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Chapter 2

Centralized Stock Exchange

Model

2.1 Inspiration

In this chapter we will explore the Centralized Stock Exchange Model (CSEM), a

microscopic model which is built upon the premise of centralization; each agent on

the market is restricted to trading with a single, monopolistic market maker who

has complete control over the execution price. No direct trades between agents are

allowed. This situation approximates some actual, thinly traded stocks on the New

York Stock Exchange (NYSE) and other markets [26].

There are two reasons this approach was chosen: firstly, there exists a signif-

icant collection of literature following this methodology [27–36]. I hoped to famil-

iarize myself with this literature by constructing a model along the same vein.

Secondly, it allows for the construction of very simple agents. By having

the trading price set exogenously the agents need only react rather than formulate

their own trading schedules. In particular, the standard game theoretic approach is

applicable only to reactive agents, as will be seen.

Hence, the development of CSEM was a natural starting point for my re-

search.

2.2 Theory

In this section the model’s structure will be explained.
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2.2.1 Assumptions

I will begin, for the sake of clarity, by laying out some common assumptions used

in CSEM.

Heterogenous agents

The market consists of many agents interested in trading. If all the agents had

identical beliefs then we might expect their actions to be identical. Hence, we

would effectively have a market of just one meta-agent unable to execute any orders.

Similarly, if any subset of the population is homogeneous then that subset can be

equally well represented by a single agent.

Therefore, it is natural to require that all the agents be unique. Notice that

heterogeneity can arise from imperfect rationality or incomplete knowledge, qualities

which seems reasonable for the simple agents which will be constructed. In most

cases the agents will differ in fundamental parameters describing their preferences

but transient differences alone (such as cash or shares held) may be allowed too,

provided these factors influence the agents’ actions.

Single risky asset and single riskless asset

For simplicity a market consisting of just one risky asset (public company stock)

and one riskless asset (cash, for instance) will be used.

The total number of shares available on the market will be conserved. Since

the company pays no dividend the stock has no fundamental value and stock price

is maintained solely by expectations of satisfactory returns on the sale of shares.

(The stock must at least have a chance of paying a dividend eventually or the stock

price will be identically zero for all time, but the payout date is assumed to be far

in the future.)

For simplicity, the stock price will be assumed to be a continuous variable.

(In contrast, real stock prices are discretized, but on a sliding scale—dollar stocks

usually have increments of one sixteenth of a dollar but penny stocks may be incre-

mented by one tenth of a penny.)

The riskless asset (which we will call cash, though it could as easily represent

some other stable equity such as gold) is defined to have a fixed intrinsic value in

terms of which the value of the stock is measured. (By measuring all value in terms

of cash some of the difficulties of utility theory in comparing utilities of disparate

objects [37] are sidestepped.)

The total cash in the market will also be conserved. To achieve this, cash

will pay no interest and no commissions will be charged on trades. This restriction
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may be unrealistic but it has a significant advantage: the ratio of cash-to-shares is

conserved. This means that the market can avoid moving into a regime dominated

by one or the other and instead establish a balance between the two. For instance,

if transaction costs were implemented cash would flow out of the system and, even-

tually, most of each agent’s wealth would be held in stock. Conversely, if interest

was paid on cash, eventually the market might be cash-dominated. In either case it

is conceivable that the dynamics of the market would change, adding a complicating

factor. Fixing the amount of cash in the system simplifies the model and allows for

the collection of large datasets.

No intraday trading

CSEM uses a trading model which assumes all trades are executed only once daily

(simultaneously). This approach is common in the literature [27–30, 33, 35] and

mimics trading which occurs in real markets on unprocessed orders before opening

each day.

Centralized trading

As mentioned above, the agents in this model are restricted to trading only with

a single, monopolistic market maker or specialist. They are not allowed to trade

directly with each other. This has a empirical basis but is also a simplifying factor.

A discussion of how trading is implemented follows.

2.2.2 Utility theory

Each agent can adjust a portfolio consisting of s shares of a single risky stock and

riskless cash c. If the share price is p then the agent’s total capital at time t is

wt = ct + ptst. With interest and fluctuations in the stock price the agent’s capital

after one day (defined as one time unit) becomes

wt+1 = ct + pt+1st (2.1)

= wt + [pt+1 − pt] st (2.2)

and the trading behaviour reduces to an optimization problem with respect to the

holdings st.

If the agent could know what tomorrow’s price of the stock pt+1 will be in

advance, finding the optimum strategy would be trivial: if pt+1 > pt then move all

one’s capital into the stock, otherwise move it all into cash. But of course the future

price is unknown. Nevertheless each agent assumes it is a stochastic variable and
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has some expectations of the underlying probability distribution, based on historical

prices.

A naive goal, then, might be to maximize one’s expected future wealth 〈wt+1〉
with respect to one’s current holdings st. Unfortunately, Eq. 2.2 simply tells us to

invest all our capital into stock if 〈pt+1〉 > pt and otherwise into cash, almost exactly

as before. The problem with this approach is that it doesn’t factor in risk. What if

there was a non-zero probability that the stock price would crash Pr(pt+1 = 0) > 0?

Then, under repeatedly application of this strategy the agent would eventually lose

all its wealth with certainty. Even if the price can’t drop to zero (which it can’t if

there is any expectation of a non-zero price in the future) this strategy can perform

poorly, particularly if the price is a multiplicative stochastic process [38] because

it assigns disproportionate weights to extremely unlikely events which would have

exorbitant payoffs. This strategy is said to be risk neutral.

We define our agents as simple expected utility maximizers where the utility

function is monotonically increasing with wealth but has a negative second derivative

(concave)
dU

dw
> 0,

d2U

dw2
< 0. (2.3)

These requirements for a utility function are well established within financial eco-

nomics [37,39] and basically mean that an agent is unwilling to make a “double-or-

nothing” wager of any amount if the odds are even. (Notice that the risk neutral

agent U = w would be ambivalent towards this wager and a risk preferring agent
d2U
dw2 > 0 would willingly take the wager.)

Exponential utility function

An often-chosen form [19] is the exponential utility U(x) = −e−αx or equivalently

(because utilities are defined only up to a linear transformation [37])

U(w) = wgoal

(
1− e−w/wgoal

)
(2.4)

where wgoal is called the goal wealth and sets a natural scale for the utility. As

shown in Fig. 2.1, the utility crosses over from a linear dependence on w at small

wealth U(w ¿ wgoal) ≈ w to an asymptote at large wealth U(w À wgoal)→ wgoal.

The interpretation of wgoal as a “goal wealth” is justified because below wgoal the

agent is willing to take risks for the chance of high payoffs but above wgoal it sees

little reward in amassing greater wealth, being more concerned with maintaining its

current level.
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Figure 2.1: The exponential utility function defined in Eq. 2.4 is often applied in
finance. The goal wealth parameter wgoal implicitly sets the risk aversion.

2.2.3 Optimal holdings

The exponential utility function is useful because it provides an analytic solution

to the maximization problem [16] if we assume tomorrow’s wealth wt+1 is Gaussian

distributed (a reasonable assumption by the Central Limit Theorem, if it is a cumu-

lation of many additive stochastic components). Then the expectation of the future

utility is

〈U(wt+1)〉 =

∫
dwt+1U(wt+1) Pr(wt+1) (2.5)

= wgoal

[
1− exp

(
Var [wt+1]

2w2
goal

− 〈wt+1〉
wgoal

)]
(2.6)

which is maximized by simply minimizing the argument of the exponential.

The future wealth depends on the price movement through Eq. 2.2 so the

mean and variance become

〈wt+1〉 = wt + st {〈pt+1〉 − pt} (2.7)

Var [wt+1] = s2tVar [pt+1] . (2.8)

Eq. 2.6 can be maximized with respect to the free variable st yielding the
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optimum quantity of shares to hold,

s∗t (pt) =
wgoal(〈pt+1〉 − pt)

Var [pt+1]
(2.9)

with the additional constraints s∗t ≥ 0 (no short selling) and wt ≥ pts
∗
t (no borrowing

cash). The agent’s strategy is to sell shares if st > s∗t or buy if st < s∗t . The above

equation is intuitively appealing: only hold shares if the expected return on your

investment is positive and decrease your investment when the uncertainty (variance)

is large (indicating an aversion to risk).

2.2.4 Risk aversion

The goal wealth wgoal in the utility function sets an undesirable, arbitrary scale for

the agents behaviour: they will be become increasingly risk neutral as their wealth

falls far below this scale, and conversely, increasingly risk averse far above it. The

arbitrary scale can be removed by setting the goal wealth proportional to the current

wealth

wgoal =
wt

a
(2.10)

where a is a dimensionless constant which describes risk aversion (which increases

monotonically with a).

Notice that introducing the dependence on the current wealth does not in-

terfere with the optimization problem because wt is a constant at any time t, inde-

pendent of any changes in the portfolio st (assuming no trading costs). Therefore

the optimal portfolio simply becomes

s∗t (pt) =
wt(〈pt+1〉 − pt)
aVar [pt+1]

. (2.11)

From Fig. 2.1 it is clear that the extremes of intense risk aversion and risk

neutrality can be avoided by choosing a on the order of unity. A rough estimate

provides an even more precise scale: empirically, the market appears to prefer to

divide wealth equally between cash and stock when the annual expected return is

8% better than cash with an uncertainty on the order of 25%:

〈pt+1〉 ≈ (1 + 8%)pt (2.12)

Var [pt+1] ≈ (25%pt)
2 (2.13)

⇒ s∗t ≈ 1

2

wt

pt
(2.14)

where t is scaled by years instead of days (but this does not interfere with the

argument). The a-value to satisfy these conditions is a ≈ 2.5.

Thus, the first agent-specific parameter introduced in CSEM is the risk aver-

sion a which is constrained to lie in a ∈ [1, 3].
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2.2.5 Optimal investment fraction

For ease of comparison with the Decentralized model (to be presented in Chapter

3) the above discussion will be presented in terms of the fraction of one’s wealth

invested in stock. The investment fraction it at time t is given by

it =
stpt
wt

(2.15)

and the optimal investment fraction is denoted by i∗t .

Let us also define the return on investment from time t to t+ 1:

rt+1 =
pt+1 − pt

pt
(2.16)

which has a mean and variance (given a known current price pt)

〈rt+1〉 =
〈pt+1〉 − pt

pt
(2.17)

Var [rt+1] =
Var [pt+1]

p2
t

. (2.18)

Then, substituting Eq. 2.11 into Eq. 2.15, we find that the optimal invest-

ment fraction is

i∗t =
〈rt+1〉

aVar [rt+1]
(2.19)

with the constraints 0 ≤ i∗t ≤ 1.

This relation has some intuitively attractive properties:

1. All else being equal, given two agents with different risk aversions, the one

with the higher aversion will invest less.

2. Only invest if the expected return is strictly positive, and invest in proportion

to it.

3. As your certainty of a good return increases (variance decreases), increase your

investment.

However, it also has one glaring fault: when the expected return exceeds

some limit,

〈rt+1〉 ≥ aVar [rt+1] (2.20)

the recommendation is to invest all capital in the stock, despite risk. This arises

because the agents assume the returns are Gaussian-distributed, with no higher

moments than the variance, but as we will see, higher moments do exist, increasing

the risk.
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Investment limit

To avoid complications of this kind a limit of δ is imposed: the investment fraction

is constrained to lie within i ∈ [δ, 1− δ]. Hence agents never take an absolute stance

of investing all their money or withdrawing it all from the market. The motivation

for this restriction is purely mathematical: it prevents the occurrence of all the

agents simultaneously selling all their stock and driving the price down to zero (or

conversely, selling all their cash and driving the stock price up to infinity).

As the population size increases, the probabilities of these events diminish

simply as a result of fluctuations so the parameter δ becomes less important. To

minimize its impact on the dynamics it should be assigned a small, positive value.

Mathematically, however, it is allowed to be as large as 1/2 in which case the

investment fraction would be a constant 1/2, never responding to Eq. 2.19.

Thus, the second agent-specific parameter is δ which is constrained to lie

within δ ∈ (0, 0.5).

2.2.6 Forecasting

With Eq. 2.19 the optimization problem becomes one of forecasting one’s future

return rt+1. In order to solve the optimization problem estimates of the expectation

and variance of one’s future return are required. The only information available to

the agents is the history of returns so a reasonable choice is to try and extrapolate

the series forward in time.

Although more complicated forecasting algorithms involving nonlinearity and

chaos exist [40–45], I chose to extrapolate a simple curve-fitting algorithm to produce

forecasts. The goal of this model is not to test complicated forecasting models

but to understand the effect of interactions between many simple investors, so the

forecasting algorithm need only be adequate, not optimal. Linear least-squares curve

fitting is well understood so we don’t have to worry about it generating unexpected

side-effects in the dynamics.

The time series could be represented by a few parameters, one being the raw

prices. However, a natural choice is the returns (as defined by Eq. 2.16) because

a Gaussian-distributed future wealth wt+1 was assumed. This assumption can be

validated by assuming a Gaussian distribution for returns as well, because Eq. 2.2

can be written as

wt+1 = (1− it)wt + itwtrt+1 (2.21)

where the stochastic variable is the return rt+1. Since least-squares fitting assumes

Gaussian errors, the returns are a convenient choice. Note that assuming a Gaussian
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Figure 2.2: Demonstration of forecasting via polynomial curve extrapolation. Shown
are forecasts produced by a simple moving average and a linear trend. The linear
trend is able to anticipate reversals in returns.

distribution of returns is equivalent to a log-Brownian price series as is observed

empirically on long timescales [46] (with interesting deviations on short timescales).

For simplicity, only low-degree polynomials will be used as fitting functions.

The degree zero polynomial, a simple moving-window average, is already robust

enough to project exponential growth in the stock’s price. Increasing to degree

one (linear) also gives the agents the ability to forecast trend reversals (such as an

imminent crash, as shown in Fig. 2.2) assuming the return history has meaningful

trends.

By choosing higher degree polynomials we can effectively make the agents

smarter (better able to detect trends in the return series) but, in practice, it is

unreasonable to go beyond a degree two, quadratic fit. If too high a degree is chosen

agents begin to “see” trends where none exist by fitting curves to noise.

Thus, the third agent-specific parameter, degree of fit d, is constrained to

the integer values d = 0, . . . , 2.
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Memory

Obviously, as time progresses and the latest returns are acquired, the older data

in the time series become irrelevant. The standard methodology for handling this

is to set a finite moving-window which only keeps the M most recent data points,

discarding the rest. Then the curve fitting is performed only with respect to the

remaining data. However, this technique has a drawback: it suffers from shocks as

outliers (strongly atypical data) get dropped from memory.

To minimize this effect I constructed a method which uses an exponentially

decaying window rather than the square window described above. The contribution

of each point to the curve fit is weighted exponentially by how old it is. The technique

is described in detail in Appendix A but a few points will be mentioned here:

The exponential weighting is characterized by a single parameter, the mem-

ory M (denoted by N∗ in Appendix A) indicating the effective number of data

points stored, which is approximately the decay constant of the exponential.

Using the exponential window allows compression of the data into just a few

numbers regardless of the memory M and, as such, is computationally efficient in

terms of storage and speed.

An agent’s memory also says something about its expectations. A short mem-

ory produces fast responses to changes in returns and hence, more active trading.

Conversely, a long memory results in slow variations in expectations and, therefore,

slow changes in investment strategy. Hence, the memory implicitly also sets the

(future) timescale, or horizon, over which the agent expects to collect.

As with standard curve-fitting the parameter M is required to be greater than

the number of parameters to be fit (= d + 1 where d ≤ 2 so M ≥ 10 (two trading

weeks) is satisfactory) but there is no maximum value. But to draw parallels with

real markets it is reasonable to choose scales on the order of real market investors.

Many online stock-tracking sites allow one to compare a stock’s current value to its

moving average over windows up to 200 trading days (almost one year).

Thus, the fourth agent parameter in CSEM is the memory M which is allowed

to take on values in the range M ∈ [10, 200] (between two weeks and roughly one

year).

2.2.7 Fluctuations

To this point we have not explicitly identified the source of stochasticity. (Thus,

since the simulation begins with no memory of any fluctuations no trading will oc-

cur whatsoever.) To mimic the noisy speculation which drives movements in real

markets, stochastic fluctuations are introduced into CSEM. The fluctuations are
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meant to represent the agents’ imperfect information which can produce errors in

their expectations of tomorrow’s price. Given that the return-on-investment time

series is already assumed to have Gaussian distributed errors a natural extension is

to introduce normally-distributed fluctuations into the agents’ forecasts

〈rt+1〉ε ≡ 〈rt+1〉+ εt (2.22)

where εt is a Gaussian-distributed stochastic variable with mean zero and variance

σ2
ε .

It is assumed that agents are aware that their forecasts contain uncertainties

so the variance of their forecasts is increased by

Var [rt+1]ε ≡ Var [rt+1] + σ2
ε (2.23)

since the forecasted return rt+1 is also assumed to be Gaussian-distributed (and the

variance of the sum of two normally-distributed numbers is the sum of their vari-

ances).

Fluctuations are handled by determining a random deviate for each agent at

each time step and adding it to the expected return, as discussed above. Once the

deviate is chosen, it is a constant (but unknown by the agent) for that time interval,

so the expected return is also constant. This is necessary for technical reasons (it

keeps the agents’ demand curves consistent for the auctioning process which will be

discussed in Section 2.2.9) but it also seems intuitively reasonable—one would not

expect an investor to forecast a different return every time she was asked (in the

absence of new information).

The dynamics are driven solely by the presence of noise (as will be discussed

below) so we require strictly non-zero standard deviations. On the other hand,

the standard deviation also sets the typical scale of errors in the forecasted return.

From personal experience, on a daily basis one would expect this error to be on the

order of two percent. However, to fully explore the effect of the noise parameter

CSEM will allow errors as large as 1/2 (which represents daily price movements up

to ±50%).

Thus, the fifth agent parameter introduced into CSEM is the scale of the

uncertainty σε which is chosen to lie within σε ∈ (0, 0.5).

2.2.8 Initialization

The discussion so far has focused on how the agents evolve from day to day. But

we must also consider in what state they will be started. It is important to choose

starting conditions which have a minimal impact on the dynamics or a long initial

transient will be required before the long-run behaviour emerges.

20



The simulations will be initialized with N agents; each agent will have a frac-

tion of some total cash C and total shares S available. The effect of different initial

distributions of cash and shares will be explored, but—unless otherwise specified—

the cash and shares will usually be distributed uniformly amongst the agents. This

allows the simulations to test the performance of other parameters; that is, to see if

there is a correlation between parameter values and income.

As mentioned above, agents will also be initialized to have zero expectation

〈r1〉 = 0 and zero variance Var [r1] = 0 of tomorrow’s return-on-investment. How-

ever, this is subject to Eqs. 2.22–2.23 so the actual initial expectation is a Gaussian

deviate with mean zero and variance σ2
ε .

The first trading day is unique in that there exists no prior price from which

to calculate a return-on-investment (for future forecasts). So the first day is not

included in the agents’ histories. Thus, the dynamics for the first two days of

trading are due solely to fluctuations.

In this section three market parameters were introduced: the number of

agents N on the market, as well as the total cash C and total shares S which are

initially divided equally among the agents (unless otherwise stated).

2.2.9 Market clearing

Having discussed how the agents respond to prices and choose orders we now turn

our attention to how the trading price is set. As mentioned before, this model

is centralized in the sense that the agents are not allowed to trade directly with

each other but all transactions must be processed through a specialist or market

maker [27, 28,30–36].

In real markets, the role of the market maker is more complex than in this

simulation: here the market maker simply negotiates a price such that the market

clears; that is, all buyers find sellers and no orders are left open. (All mechanisms by

which the market maker may make a profit have been removed from the simulation

for the sake of simplicity.)

A simple way for the market maker to establish a trading price is via an

auction process: repeatedly call out prices and receive orders until buy and sell

orders are balanced. If buy orders dominate, raise the price in order to encourage

sellers, and vice versa.

However, CSEM provides a simpler (and faster) method for arriving at the

trading price. Assuming the market maker knows each agent is using a fixed invest-

ment strategy as given by Eq. 2.19, it can be deduced that the optimal holdings for
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agent j (with cash cj and shares sj) at price p is

s∗j =
cj + sjp

p
i∗j . (2.24)

Effectively, by reporting their ideal investment fractions i∗j (and current porfolios

(cj , sj)), the agents submit an entire demand curve (demand versus price) for all

prices instead of just replying to a single price called out by the auctioneer.

The market maker’s goal of balancing supply with demand can be achieved

by choosing a price which preserves the total number of shares held by the investors:

0 =
∑

j

(s∗j − sj) (2.25)

=
1

p

∑

j

cji
∗
j +

∑

j

(i∗j − 1)sj (2.26)

which has a solution

p =

∑
j i

∗
jcj∑

j(1− i∗j )sj
(2.27)

where, the values i∗j , cj , and sj are all from before any trading occurs on the current

day.

So, instead of requiring an auction, the trading price is arrived at with a

single analytic calculation. Note that this method is possible because the optimal

investment fraction i∗j does not depend on the current day’s price but only on the

history of prior returns. (Once the trading price is established, the latest price is

included in the history and contributes to the determination of tomorrow’s optimal

investment fraction.)

Initial trading price

In general, the calculation of the trading price is complicated and depends intricately

on the history of the run but there is a special case where it is possible to determine

explicitly the expected trading price—the first day. Let us assume that the initial

distribution of cash and shares is such that each agent has equal numbers of both

so that Eq. 2.27 reduces to

p0 =

∑
j i

∗
j∑

j 1− i∗j
(2.28)

=
〈i∗〉

1− 〈i∗〉 . (2.29)
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To calculate the expected investment fraction recall that initially the return

history is empty so the expected returns are simply Gaussian-distributed with mean

zero and variance σ2
ε so, from Eq. 2.19,

i∗j =
εj
aσ2

ε

≡ xj
k
, (2.30)

defining x = ε/σε, k = aσε and assuming the risk aversion a and forecast uncertainty

σε are identical for all agents.

Neglecting the limits i ∈ [δ, 1−δ] on the investment fraction (δ = 0) simplifies

the calculation of the expected investment fraction:

〈i∗〉 =

∫ i(x)=1

0
i(x) Pr(x)dx+

∫ ∞

i(x)=1
Pr(x)dx (2.31)

=
1√
2π

[
1

k

∫ k

0
xe−x2/2dx+

∫ ∞

k
e−x2/2dx

]
(2.32)

=
1√
2πk

(
1− e−k2/2

)
+

1

2

(
1− erf(k/

√
2)
)

(2.33)

where erf(·) is the error function.

Substituting this equation into Eq. 2.29 gives the trading price as a function

of the single parameter k = aσε, as shown in Fig. 2.3. Notice the value of the stock

drops with increased risk aversion or uncertainty of return, properly capturing the

essence of risk aversion.

It is interesting to note that the price drops to zero as p0 ∝ k−1 for large k.

To see how this occurs, notice that as the parameter k approaches infinity the second

term in Eq. 2.33 drops out (falling off faster than 1/k), as does the exponential in

the first term, leaving only

〈i∗〉 (k →∞) ≈ 1√
2πk

, (2.34)

which diminishes to zero rapidly. The power law tail in the price emerges from

simply substituting this relation into Eq. 2.29.

Now we briefly review the structure of the model.

2.2.10 Review

The Centralized Stock Exchange Model (CSEM) consists of a number N of agents

which trade once daily (simultaneously) with a single market maker, whose goal is

to set the stock price such that the market clears (no orders are pending). In this

section, the structure of the model will be reviewed.
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Figure 2.3: The expected initial trading price depends only on the risk aversion mul-
tiplied by the uncertainty of returns, aσε. As the aversion or uncertainty increases
the initial value of the stock drops.
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The agents are simple utility maximizers which extrapolate a fitted polyno-

mial to the return history to predict future returns and, therefrom, optimal trans-

actions. Each agent has a portfolio of cash c and shares s and is characterized by

the parameters listed in Table 2.1.

Algorithm

Events are separated into days. After the model has been initialized the agents place

orders and have them filled once each day. The basic algorithm follows:

1. Initialization. Cash and shares distributed amongst agents. Agents clear his-

tories.

2. Start of new day. Agents forecast return-on-investment from history (and

noise).

3. Agents calculate optimal investment fraction and submit trading schedules

(optimal holdings as a function of stock price).

4. Market maker finds market clearing price (supply balances demand).

5. Trades are executed.

6. Agents calculate stock’s daily return-on-investment and append to history.

7. End of day. Return to step 2.

Parameters

For convenience all the variables used in CSEM are listed in Table 2.1. The param-

eters are inputs for the simulation and the state variables characterize the state of

the simulation at any time completely. For each run, the agent-specific parameters

are set randomly; they are uniformly distributed within some range (a subset of the

ranges shown in the table). Each dataset analyzed herein will be characterized by

listing the market parameters and the ranges of agent parameters used.

2.3 Implementation

The above theory completely characterizes CSEM. The model is too complex for

complete analysis so it is simulated via computer. The model was encoded us-

ing Borland C++Builder 1.0 on an Intel Pentium II computer running Microsoft

Windows 98. The source code and a pre-compiled executable are available from

http://rikblok.cjb.net/phd/csem/.
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Symbol Interpretation Range

Market parameters

N number of agents 2+
C total cash available
S total shares available

Market state variables

pt stock price at time t
vt trade volume (number of shares traded) at time t

Agent parameters

aj risk aversion of agent j [1, 3]
δj investment fraction limit of agent j (0, 0.5)
dj degree of agent j’s fitting polynomial 0, 1, 2
Mj memory of agent j’s fit [10, 200]
σε,j scale of uncertainty of agent j’s forecast (0, 0.5)

Agent state variables

cj cash held by agent j
sj actual shares held by agent j
s∗j optimum shares held by agent j

wj(p) wealth of agent j at stock price p
ij actual investment fraction of agent j
i∗j optimum investment fraction of agent j

Table 2.1: All parameters and variables used in the Centralized Stock Exchange
Model (CSEM).
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2.3.1 Pseudo-random numbers

Coding the model as it has been described is fairly straight-forward. The only

complication is that modern computers are unable to produce truly random numbers

(required for the fluctuations in the forecasts) because computers are inherently

deterministic.

Many algorithms for generating numbers which appear random have emerged.

A good pseudo-random number generator must have three qualities: it must be fast,

it must pass statistical tests for randomness and it must have a long period. The

period exists because there are only a finite number of states (typically 232) a random

number may take on. Hence, it must eventually return to its original seed and once

it does, since the series is deterministic, it is doomed to cycle endlessly. If the

period is less than the number of times the generator is called within a single run,

the periodicity will contaminate the dataset.

One of the earliest and simplest pseudo-random number generators is the

linear congruential generator [20, Section 7.1] which is defined recursively for an

integer Ij :

Ij+1 = aIj + c (mod m). (2.35)

While this algorithm is fast it is not a good choice because it exhibits correlations

between successive values.

More complicated generators have been developed which pass all known sta-

tistical tests for randomness [20, 21]. One of these, the Mersenne Twister [22] is

also fairly fast and has a remarkable period of 219937 ≈ 106000. Unless otherwise

specified, the Mersenne Twister will be the generator of choice for CSEM.

Seed

All pseudo-random number generators require an initial seed: a first number (I0 in

the linear congruential generator, for example) chosen by the user which uniquely

specifies the entire set of pseudo-random numbers which will be generated. This seed

should be chosen with care: using the same seed as a previous run will generate the

exact same time series (all other parameters being equal).

CSEM is coded to optionally accept user-specified seeds or it defaults to using

the current time (measured in seconds since midnight, January 1, 1970, GMT).

Since no two simulations will be run simultaneously, this provides unique seeds for

every run. Unless explicitly specified, the default (time) seed will be used in the

simulations.
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2.4 Parameter space exploration

With CSEM coded into the computer, time series data can be generated for numeri-

cal analysis. As presented CSEM requires at least eight parameters to fully describe

it. To fully explore the space of all parameters, then, means exploring an eight

dimensional manifold. . . a daunting task. Before starting any experiments, then, it

would be a good idea to check if any of these dimensions can be eliminated.

2.4.1 Number of agents N

The effect of changing the number of traders will be explored in detail in Chapter 4

and is left until then.

2.4.2 Total cash C and total shares S

In this section the effect of rescaling the total cash C and total shares S will be

explored. Let us denote rescaled properties with a prime. Then rescaling cash by a

factor A and shares by B is written

C ′ = AC (2.36)

S′ = BS. (2.37)

Cash and shares are rescaled equally for each agent so the distribution remains

constant.

To see how these rescalings affect the dynamics let us begin by assuming that

each agent’s ideal investment fraction i∗t is unchanged (this will be justified below).

Then from Eq. 2.27 the price is rescaled by

p′t =
A

B
pt (2.38)

and each agent’s total wealth is rescaled by

w′
t = Awt. (2.39)

(The rescaling of price can be interpreted as the “Law of supply and demand”

because when either cash or stock exists in overabundance, it is devalued relative to

the rarer commodity.)

Thus, the optimal holdings become

s∗′t =
w′

t

p′t
i∗t = Bs∗t (2.40)
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Parameter Run 1 Run 2 Run 3

N 100 100 100
C $1,000,000 $10,000,000 $1,000,000
S 1,000,000 10,000,000 10,000,000
σε 0.5 0.5 0.5
M 40± 20 40± 20 40± 20
a 2± 1 2± 1 2± 1
δ 0.001 0.001 0.001
d 1± 1 1± 1 1± 1

seed -2 -2 -2

Table 2.2: Parameter values for CSEM Runs 1, 2 and 3.

and the volume an agent trades becomes

∆s′t =
∣∣s∗′t − s′t

∣∣ = B∆st. (2.41)

To justify that the optimal investment fraction remains unchanged, recall

that it depends only on the return series through Eq. 2.19. The return series, under

rescaling, becomes

r′t =
p′t − p′t−1

p′t−1

= rt (2.42)

assuming the price series is rescaled by A/B. Thus, if the investment fraction

remains unscaled then the price series is scaled by A/B, so the investment fraction

remains unscaled. . .

This would be a circular argument except for the fact that the investment

fraction is initialized by a Gaussian fluctuation, which depends only on the param-

eters a and σε. Thus the investment fraction begins unchanged (under rescaling of

C and S) and there exists no mechanism for changing it, so it remains unchanged

throughout time.

So, when cash is rescaled by some factor A and shares by B, the only effects

are:

1. Trading price is rescaled by A/B.

2. Trading volume is rescaled by B.

To clarify this point in the mind of the reader, three identical runs were

performed, with the parameter values shown in Table 2.2. Notice that Run 2 is

Run 1 repeated with the scaling factors A = B = 10, and Run 3 is Run 1 with
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Figure 2.4: Comparison of time evolutions of (a) price and (b) volume for Runs 1,
2 and 3 as defined in Table 2.2. The price scales as the ratio of cash to shares and
the volume scales as the number of shares. (In both plots Run 2 is offset to improve
readability.)
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A = 1, B = 10. The resulting time series, shown in Fig. 2.4, confirm the claim that

price scales as A/B and volume scales as B.

Neither the absolute value of the price nor the volume are items of interest

in this dissertation. Instead we are interested in fluctuations, in the form of price

returns and relative change of volume. Neither of these properties are affected by

rescaling the total cash or total shares so we are free to choose a convenient scale. I

have arbitrarily chosen a market with C = $1, 000, 000 total cash and S = 1, 000, 000

total shares, thereby reducing the degrees of freedom by two.

2.4.3 Investment fraction limit δ

The investment fraction limit parameter δ sets a bound on the minimum and max-

imum allowed investment fractions δ ≤ i ≤ 1 − δ. This is purely a mathematical

kludge to prevent singularities which could otherwise occur in Eq. 2.27.

Effectively, δ sets an upper and lower bound on the price itself: assume the

total cash and shares are equal (C = S). Then, the minimum price is realized when

all agents want to discard their stocks, i∗j = δ for all j, giving

pmin =
δ

1− δ . (2.43)

Conversely, given maximal demand, i∗j = 1− δ, the price will climb to a maximum

of

pmax =
1− δ
δ

. (2.44)

So the choice of δ sets the price range for the stock. Obviously, to allow

reasonable freedom of price movements the limit should be significantly less than one

half, δ ¿ 1/2. To mimic the observed variability in some recent technology-sector

stocks, a limit of δ = 0.001 will generally be used, allowing up to a thousand-fold

increase in stock value—except in Chapter 4 where we explore the effect of varying

this parameter.

2.4.4 Risk aversion a and forecast uncertainty σε

One’s intuition may lead one to suspect that the risk aversion factor a and the fore-

cast uncertainty σε are over-specified, and should be replaced by a single parameter

k = aσε as was done to calculate the initial trading price in Section 2.2.9. However,

a closer inspection of Eq. 2.19 demonstrates this is not quite true. The optimal

investment fraction is

i∗t =
〈rt+1〉+ εt

a(Var [rt+1] + σ2
ε )
. (2.45)
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Parameter Run 4 Run 5

N 100 100
C $1,000,000 $1,000,000
S 1,000,000 1,000,000
σε 0.25 0.5
M 40± 20 40± 20
a 2 1
δ 0.001 0.001
d 1± 1 1± 1

seed -2 -2

Table 2.3: Parameter values for CSEM Runs 4 and 5.

Since σε is the only parameter to set a scale for the returns, in Eqs. 2.22–2.23, it is

reasonable to expect the returns to scale linearly with σε so renormalizing gives

i∗t =
1

aσε

[〈rt+1〉 /σε + εt/σε
Var [rt+1] /σ2

ε + 1

]
(2.46)

where the second factor is invariant under rescaling of σε.

Then, since a and σε occur nowhere else in the model, one may expect that

the simultaneous rescaling

a′ = Ca (2.47)

σ′ε = σε/C (2.48)

would preserve the dynamics.

However, as the price series of Runs 4 and 5 (see Table 2.3) show in Fig. 2.5,

there are small deviations which grow with time until eventually the time series are

markedly different.

To see why this occurs, let us consider a simple thought experiment: Consider

a run with equal amounts of cash and shares (C = S) where the last trading price—

for the sake of convenience—is pt−1 = 1. Now assume that on the next day all

the agents have negative fluctuations in their forecasts which drive their optimal

investment fractions to their lower limits i∗t = δ. Then, from Eq. 2.27, the day’s

stock price will be given by Eq. 2.43 and the return will be

rt =
pt − 1

1
= −1− 2δ

1− δ (2.49)

which does not scale with σε as was hypothesized in the derivation of Eq. 2.46.
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Figure 2.5: Comparison of time evolutions of price for Runs 4 and 5 as defined in
Table 2.3. The price is not perfectly invariant under rescalings which preserve the
constant aσε.
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Occasional events like the one described in the above thought experiment are

responsible for the deviations seen in Fig. 2.5. However, apart from these rare devi-

ations (which, neglecting trends in the return history, should occur with decreasing

frequency 1/2N as the number of investors increases) the risk aversion parameter

a and uncertainty σε appear to be over-specified. Therefore, the risk aversions will

always be chosen from a uniform deviate in the range a ∈ [1, 3] and only the forecast

error σε will be manipulated—excepting the following section in which the relative

performance of different values of a and σε will be evaluated.

2.5 Parameter tuning

Thus far we have isolated three parameters (C, S, and δ) which can be fixed at

particular values without loss of generality. We now want to choose reasonable

ranges for the remaining parameters (σε, M , a, and d). Reasonable, in this context,

refers to agents with parameter combinations that tend to perform well (accumulate

wealth) against dissimilar agents. These parameter combinations are of interest

because one would expect that, in real markets, poorly performing investors who

consistently lose money will not remain in the market for long.

Note that, as discussed in the Introduction, parameter tuning generally di-

minishes an explanatory model’s validity. This, however, does not quite apply in

this case because we are not tuning the parameters in order to produce a model

which better fits the empirical data (i.e.. exhibits known market phenomena, such

as fat tails and clustered volatility)—rather, we are simply trying to select “better”

investors. However, it must be acknowledged that this may concurrently tune the

simulation towards realism.

Further, the point of this exercise is not to completely specify the model

but merely to avoid wasteful parameter combinations which should be driven out

of the system by selective (financial) pressures. In the model, “dumb” agents (with

parameter combinations which tend to underperform) will lose capital and may

eventually hold a negligible portion of C and S. Hence, these agents won’t contribute

to the market dynamics and will simply be “dead weight”, consuming computer time

and resources. Hopefully, at this point the reader agrees that it would be helpful to

cull “dumb” agents by finding the more successful parameter ranges.

It may be discovered, in the course of this investigation, that some parameters

are irrelevant; they may be take on a wide variety of values with little or no impact

on the dynamics. In this case, these parameters may be assigned arbitrary ranges

without loss of generality.

To determine successful values, a large parameter space should be explored.
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Parameter Run 6

N 400
C $1,000,000
S 1,000,000
σε 0.25± 0.25
M 105± 95
a 1.5± 1.5
δ 0.001
d 1± 1

seed random

Table 2.4: Parameter values for CSEM Run 6.
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Figure 2.6: Price history generated by CSEM with parameters listed in Table 2.4
(Run 6). The price almost reaches its theoretical maximum of $999 (see Eq. 2.44)
before collapsing. The agent state variables were sampled at the times indicated.
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Correlation with logw

Parameter Sample 1 Sample 2 Sample 3 Sample 4

σε + 0 0 +
M 0 0 0 +
a + + + +
d 0 0 0 0

Table 2.5: Regression analysis of logw versus agent parameters for different samples
of Run 6 (Table 2.4). The symbols indicate the sign of the regression-line slope, or
zero if it is insignificant (relative to its standard error). The results indicate that a
is positively correlated with wealth but σε, M and d are largely irrelevant.

To this end a long data set was collected with more agents and with broader pa-

rameter ranges, as indicated in Table 2.4. The price history for the run is shown in

Fig. 2.6.

The results were analyzed by looking for correlations between an agent’s

wealth and the following parameters: forecast error σε, memory M , risk aversion a,

and degree of curve-fit d.

Note that the point of this work is not to determine an optimal investment

strategy (set of optimal parameter values), but simply to establish reasonable ranges

for these parameters such that the agents perform reasonably well. Thus, a complete

correlation analysis is unnecessary. Instead, a simple graphical description of the

results should be sufficient, with a simple regression analysis for emphasis.

Table 2.5 shows the results of linear regression analyses of logw versus agent

parameters for different samples of Run 6. The logarithm of wealth is fitted to a

straight line with respect to the parameter of interest and the sign of the slope is

recorded. If the slope m has a standard error larger than 100% then the parameter is

interpreted as being uncorrelated with performance. This method was constructed

only because it lent itself to the computational tools available to the author. How-

ever, it is reasonable: recall that the linear correlation coefficient (which is typically

used to test for correlations) is related to the slope r ∝ m. Also, the standard error

estimates the significance of the slope; a value greater than 100% suggests that the

sign of the slope is uncertain.

The results of the analysis indicate that the risk aversion parameter a is

positively correlated with performance (wealth). However, the forecasting param-

eters σε (forecast error), M (memory) and d (degree of polynomial fit) appear to

be uncorrelated with performance. Hence, these parameters can be set arbitrarily.

The memory from Run 6 (M = 105± 95) will be used in all further simulations to
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Parameter Run 7

N 400
C $1,000,000
S 1,000,000
σε 0.025± 0.025
M 105± 95
a 1.5± 1.5
δ 0.001
d 1± 1

seed random

Table 2.6: Parameter values for CSEM Run 7.

maintain diversity. However, the degree of the fitting polynomial will be constrained

to d = 0 (a moving average) because it boosts simulation speed. The forecast error

σε requires further inspection.

Representative graphs of logw versus the parameters a and σε (using Run

6: Sample 3) are shown in Fig. 2.7. The slopes are used to estimate correlations,

as discussed above. The evidence suggests that risk aversion is positively correlated

with performance. Hence, small values of a (high-risk behaviours) tend to under-

perform. Thus, the range of a is restricted to a ∈ [1, 3] instead of a ∈ [0, 3] as set in

Run 6.

2.5.1 Forecast error

The only free parameter left is the forecast uncertainty σε. Although Fig. 2.7 indi-

cates no correlation between wealth and forecast error, a closer inspection reveals a

small peak for the smallest errors σε < 0.05.

To test this range, a new dataset was collected with all the parameters as in

Run 6 except the forecast error scaled down by a factor of ten, as indicated in Table

2.6. The time series, shown in Fig. 2.8, exhibits wildly chaotic fluctuations which

regularly test the price limits (Eq. 2.44) imposed by δ. Since δ was an arbitrarily

chosen parameter, we do not want it to significantly affect the dynamics as it does

in Run 7.

Thus, the choice of σε = 0.025 ± 0.025 causes problems. This issue will be

revisited in Chapter 4.
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Run 6: Sample 3
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Figure 2.7: Plot of agent wealth versus (a) risk aversion and (b) forecast error. The
best fit lines have slopes 5.2±1.4 (positive correlation) and 4.7±8.8 (no correlation),
respectively.
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Figure 2.8: Price history generated by CSEM with parameters listed in Table 2.6
(Run 7). The series has the undesirable property that the price spends much of its
history at or nearing its ceiling ($999).

Symbol Interpretation Range

Market parameters

N number of agents 2+
C total cash available $1,000,000
S total shares available 1,000,000

Agent parameters

aj risk aversion of agent j 2± 1
δj investment fraction limit of agent j 0.001
dj degree of agent j’s fitting polynomial 0
Mj memory of agent j’s fit 105± 95
σε,j scale of uncertainty of agent j’s forecast [0, 0.5]

Table 2.7: As Table 2.1 except with updated parameter ranges. These ranges will
be used in subsequent simulations.
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2.5.2 Finalized parameter ranges

The finalized ranges of the model parameters are shown in Table 2.7. The risk

aversion and memory will always be assigned the shown ranges but the effect of

varying N and σε will be explored further in Chapter 4.

2.6 Discussion

In this section some observed properties of the model (both theoretical and empiri-

cal) will be discussed.

2.6.1 Fundamentalists versus noise traders

This model borrows heavily from other work in the area [27–36]. However, it differs

from most of these papers in that it does not divide the traders into types. Many

other models assign the agents one of two roles: either fundamentalists or noise

traders [17, 32, 36, 47, 48]. Fundamentalists believe the stock has a real value (for

instance, if it pays a dividend) and trade when they believe the stock is over- or

under-valued. Noise traders (or chartists), on the other hand, have no interest in

the stock’s fundamental value, but simply try to anticipate price fluctuations from

the historical data, and trade accordingly.

CSEM deliberately eliminates the fundamental value of the stock so the

agents are necessarily what would be called noise traders. Hence, the dynamics

which emerge from the simulations are of a completely different nature than those

mentioned above.

2.6.2 Forecasting

Table 2.5 indicates that the forecasting parameters are largely irrelevant to perfor-

mance. This suggests that there are no serial correlations in the stock price and,

therefore, no reward for increased effort to forecast (by increasing M and/or d).

Whether the time series actually does have auto-correlations will be explored in

Chapter 5. But the ineffectiveness of forecasting raises the question of whether a

model based on forecasting is even relevant. Perhaps the agents would do better

to ignore the return history and just rely on fluctuations to make their estimates

of future returns. This may indeed be a valid argument but forecasting has an-

other purpose—it adds a degree of heterogeneity to the agents through systematic

differences in their investment fractions.

On the other hand, forecasting may provide a mechanism for herding. As

the history develops, the returns may be correlated for short periods. If so, then
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the agents may converge in opinion regarding future returns and act in unison,

with significant consequences in the price history. For this reason, the forecasting

algorithm will be retained.

2.6.3 Portfolios

Given an investment fraction i, wealth w, and stock price p, an agent’s distribution

of cash c and shares s is given by the relations

iw = sp (2.50)

(1− i)w = c. (2.51)

Given the investment limits δ ≤ i ≤ 1 − δ, a linear relation between wealth

and the maximum or minimum holdings of both cash and shares can be found.

(Recall, agents are not allowed to sell all their shares or cash.) Fig. 2.9 shows the

distribution of cash versus shares for the agents of Run 6: Sample 4. Notice that

the agents almost exclusively hold extremal portfolios dominated by either cash or

stock. Very few actually hold mixed portfolios. This indicates that Eq. 2.19, which

gives an agent’s optimal investment fraction, may be too sensitive. But the only

freedom one has in reducing the sensitivity is through the parameters a and σε,

which have other consequences, as has been discussed.

2.6.4 Difficulties

Although this model showed promise, I had some technical and ideological problems

which encouraged me to abandon it in favour of a different approach. On the tech-

nical side, as the reader can see, the number of parameters is somewhat unwieldy.

Although some of the parameters could be determined, those remaining were dif-

ficult to manage. The investment fraction limit δ, for instance, is a necessary but

unappealing result of the derivation, which imposes arbitrary limits on the stock

price’s range. Another difficult parameter is the forecast error σε: if too large a

value is chosen then the dynamics are dull and dominated by noise (see Fig. 2.5),

but too small a value produces wildly chaotic behaviour completely unlike empirical

market data (Fig. 2.8). This seems to be the critical parameter for determining the

character of the dynamics, and the effect of varying it will be explored in more detail

in Chapter 4.

One of the ideological problems was the use of parallel updating (all agents

trading at a single moment each day). Evidence is mounting that employing a

parallel updating scheme (without strong justification) introduces chaotic artifacts
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Figure 2.9: Plot of agent wealth versus (a) cash and (b) shares held showing that
most agents hold extreme portfolios of maximum cash and minimum shares, or vice
versa. It appears that the method of calculating the investment fraction in CSEM
(Eq. 2.19) is too sensitive to fluctuations. (It should be acknowledged the plots are
truncated since the lowest wealth actually extends down to 10−25, an unrealistic
quantity since real money is really discretized with a minimum resolution of one
penny.)
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into the dynamics which are generally not observed in the actual, continuous-time

system being modeled [14,49–52].

Further, in this model the price of a share is artificially fixed by the market

maker. In most markets the price is an emergent phenomena: auction-type orders

are placed at hypothetical prices (eg. limit prices) and the price is realized when a

trade occurs. Forcing the price to balance supply and demand destroys its emergent

character.

For these reasons, this line of research was replaced with the model presented

in the next chapter. Nevertheless, the Centralized Stock Exchange Model is included

here because it follows a prevalent line of reasoning in stock market simulations and

falls into many of the same pitfalls encountered by others [17, 27, 28, 30, 32, 34, 36,

48,53]. Wherever possible, CSEM data will be analyzed alongside the output of the

next model, the Decentralized Stock Exchange Model.
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