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Chapter 1

Introduction

1.1 Financial markets

Financial markets include stock markets, such as the New York Stock Exchange

(NYSE), which deal in ownership shares of publicly-owned companies. Companies

owned privately can raise equity capital through an initial public offering (IPO)

which releases part-ownership to the public. When the public stockholders wish to

sell some of their shares they do so on a financial market. The market typically

charges the company a fee to list it and may require the company to meet certain

standards in order to protect investors.

On the NYSE, trades are handled by a restricted number of brokers who are

governed by the market’s rules and regulations. Brokers receive trading orders—

consisting of a quantity of shares to trade and (optionally) a price—from the public

and bring them to specialists who deal only with specific stocks.

The specialist’s role is to compare the highest bid (buy order) price with the

lowest offer (sell order) price and if they meet, execute the trade. At the beginning of

trading each day the specialist also finds a fair market price for a stock by balancing

the outstanding supply (total offers) with demand (total bids). Although actually

more complicated, for our purpose this is a sufficient explanation of the specialist’s

role.

1.2 Motivation for research

Neglecting dividends a company may pay to its shareholders, investors make money

on the market by buying stocks at low prices and selling them at higher prices. But

given identical (publicly available) information one would expect (similar) investors

to have the same prediction for how the price would move and they should all place
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similar orders.

For example, if Betty hears that company XYZ has discovered oil, she may

well expect the company’s stock price to climb and so she places a bid order. The

trade will not be exercised, however, until another investor, say Sam, offers to sell

his shares in XYZ. But the question is then raised in Betty’s mind, “Why does Sam

want to sell?” Is he being irrational? Did he miss the good news? Does he know

something Betty doesn’t?

Conventional wisdom assumes Betty and Sam have slightly different expecta-

tions about the future price of XYZ, perhaps due to imperfect information. Thus the

market dynamics are driven by random fluctuations. But this assumption leads to

predictions that price fluctuations should be normally distributed (or log-normally)

and that trading volume should be low and steady.

What is actually observed on all markets is bursts of activity with very

high volume and/or extremely large fluctuations in price which occur much more

frequently than the conventional wisdom can account for. The reason for these

bursts has not been established and is an interesting topic of research.

1.2.1 Motivation for the physicist

Statistical physicists and condensed matter theorists have developed a significant

arsenal of tools for analyzing many-particle systems with strong, localized inter-

actions. Methods such as mean-field theory, the renormalization group, and finite-

scaling analysis allow physicists to explore complex, irreducible systems such as spin

glasses (highly disordered magnetic systems) where the important details are in the

interactions between the particles, rather than the individual particles themselves.

Recently, physicists have realized that the methods developed above may

also be useful for non-physical systems such as ecological and social systems. The

leap of faith required is the assumption that it is not necessary to fully understand

the individuals in the system themselves (their motivations, for instance), but only

to the point that one can construct reasonable rules for the interactions between

individuals.

Whether this leap of faith is justified remains an open question but interest

is mounting within the physics community in complex, socio-economic systems like

the stock market. In 1995 the Los Alamos National Laboratory (LANL) condensed-

matter preprint archive (http://arXiv.org) accepted three papers containing the

word “market” in their abstracts (a check was done confirming they were all finance-

related) representing 0.16% of the submissions that year. Since then it has doubled

every year through 1999 when fifty of the 5,490 (0.91%) submissions were market-

related. (The foray of physicists into economics has come to be known as Econo-
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physics.)

Phase transitions

Together with the analytic tools physicists bring to the subject, they also bring a

fresh perspective and new questions. For instance, it has been empirically observed

that price fluctuations exhibit scaling [4–7], meaning the fluctuations appear invari-

ant under a change of scale, over orders of magnitude from a few minutes to a few

days. Scaling is characterized by power-law distributions which are very familiar to

physicists because they occur near second-order or critical phase transitions.

Phase transitions, in the context of thermodynamics, are well understood

phenomena. The terminology of order parameter, a dependent variable which un-

dergoes a “sharp” change, and control parameter, the variable which is smoothly

adjusted to produce the change, is used to quantify the transition. In the case of first-

order transitions (such as melting) the order parameter undergoes a discontinuity—it

jumps to a new value. The jump is accompanied by an absorption or liberation of

energy (latent heat). Usually, fluctuations within the substance can be ignored for

first-order transitions.

To demystify the above definitions, consider a pot of water boiling at 1 at-

mosphere of pressure and 100◦C. If we choose temperature as the control parameter

then density could play the role of the order parameter. Below 100◦C water is a

liquid with a relatively high density. Above this point, all the water is in the form of

steam which has a significantly lower density. At the transition we observe fluctua-

tions in the form of small, uniform steam bubbles. This is a first-order transition.

In contrast, second-order, or critical, transitions are characterized by a dis-

continuity in the derivative of the order parameter (see Fig. 1.1). In fact, the

derivative diverges at the critical point. Further, near the transition, properties are

dominated by internal fluctuations on all scales. For example, let us revisit our pot

of boiling water. We raise the pressure to 218 atm and the temperature to 374◦C

(the critical point of water). Again, we observe steam bubbles but in this case the

bubbles exist on all scales—from microscopic to the size of the pot itself [8]. Also,

the density (but not its derivative) is continuous across the transition.

Near a critical point, many thermodynamic properties obey diverging power

laws. Early studies of critical phenomena revealed that the characteristic exponents

for the power laws clustered around distinct values for a variety of systems. This sug-

gested that some of the features of separate systems were irrelevant—they belonged

to the same universality class. Some of the irrelevant variables in a universality

class are usually the type of local interactions, the number of nearest neighbours, et

cetera. On the other hand, dimensionality and symmetry, for example, appear to

3



PSfrag replacements

or
d
er

or
d
er

control control

First-order Second-order

Figure 1.1: Sample phase transitions. A first-order transition (left) is characterized
by a discontinuity in the order parameter, while a second-order (critical, right) is
discontinuous in the first derivative.

be relevant variables—that is, change the number of dimensions or the symmetry

laws and the system changes its class (or may even cease being critical). Critical

systems with the same relevant variables but different irrelevant variables have the

same critical exponents and are said to belong to the same universality class.

Returning to our discussion of markets, the estimated power law exponent

in the financial data seems to exhibit universality. That is, the exponents seem to

be similar for a number of different markets and stocks and they also seem not to

change over time [6,7,9,10]. This evidence suggests that markets operate at or near

a dynamical critical point as studied by physicists.

Self-organized criticality

To a physicist, the question of whether the market operates at a critical point is

especially interesting. The traditional theory of critical phenomena states that a

system will approach a critical point via deliberate tuning of the control parameter.

In the above example, by adjusting both the temperature and pressure, water was

brought to its critical point.

This description does not seem to apply to markets, however. The rules

governing market dynamics were not chosen in order to put the market in a critical

state. In fact, there does not appear to be any analog for temperature, which could
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be used to explain why the market might be at a critical point. If it is critical,

it appears to have arrived there spontaneously, without any tuning of a control

parameter. This phenomenon has come to be known as self-organized criticality

(SOC) and was originally proposed as a possible explanation for scaling in many

natural phenomena [11,12].

The canonical example of SOC is a pile of sand to which grains are added

very slowly. As each grain is dropped it may cause the local slope of the pile

to exceed a threshold and collapse, dispersing grains within a local neighbourhood.

These grains may cause further instabilities producing a cascade reaction. Measuring

the total effect of dropping each grain yields a power-law distribution of avalanche

sizes, indicating the presence of a critical point. The criticality is said to be self-

organizing because it emerges spontaneously from the simple process of dropping

grains periodically.

In some cases, SOC can be mapped back onto traditional criticality by a

separation of timescales: systems which responds quickly to very slow driving forces

are candidates for SOC. In particular, the sand pile model described above qualifies

for this mapping because the driving force (dropping of grains) is much slower than

the duration of the avalanches [13].

More generally, the appearance of SOC can be an artifact of how the system

is constructed. Some natural choices of parameter values (such as an infinitesimal

driving rate, as discussed above) automatically lead to dynamics which can be crit-

ical or very nearly so. Traditional criticality is only revealed when the parameter is

manually varied [14] (for example, by increasing the rate at which sand is added to

the pile).

Whether the markets operate at a critical point and, if so, how they develop

towards and maintain this state is of interest to physicists.

1.3 Anticipated challenges

Although synthetic constructs, the markets are difficult to study scientifically for

many of the same reasons as natural phenomena. Firstly, stocks are strongly coupled

to each other and to other systems, both natural and man-made. For example, an

earthquake in Taiwan on September 20, 1999 which cut off electrical power at Taiwan

Semiconductor Manufacturing (TSM) and significantly disrupted production, had

only a minimal impact on the company’s stock price. However, their South Korean

competitors’ stock prices soared in anticipation of increased demand.

This highlights the second challenge in studying the market: investors’ re-

sponses (and hence stock price fluctuations) to incoming news can be strongly non-
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linear. A company’s quarterly forecast of a loss of ten cents per share could con-

ceivably have much more than double the impact of five cents. The precise response

function (if one exists) is unknown.

Thirdly, the impact of an exogenous event may be practically, or even the-

oretically, unquantifiable. Investors may receive imperfect information and/or the

necessary calculations to assess the impact of the news on a stock’s price may be

too complex, beyond the rational abilities of the investor.

Lastly, only some of the information which drives investors’ actions is broad-

cast to all. The rest (a rumour, for instance) is transmitted through a complex

network of friends, families, and co-workers. It is not clear if this information can

be neglected and, if not, how the network is to be represented, structurally.

1.4 Modeling

The natural sciences are well acquainted with these types of challenges and their

reaction is to study the system in two ways: first empirically, then with an idealized

representation.

Empirical analysis is the first and best way to understand the world around

us. By collecting data and studying statistical properties thereof we can learn about

the underlying distributions governing many phenomena. Then, once sufficient em-

pirical data have been collected idealized models may be constructed to try and

account for the data.

A vast store of financial market data is available. For instance, precious metal

price data are on record all the way back to the 1200s [15]. A large number of these

data sets have been analyzed and the results indicate that large market fluctuations

(outliers) occur much more frequently than would be expected (the frequency dis-

tributions exhibit fat tails) and, unexpectedly, fluctuations occur in clustered bursts

of volatility rather than uniformly. This thesis will not focus on empirical analysis

of financial data, rather relying (mainly) on these published results.

Instead, this thesis will focus on idealized representation or modeling of finan-

cial markets. Social scientists have developed simple analytic models of the stock

market. For tractability they assume a small number of investors who have per-

fect rationality (unlimited computational power) and complete information [16–18].

These models are interesting to economists because they can explain equilibrium

stock prices [19]. However, they are uninteresting to the physicists for precisely

the same reason—since they are equilibrium models they fail to exhibit fat-tailed

fluctuation distributions or clustered volatility.
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1.4.1 Computer simulations

My hypothesis is that the complex dynamical behaviour of the stock market is an

emergent property arising from the interactions of many agents and is largely inde-

pendent of the complexity of the agents themselves. In order to test my hypothesis I

will construct some simple models meant to capture the essence of the stock market

and study them experimentally via computer simulation.

Computer simulation is necessary because many-agent models are impracti-

cal or even impossible to analyze by hand—the number of interactions which need

to be accounted for typically grows as the square of the number of agents. (Even

the simplest models tend to be too complex for an analytic treatment.) So we turn

to computers, which are capable of performing millions of calculations rapidly, with

no (significant) errors.

There are many objections to working with computer simulations but some of

these apparent shortcomings are actually advantages. For instance, it is impossible

to construct a many-agent simulation with perfect rationality and complete infor-

mation: each agent’s expectations are formed on the basis of every other agent’s

expectations, which are formed on the basis of every other agent’s expectations, ad

infinitum. (In some cases this infinite regress can be collapsed and solved.) Besides

being impossible to incorporate into a simulation, I hope the reader will agree this

is an unrealistic account of investor behaviour.

Simulation may also seem inappropriate because, to develop a stochastic

model, random events must be incorporated but computers are incapable of gener-

ating truly random numbers. As an alternative, a number of algorithms have been

constructed to produce pseudo-random numbers which pass all known statistical

tests for randomness [20–22]. However, these generators still require a seed from

the user—a random, initial number to begin the sequence. This flaw can often be a

blessing because it offers replicability in one’s experiments—by seeding the simula-

tion with the exact same number as a previous iteration, the entire time series can

be reproduced. (To generate independent time series different seeds are used.)

Finally, market micro-simulation may be objected to because the events (for

example, news releases) which drive the dynamics must be explicitly coded into the

simulation. As discussed above, these events are often not even quantifiable and,

hence, can not be accurately coded. However, turning this argument around, this

is yet another advantage of the simulation methodology. Any number of alternate

hypotheses of the structure of the driving events can be encoded and their impact

on the dynamics tested experimentally. One of the interesting questions this thesis

will address is “How complex does the input (news) need to be to produce realistic

output (price fluctuations)?”
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1.4.2 An appeal for simplicity

A common temptation when constructing computer simulations is to try to capture

as much detail as possible in order to make the simulation realistic. But there are a

number of reasons the model should be kept simple: Firstly, model complexity must

be balanced against the constraints of current computational speed. Simple models

require less computational power and produce larger datasets. Since large quantities

of data are required to test the frequency distributions of rare events (such as price

crashes), simpler is better for our purposes.

Secondly, as a model’s complexity grows its capacity for being understood

diminishes. Some global climate models (GCMs), for example, have reached suffi-

cient complexity that the modelers specialize in only a particular subroutine of the

model, such as cloud formation. Very few (if any) of the researchers have a full

grasp of every detail of these simulations. A problem with this approach is that the

model becomes as difficult to understand as the system it was meant to idealize—a

problem known as Bonini’s Paradox [23]. (Of course, GCMs are extremely useful

for predictive purposes, but perhaps not for furthering scientific understanding.)

Thirdly, by starting with a trivial model and gradually adding layers of com-

plexity, it is possible to determine the minimum requirements for a model which

captures the essence of the system under investigation. In the case of the mar-

ket model this could mean building on a simple model until fat-tailed distributions

(for example) are observed in the price fluctuations. Then we can say with some

confidence, “These ingredients are the minimum requirements to explain market

fluctuations.”

Finally, there is the issue of Occam’s razor. In the 1300s the Franciscan monk,

William of Occam stated, “Causes are not to be multiplied beyond necessity” [24,25]

or, to paraphrase, “The simplest explanation is best,” guiding the course of science

for centuries. Notice this claim is aesthetic, not epistemological—it does not claim

that the simplest explanation is true, but simply to be preferred, at least until

evidence comes to light which requires us to reject it. In Bayesian probability theory,

Occam’s razor has an even more precise role: given two theories which explain a

phenomenon equally well, the one with fewer adjustable parameters is assigned a

greater numerical likelihood [25, Ch. 24]. Similarly, we should construct models

which contain as few parameters, or assumptions, as possible.

1.5 Organization of the thesis

In this thesis I will develop and implement via simulation two hypothetical models of

stock exchange. An early model, which introduces the idea of a centralized market,
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will be described in Chapter 2, and a later model, which discards the centralized

trading restriction, in Chapter 3. In Chapter 4 the phase space of these models will

be explored revealing some interesting phase transitions, including a critical point

in either model. Then, in Chapter 5 experiments will be performed and the results

of the two models will be compared with each other and empirical data. It will be

discovered that the centralized model is incapable of generating the desired dynamics

but the decentralized model can exhibit both fat tails and clustered volatility.

Some interesting results of an experiment in investing, using a hypothetical

portfolio, will be discussed in Chapter 6. The thesis will close with a discussion of

some conclusions which can be drawn from the research and some ideas for future

research.
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