: firstly, there is no guarantee

that a call order will have any repliers and secondly, if it is executed there may be

multiple repliers. Nevertheless, the scaling should be accurate within an order of

magnitude.
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3.2.11 Initialization

DSEM is initialized with N agents amongst whom some total cash C and total

shares S are distributed. (N sets the “size” of the market. Heavily traded stocks

would be represented by large N .) As in CSEM, the cash and shares will usually

be distributed uniformly between the agents.

Each agent begins with an ideal investment fraction i(0) = 1/2 which gives

an ideal price

p∗(0) =
c

s
. (3.40)

For simplicity, each agent begins satisfied with its current portfolio, believing that

the current market price is actually its ideal price p(0) = p∗(0).

Notice that Eq. 3.11 is not used to set the investment fraction. Its purpose

was only to establish that holding a fixed fraction i of one’s wealth in stock is

rational. How i is updated is the subject of the next section.

If the cash and shares are initially distributed equally amongst the agents

(as will be assumed for all runs, unless otherwise stated) then the simulation begins

in stasis: any Sell order submitted must necessarily be set above all repliers ideal

price (C/S) so it will not be filled, and vice versa for Buy orders. Thus, no trading

will occur and the price will never move away from C/S. What is needed is some

stochastic driving force to initiate the dynamics. (Even starting with a non-uniform

distribution produces only transient fluctuations before the price stabilizes.)

In this section three market parameters were introduced: the number of

agents N , the total cash C, and the total shares S.

3.3 Fluctuation theory

The above theory completely specifies the basic model. What remains is to in-

corporate fluctuations, as discussed in this section. Recall that forecasting was

problematic in CSEM (see Fig. 2.9, for example) so in DSEM a different tack is

taken.

3.3.1 Bayes’ theorem

Before we can understand how fluctuations are incorporated it is necessary that

we briefly review some results from Bayesian probability theory [25, Ch. 4], which

provides an inductive method for updating one’s estimated probabilities of given

hypotheses as new data arrive:

Let H represent some hypothesis which one wishes to ascertain the truth

value of. If X is our prior information then we begin with a probability of H given
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X, denoted by P (H|X). Now notice that as new information D (data) arrives the

joint probability of both the hypothesis and the data becomes

P (HD|X) = P (H|X)P (D|HX) (3.41)

= P (D|X)P (H|DX) (3.42)

from the product rule of probabilities.

But these equations can be rewritten to give the probability of the hypothesis

in light of the new information,

P (H|DX) = P (H|X)
P (D|HX)

P (D|X)
, (3.43)

which is known as Bayes’ theorem.

Let us define evidence as the logarithm of the odds ratio e ≡ log [P/(1− P )],

which is just a mapping from probability space to the set of all real numbers (0, 1)→
(−∞,∞).

The advantage of the evidence notation over probabilities is that incorporat-

ing new information is an additive procedure

e(H|DX) = e(H|X) + log

[
P (D|HX)

P (D|H̄X)

]
, (3.44)

where H̄ is the negation of H.

With the understanding that assimilating new information is an additive

process for evidence, we may proceed with extending DSEM to include fluctuations.

3.3.2 News

In real markets a stock’s price is derived from expectations of its future earnings.

These expectations are formed from information about the company, which is re-

leased as news. In other words, news drives market fluctuations.

In DSEM fluctuations are also driven by news. How to represent news in

this model, though, is problematic. Inspiration comes from Cover and Thomas

[24, Ch. 6] in which the optimal (defined as maximizing the expect growth rate of

wealth) wagering strategy in a horse race (given fair odds) is to wager a fraction of

one’s capital on each horse equal to the probability of that horse winning—a fixed

investment strategy, where the investment fraction is identified with a probability.

In DSEM, this would have to be translated as the probability of the stock

(or cash) “winning,” the interpretation of which is unclear. (A loose interpretation

might be that the stock wins if its value at some future horizon is greater than cash,

otherwise cash wins.)

59



Regardless of what i is a measure of, if we interpret i as some probability

measure then Bayesian probability theory offers an avenue for further development.

The evidence, as discussed in the last section, corresponding to the probability i is

e = log
i

1− i . (3.45)

As new information is acquired the evidence is updated via

e′ = e+ η (3.46)

where η represents the complicated second term of Eq. 3.44.

This suggests modeling news as a stochastic process η which affects an agent’s

confidence in the stock and, thereby, investment fraction. (Modeling the news as η

directly, instead of through the information D as presented in Eq. 3.44, dramatically

simplifies the calculations.) A positive η increases the evidence (and investment

fraction), a negative value decreases it, while η = 0 is neutral.

Assuming news releases have a finite variance and are cumulative, the Central

Limit Theorem indicates the appropriate choice is to model η as Gaussian noise. It

should have a mean of zero 〈η〉 = 0 (unbiased) so that there is no long-term expected

trend in investment (or price).

The scale of the fluctuations ση, though, is difficult to decide; but this just

opens up an opportunity to increase diversity amongst the agents—let each set its

own scale. We begin by setting an arbitrary scale ση and then allowing agents to

rescale it according to their own preferences. Since each agent will apply its own

scaling factor the universal scale ση is arbitrary so it will be set to a convenient

value later.

News response

First, we begin by defining individual scale factors. Let us define a new agent-specific

parameter rn, which represents the agent’s responsiveness to news. Then evidence

would be updated as

e′ = e+ rnη. (3.47)

A responsiveness of zero would indicate the agent ignores news releases and

maintains a constant investment ratio. As the responsiveness increases the agent

becomes increasingly sensitive to news and adjusts its ideal investment fraction more

wildly, via

i′ =
i exp(rnη)

1− i (1− exp(rnη))
. (3.48)
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Notice there exists a symmetry between positive and negative news if the

responsiveness also changes sign, (−rn)(−η) ≡ rnη, so we can impose the restriction

〈rn〉 ≥ 0 (averaged over all agents) without loss of generality.

News releases

Since DSEM is a discrete-event simulation the news must also be inserted as dis-

crete events. For reasons discussed in Appendix B news events are modeled as a

discrete Brownian process with some characteristic interval τn (unbiased Gaussian-

distributed jumps occurring regularly at intervals of τn). Thus, on average, we

expect 1/τn news events each day. If every news release has a variance of σ2
η then

the variance of the cumulative news after one day is σ2
η/τn. To minimize the impact

of the news interval parameter the variance of the news over some fixed interval

should be constant, independent of how often news is released. Otherwise rescaling

the news interval will rescale the evidences and hence impact upon the scale of the

price series. Let us take the variance to be one unit over one day, which is satisfied

when

σ2
η = τn. (3.49)

To draw parallels with real markets the news release interval is chosen be-

tween 1/6.5 ≤ τn ≤ 5 where the market is assumed to be open six and one half hours

per day [7]. Thus news releases occur at least once per week and at most once per

hour. A smaller interval is inappropriate because news is irrelevant until an investor

is made aware of it—most investors (except professional traders) probably do not

check for news more than once per hour. (In fact, most people still get their news

from the daily newspaper, suggesting τn = 1.) On the other hand, a timescale longer

than a week (5 days) is useless because we are particularly interested in fluctuations

on the scale of hours to days, so the driving force should be on the same scale.

Parameters

In this section two new parameters related to news were presented: the agent-specific

news response parameter rn which is allowed to be negative but is constrained such

that 〈rn〉 ≥ 0; and the global news interval parameter which is strictly positive and

constrained to τn ∈ (1/6.5, 5).

3.3.3 Price response

DSEM with news-driven fluctuations is a complete model ready for experimentation.

However, it is lacking in that it neglects a significant source which real investors

often construct their expectations from: the price history itself. It is probable
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that feedback from the price series is integral to the clustered volatility and other

complex phenomena found in empirical data. In CSEM this feedback was modeled

by tracking the history of returns and forming future expectations therefrom, to

set the investment fraction. Since DSEM sets the investment fraction completely

differently, this method is unavailable. However, it is possible to construct a method

which allows agents to extract information from the price series.

Consider how a single agent’s ideal price is affected by news. From Eq. 3.14,

after a news release η the ideal price becomes

p∗′ =
i′c

(1− i′)s (3.50)

= exp(rnη)p∗ (3.51)

which suggests that news is related to the logarithm of the price through

η ∝ log
p′

p
. (3.52)

Therefore price movements imply news and if the price does change, an agent

may infer that it missed some news which others are privy to. Thus the price feed-

back may be inserted by extending the evidence dependence such that on a price

move from p to p′

e′ = e+ rp log
p′

p
(3.53)

where rp, the response to price, is a new agent-specific parameter. Setting rp = 0

eliminates the price feedback and reverts the model to being driven solely by news.

But with non-zero rp agents have a chartist nature: they presume the price series

contains information (trends) and wager accordingly.

Some market models separate agents into two groups: fundamentalists and

chartists [32, 36, 47]. Fundamentalists (or “rational” traders) value the stock using

fundamental properties such as dividends and reports of assets. In the absence of

dividends, this would correspond to responding strongly to news releases in DSEM.

Chartists (or “noise” traders) simply use the price history itself as an indicator of the

stock’s value. This would correspond to a strong price response in DSEM. However,

in DSEM the two are not exclusive. Instead of drawing a distinction between the

two types of traders a continuum exists where rn and rp can take on a wide range

of values so that agents may value the stock based on fundamentals and on its

performance history.

Note that the price only changes when a trade occurs. Only agents not in-

volved in the trade (neither the caller nor a satisfied replier) should update their

62



evidence since the traders can’t be interpreted as having “missed” some informa-

tion (because their trade was the information). Further, allowing the caller and

replier(s) to also update there evidence would cause complications because an agent

could never reach equilibrium—a trade would bring them to their ideal investment

fractions but then their evidences (and investment fractions) would be immediately

changed.

The price response parameter is similar to an autocorrelation in returns.

Therefore we expect the dynamics to destabilize if we allow it to exceed unit mag-

nitude. As we will see in Chapter 4, imposing −1 < 〈rp〉 < 1 keeps the price from

rapidly diverging.

In this section a new parameter, the price response rp which is constrained

by |〈rp〉| < 1, was derived.

3.3.4 Review

The Decentralized Stock Exchange Model (DSEM) consists of a number N of agents

which trade with each other directly, without the intervention of a market maker.

In this section the structure of the model will be reviewed.

Game theory indicates the optimal strategy is to maintain a fixed fraction

of one’s capital in stock, the Fixed Investment Strategy (FIS). Therefore the agents

trade in order to rebalance their portfolios consisting of c cash and s shares. News

releases and price fluctuations cause agents to re-evaluate their investment fraction

i and up- or down-grade it as they see fit.

Algorithm

Everything that happens in the model occurs as a discrete event in continuous time.

The basic algorithm follows:

1. Initialization. Cash and shares distributed amongst agents. Agents sample

Poisson distribution to get waiting times until first call orders. Waiting time

for first news event is set to zero (first event).

2. Next event is found (shortest waiting time). Time is advanced to that of

the event which is executed next. If it is a news release proceed to Step 3.

Otherwise it is a call order being placed, proceed to Step 4.

3. News event. Sample Gaussian distribution to generate deviate for news. Ad-

just all agents’ ideal investment fractions. Set news waiting time to τn and

recalculate all agents’ waiting times. Return to Step 2.
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Symbol Interpretation Range

Market parameters

N number of agents 2+
C total cash available
S total shares available
τn average interval between news releases (1/6.5, 5)

Market state variables

p(t) stock price at time t
v(t) trade volume (number of shares traded) at time t

Agent parameters

fj friction of agent j (0, 1)
rn,j news response of agent j 〈rn〉 ≥ 0
rp,j price response of agent j |〈rp〉| < 1

Agent state variables

cj cash held by agent j
sj shares held by agent j

wj(p) wealth of agent j at stock price p
ij optimum investment fraction of agent j

Table 3.1: All parameters and variables used in the Decentralized Stock Exchange
Model (DSEM).

4. Call order placed.

(a) Calculate all reply orders and corresponding waiting times. Place com-

patible replies in queue, ordered by waiting times.

(b) If queue is empty, proceed to Step 4d. If queue is not empty, remove first

reply order from queue and execute it.

(c) Reduce outstanding call order by appropriate volume. If not completely

filled, return to Step 4b.

(d) Recalculate call-order waiting times for agents which traded. If price did

not change, return to Step 2.

(e) If price did change, recalculate ideal fractions for all other agents. Recal-

culate call-order waiting times. Return to Step 2.

Parameters

For convenience all the variables used in DSEM are listed in Table 3.1. The param-

eters are inputs for the simulation and the state variables characterize the state of
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the simulation at any time completely. For each run, the agent-specific parameters

are set randomly; they are uniformly distributed within some range (a subset of the

ranges shown in the table). Each dataset analyzed herein will be characterized by

listing the market parameters and the ranges of agent parameters used.

3.4 Implementation

The Decentralized Stock Exchange Model (DSEM) is completely characterized by

the above theory. The model is beyond the scope of rigorous analysis in all but the

most trivial of scenarios so it is simulated via computer. The model was programmed

in C++ using Borland C++Builder 1.0 on an Intel Pentium II computer running

Microsoft Windows 98. The source code and a pre-compiled executable are available

for download from http://rikblok.cjb.net/phd/dsem/.

DSEM encounters some of the same issues as CSEM. In particular, random

numbers are handled using the same code as was discussed in Section 2.3.1. Simi-

larly, the random number seed will be specified with the other model parameters if

the default (the current time) is not used.

3.5 Parameter space exploration

Having converted DSEM to computer code time series can be generated for numer-

ical analysis. Currently DSEM requires seven parameters (one fewer than CSEM

started with) to fully describe it. Again, it would be useful to try and reduce the

parameter space before collecting any serious data.

3.5.1 Number of agents N

The effect of changing the number of traders will be explored in detail in Chapter 4

and is left until then.

3.5.2 Total cash C and total shares S

In this section the effect of rescaling the total cash C and total shares S will be

explored. Let us denote rescaled properties with a prime. Then rescaling cash by a

factor A and shares by B is written

C ′ = AC (3.54)

S′ = BS. (3.55)

65



Parameter Run 1 Run 2 Run 3

N 100 100 100
C $1,000,000 $10,000,000 $1,000,000
S 1,000,000 10,000,000 10,000,000
τn 1 1 1
rn 0.025± 0.025 0.025± 0.025 0.025± 0.025
rp 0.75± 0.75 0.75± 0.75 0.75± 0.75
f 0.05± 0.05 0.05± 0.05 0.05± 0.05

seed -2 -2 -2

Table 3.2: Parameter values for DSEM Runs 1, 2 and 3.

Cash and shares are rescaled equally for each agent so the distribution remains

constant.

We begin by noticing that the initial evidence is unchanged (being fixed

at e(0) = 0). The evidence depends on news releases (which are unaffected by

rescaling) and price movements through Eq. 3.53. Assuming price scales linearly

(p′ ∝ p) the logarithm of the price ratios will be unchanged. Thus, the evidence and

the investment fraction will also be unchanged under rescaling.

Assuming i remains unscaled, an agent’s ideal price scales as

p∗′ =
ic′

(1− i)s′ =
A

B
p∗ (3.56)

and the buy and sell limits scale identically. Since all agents ideal prices scale as

A/B it is reasonable to expect that the entire price series scales as

p′ =
A

B
p, (3.57)

as is required for the investment fraction to remain unchanged. Thus, these two

hypotheses are compatible and, through the initial conditions, are realized.

This argument took the same form as in Section 2.4.2 for CSEM. An identical

argument for trade volume also applies giving the result that volume scales with

shares as

v′ = Bv. (3.58)

To test these hypotheses three runs were performed, with the parameter

values shown in Table 3.2. Contrasting Runs 2 and 3 with Run 1 give A = 10, B = 10

and A = 1, B = 10, respectively. The results, shown in Fig. 3.4, confirm our

hypothesis.
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Figure 3.4: Comparison of time evolutions of (a) price and (b) volume for Runs 1,
2 and 3 as defined in Table 3.2. The price scales as the ratio of cash to shares and
the volume scales as the number of shares. (Run 2 is offset to improve readability.
The gaps in (b) denote periods of zero volume.)
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Thus, we again have a model where the roles of C and S are only to set the

price and volume scales, which are irrelevant anyway. Without loss of generality we

can arbitrarily fix C = $1, 000, 000 and S = 1, 000, 000 thereby reducing the degrees

of freedom by two.

3.5.3 Further scaling

Having fixed the total cash and shares it is possible to show that no further scaling

arguments are possible—there is no way to transform the model parameters such

that the dynamics are invariant. We begin by noticing that, subject to C and S

being fixed, each agent’s cash c and shares s must also be fixed—constant under

any transformation.

Under transformation a trade occurring between times t− and t+

c(t+) = c(t−)− p∆s (3.59)

s(t+) = c(t−) + ∆s (3.60)

becomes

c(t+)′ = c(t−)− p′∆s′ (3.61)

s(t+)′ = c(t−) + ∆s′. (3.62)

But requiring c′ = c and s′ = s for all times immediately imposes the restrictions

∆s′ = ∆s and

p′ = p. (3.63)

So price must also be a constant under the transformation.

In particular, an agent’s ideal price, given by Eq. 3.14, and limit prices, given

by Eqs. 3.20–3.21, must remain unscaled, which immediately implies i′ = i and

f ′ = f, (3.64)

so there is no way to rescale f without impacting the dynamics.

The constraint that i be invariant necessarily means that the evidence e must

also be. After a number of news releases ηj and price movements the evidence is

e(t) = rn
∑

j

ηj + rp log
p(t)

p(0)
. (3.65)

Therefore e is only invariant if the number of news releases is the same (requiring

τ ′n = τn) and

r′n = rn (3.66)

r′p = rp. (3.67)
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The conclusion which may be drawn is that there is no transformation of any

model parameters which leaves the dynamics invariant.

3.6 Parameter tuning

In the absence of scaling arguments to reduce the parameter space further we must

use tuning methods to choose appropriate parameter ranges. (It is acknowledged

this weakens the model’s results somewhat, but it is necessary in order to establish

a sufficiently small parameter space for experimentation.)

3.6.1 News response

In this section we will explore the effect of varying the news response parameter rn.

Let primes denote values after the arrival of a news event and unprimed quantities

the same values before its arrival. If we could neglect price response (rp = 0) then

the price fluctuations would behave as

log
p∗′

p∗
= e′ − e = rnη (3.68)

where η is the cumulative news in the interval. So we would expect the price to have

a log-Brownian motion with a standard deviation of rn
√
t (because η has a variance

t).

However, the agents’ response to price movements clouds the picture some-

what. Accounting for both news and price response, the evidence changes as

e′ − e = rnη + rp log
p′

p
. (3.69)

If we assume, for simplicity, that the agent begins and ends at its ideal price (p = p∗

and p′ = p∗′) then the relationship becomes

log
p∗′

p∗
=

rn
1− rp

η. (3.70)

Although the assumption is too restricting for the above equation to accurately

describe price movements it at least sets a scale for the dependence of the price

movements with respect to the model parameters.

To test Eq. 3.70 the price series of Run 1 is reproduced in Fig. 3.5 along with

the expected price from the equation (initialized at p(0) = 1). The graph indicates

a rough agreement between the series but with a systematic error for prices far from

$1, indicating the equation does not completely capture the dynamics.
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Figure 3.5: The price series generated by Run 1 is compared with the expected
price generated by Eq. 3.70, showing rough agreement (though with systematic
deviations).
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Nevertheless, it is sufficient for the following purpose: it at least allows us to

choose the scale of the news response rn such that the fluctuations are on roughly

the same scale as observed in real markets. If the log-return r (not to be confused

with responsiveness) over one day obeys

r(t) ≡ log
p(t)

p(t− 1)
=

rn
1− rp

(η(t)− η(t− 1)) (3.71)

where η(t) is the cumulative news up to time t, then the standard deviation σr of

the returns is

σr =
rn

1− rp

√
Var [η] (3.72)

where Var [η] is the news variance over one day, which was set in Section 3.3.2 to 1.

Rearranging the relationship, we can set a scale for the news response

rn = (1− rp)σr. (3.73)

Daily returns for the New York Stock Exchange over 26 years covering the

period 1962–1988 [60] give σr = 0.00959 while the nine individual stocks studied in

Chapter 6 are somewhat more variable with σr = 0.036 ± 0.014 (see Table 6.4). A

rough guideline, then, is rn = (1− rp) · 0.02. Arbitrarily taking 〈rp〉 ≈ 1/2 suggests

〈rn〉 = 0.01. For all future simulations a range of rn = 0.01 ± 0.01 will be used,

unless otherwise stated.

3.6.2 Friction

In this section the effect of changing the friction parameter will be explored.

One of the effects of changing the friction has already been presented in

Section 3.2.10 where it was found that, in order to preserve the number of trades

per day, it was necessary to rescale time with Eq. 3.39. This has an appealing

interpretation: as friction (or cost per trade) increases the trade rate drops.

However, this effect is rather trivial and, by rescaling time via Eq. 3.39, it

can be ignored. Nevertheless, f still influences the dynamics in subtle ways.

To choose the friction we again appeal to real market structure. Most markets

prefer trade quantities to be in round lots or multiples of one hundred shares. So

the minimum trade in DSEM should consist of one hundred shares. Of course, the

trade quantity depends on how many shares an agent holds and how the dynamics

have unfolded. But, at the very least, we can impose this condition initially (at

t = 0) because then we know each agent’s portfolio and the market price precisely.

Assuming the total cash C and shares S(= C) are distributed equally, each

agent begins with an ideal investment fraction i = 1/2, ideal price p∗ = 1, and limit
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prices pBS = (1 + f)±1. A trade will be initiated at one of the limit prices so the

quantity of shares to be traded, from Eq. 3.19, is

s∗ − s =
S

2N

(
(1 + f)±1 − 1

)
(3.74)

≈ ± Sf
2N

. (3.75)

Imposing the round lot restriction ∆smin = 100 sets the friction at

f = 2
∆sminN

S
= 200

N

S
. (3.76)

From this argument it appears that the friction should increase with the

number of agents N in the model. However, this is just an artifact of having fixed

the total number of shares S. As N is increased each agent receives fewer shares

since S is constant so it must wait for a larger price move before trading, so that

it can trade a full lot. But fixing S in this way is somewhat unnatural. It is more

natural to expect that if more agents are involved in a certain company then the

company is probably larger and has more shares allocated. So S should probably

have scaled with N .

But the effect of scaling S can be mimicked by scaling the round lot as

∆smin ∝ 1/N . Then the friction is a constant, regardless of N . The most common

system size to be used in this research will be N = 100 so, given S = 1, 000, 000, a

good scale for the friction is f = 0.02. However, to incorporate heterogeneity future

simulations will use f = 0.02± 0.01.

3.6.3 News interval

Previously it was argued that the average news release interval τn should be on the

order of a day. After more reflection the value of one day seems even more appro-

priate given the strong daily periodicity in real markets; daily market openings and

closings, daily news sources (such as newspapers), and human behaviour patterns

are just a few examples of daily cycles which influence market dynamics.

Another advantage of using an interval of one day in DSEM is that it

strengthens the connection with CSEM, in which all events occur simultaneously

once per day.

For these reasons the news release interval will be fixed at τn = 1 (day).

3.6.4 Finalized parameter ranges

Via rescaling and tuning we have greatly narrowed the allowed ranges of the pa-

rameters. The final ranges which will be used in all further simulations are shown
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Symbol Interpretation Range

Market parameters

N number of agents 2+
C total cash available $1,000,000
S total shares available 1,000,000
τn average interval between news releases 1

Agent parameters

fj friction of agent j 0.02± 0.01
rn,j news response of agent j 0.01± 0.01
rp,j price response of agent j 〈rp〉 ∈ (0, 1)

Table 3.3: As Table 3.1 except with updated parameter ranges. These ranges will
be used in subsequent simulations. All parameters except N and rp are firm.

in Table 3.3. All the parameters except the number of agents N and the price

response rp have well-defined values (or ranges, in the case of agent-specific param-

eters). These two parameters will be the subject of further examination in the next

chapter.
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