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Appendix C

Long-range memory: The Hurst

exponent

Brownian motion (in one dimension) is a random walk on the line where the step

length is given by a mean zero Gaussian (normal) probability distribution. Since

each of the steps are independent the cumulative position X is known to obey

〈X(t)−X(0)〉 = 0 (C.1)
〈

[X(t)−X(0)]2
〉1/2

∝ |t|1/2 (C.2)

so the standard deviation from the origin grows as t1/2. Mandelbrot and Van Ness

[103] introduced fractional Brownian motion (fBm) as a generalization to processes

which grow at different rates tH

〈
[XH(t)−XH(0)]2

〉1/2
∝ |t|H (C.3)

where 0 < H < 1 is called the Hurst exponent.

Successive increments ξH of a fractional Brownian motion are called frac-

tional Gaussian noise (fGn)

ξH(t) = XH(t+ δ)−XH(t) (C.4)

where δ can always be rescaled to one (to be discussed). The autocorrelation function

(which measures the covariance of a data series with itself at some lag τ) is formally

defined as

C(τ) ≡ 〈[ξH(t)− 〈ξH(t)〉] [ξH(t− τ)− 〈ξH(t− τ)〉]〉
{〈

[ξH(t)− 〈ξH(t)〉]2
〉〈

[ξH(t− τ)− 〈ξH(t− τ)〉]2
〉} 1

2

. (C.5)
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For an fGn process the definition is [103,104]

C(τ) =
1

2

(
|τ + 1|2H − 2 |τ |2H + |τ − 1|2H

)
(C.6)

which is obviously zero for H = 1/2 (except for τ = 0 where the autocorrelation is

always one) while for general H 6= 1/2 and large τ

lim
τ→∞

C(τ) ∝ τ2H
[
(1 + τ−1)2H − 2 + (1− τ−1)2H

]

∝ τ2H
[
(1 + 2Hτ−1 +H(2H − 1)τ−2)− 2 + (· · ·)

]

∝ τ2H
[
τ−2

]

∝ τ2H−2

(C.7)

so correlations decay slowly and the resulting fractional Brownian motion exhibits

long memory effects. Correlations are positive for H > 1/2 (persistence) and nega-

tive for H < 1/2 (antipersistence) as shown in Fig. C.1. (Note that fBm is not the

only framework for generating long range memory effects: for instance, fractional

ARIMA(0,d,0) processes also exhibit scaling with an exponent H = d+ 1/2 [105].)

As for standard Brownian motion, all fBm series are self-affine [105,106]

XH(at)
d
= aHXH(t) (C.8)

meaning that the series appears statistically identical under rescaling the time axis

by some factor a and the displacement XH by aH . Hence, fBm lacks any character-

istic time scale and when generating or sampling an fBm series, an arbitrary step

length of one unit may be used without loss of generality [107]. Self-affine signals

can be described by a fractal dimension D which is related to the Hurst exponent

through D = 2 − H for fBm [108, 109]. (The fractal dimension D can be loosely

interpreted as the “number of dimensions” the signal fills up. For example, notice

that in Fig. C.1 the H = 0.1 signal “fills in” significantly more space than H = 0.9

and, consequently, has a higher fractal dimension.)

The power spectrum (defined as the amplitude-squared contributions from

the frequencies ±f , S(f) ≡ |FH(f)|2 + |FH(−f)|2 where FH is the Fourier transform

of XH [20]) of fBm also demonstrates scaling behaviour. The exact spectrum is

difficult to compute but for low frequencies it can be approximated by a power

law S(f) ∼ 1/f2H+1 [105] (see Fig. C.2) which corresponds to long-term spatial

correlations. Flicker or 1/fα noise with α ≈ 1 is ubiquitous in nature (see Ref. [12]

and references therein) and some of it may be attributable to long-memory fBm

processes [110]. Note that from the definition of the Fourier transform the derivative

of fBm, fractional Gaussian noise, also has a low frequency power law spectrum but

with exponent reduced by 2, i.e.. 1/f 2H−1.
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H = 0.1

H = 0.5

H = 0.9

Figure C.1: Sample fractional Brownian motion time series with different Hurst
exponents: antipersistent H = 0.1 (top) has negative long-range correlations, un-
correlated H = 0.5 (center) is standard Brownian motion, and persistent H = 0.9
(bottom) has positive long-range correlations.
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Figure C.2: Power spectral densities for the fractional Brownian motion time series
shown in Fig. C.1. The points are from finite samples of 1000 points each and the
line represents the theoretical spectrum. For low frequencies the power spectrum is
well approximated by a power law 1/f 2H+1.
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Fractional Brownian motion has been criticized because it lacks a physical

interpretation and because the process has an unrealistic infinite memory [111,112].

However, it suits our purposes here because it is a mathematically elegant extension

of standard Brownian motion which introduces long-range memory effects and can

be characterized by a single parameter H. Hence, it is an ideal experimental control

for testing procedures of measuring the Hurst coefficient in real data sets.

C.1 Synthesis

Before we can test various methods of estimating the Hurst exponent, we need some

control data sets with known exponents. This data must be synthesized from the

first principles of fractional Brownian motion as defined above. The computational

difficulty is that for H 6= 1/2 fBm has an infinite dependence on its history so

approximations are required. A number of generators have been proposed [104,106,

107,113] but most are slow and/or inaccurate. One of the most common techniques,

Successive Random Addition (SRA) [114] is very fast but its correlation function

does not match that of fBm.

Another technique, the Spectral Synthesis Method (SSM) [82], uses the scal-

ing behaviour 1/f2H+1 of the power spectrum to generate synthetic data in fre-

quency space and then inverse Fourier transform the data to recover the desired

time series. Although simple and fast—the Fast Fourier Transform (FFT) algo-

rithm only requires on the order of N logN operations—it fails because the power

law in the frequency domain only applies for low frequencies, as mentioned above.

I prefer the generator by Vern Paxson [115] because it is quick and accurate.

It also uses a Fourier transform but it uses an accurate approximation to the fBm

correlation function to generate a proper power spectrum.

The basic algorithm for generating a data set of N points with Hurst expo-

nent H follows:

1. Find the smallest integer N8 which is a power of 2 and is not smaller than 8N .

2. Generate a discrete power spectrum for fi = i/N8, i = 1, . . . , N8/2 using

Paxson’s equations [115, Eqs. (4-6)] given here for convenience (see Ref. [116]

for derivation):

S(f) = A(f,H)
[
|2πf |−2H−1 + B̃′′3(f,H)

]
(C.9)

where

A(f,H) = 2 sin(πH)Γ(2H + 1) (1− cos(2πf)) (C.10)
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and

B̃′′3(f,H) = [1.0002− 0.000842f ] B̃′3(f,H) (C.11)

B̃′3(f,H) = B̃3(f,H)− 2−7.65H−7.4 (C.12)

are improved approximations of

B̃3(f,H) ≈ ad1 + bd1 + ad2 + bd2 + ad3 + bd3 +
ad
′

3 + bd
′

3 + ad
′

4 + bd
′

4

8πH
(C.13)

where
d = −2H − 1

d′ = −2H

ak = 2π(k + f)

bk = 2π(k − f).

(C.14)

3. Choose a zero-amplitude null component of the power spectrum S(0) = 0 to

detrend the fGn increments in real space (zero mean).

4. Multiply each component of the power spectrum by a Poisson distributed

uniform deviate ηf with mean 〈η〉 = 1

S(f)← ηfS(f). (C.15)

This simulates the noise associated with a real data series, for which uncer-

tainties in the power spectrum are multiplicative [20, p. 552].

5. Construct the complex Fourier space representation of the series fi, i =

−N8/2, . . . ,+N8/2 from the power spectrum using random phases 0 ≤ θf < 2π

FH(f) =
√
S(|f |) eiθf . (C.16)

Randomizing the phases does not disturb the power spectrum and ensures the

finite-sample correlation function converges to the proper theoretical form in

the limit N →∞ [107].

6. Compute the inverse Fourier transform ξH(ti), i = 1 . . . N8 and discard the

imaginary components to get a fractional Gaussian noise series

ξH(t) = <
(
F−1 [FH(f)]

)
. (C.17)

7. Pick a random subset of length N of the series and discard the remainder.

This minimizes wrap-around effects from the Fast Fourier Transform [20,110,

117,118] and gives the illusion of a non-stationary series (to simulate real data,

for which the stationarity may be difficult to decide). Note that Paxson does

not consider subsampling in his original algorithm.
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8. Finally, to convert to a fractional Brownian motion, simply integrate

XH(t) = XH(t− 1) + ξH(t). (C.18)

Paxson’s method is accurate [115], computationally simple, and fast (most

of the computation is in the Fourier transform so it still only requires on the order

of N logN operations).

C.2 Analysis

One’s first instinct to check for long-range correlations in a data set may be to

simply test how quickly the autocorrelation function (Eq. C.5) decays with large lags.

This proves to be a poor choice however, because antipersistent data is difficult to

distinguish from uncorrelated, the correlations can be mistaken for noise fluctuations

around zero.

A method to reliably estimate the Hurst coefficient from a time series would

be a useful method of testing for and quantifying long-range correlations. The oldest

and still most common method is due to Hurst [119] who noticed that the range R

of the depth (or cumulated influx) of water behind a dam over a span of time τ was

related to the standard deviation S of the influx over the same period through

R/S ∝ τH (C.19)

where H should be 1/2 for random, uncorrelated processes [120]. Hurst’s method,

Rescaled Range or R/S analysis, was to sample non-overlapping subsets of length

τ from a time series and calculate the average R/S statistic. Repeating over a wide

range of τ -values and recording the data on double-logarithmic graph the Hurst

exponent should emerge as the slope of a straight line, log(R/S) = H log τ + C.

Unfortunately, despite its extensive usage [21,76,111,121–123] Hurst’s rescaled

range analysis has been shown to be a poor estimator of H [108,112,118,120] with

a consistent bias towards H = 0.7 and requiring a large data set for convergence.

Another common technique for testing for correlations is shuffling the order of

the data and comparing the statistics of the original data with the shuffled. Shuffling

destroys the correlations in the data but care must be taken to detrend the data

as well. Persistent data series are characterized by large low-frequency components

which make the data series appear non-stationary (notice, for example, the trend in

the H = 0.9 series in Fig. C.1). Shuffling without first removing this trend would

not destroy these low-frequency correlations which extend throughout the entire

dataset. Shuffling is a valuable way of testing for correlations but, in itself, doesn’t

specify any statistical techniques for distinguishing the original from the shuffled
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series, and we have already seen that the correlation function and rescaled range

analysis are inadequate.

A number of alternatives have been proposed including autocorrelation anal-

ysis [82], Fourier analysis [82, 110], and maximum likelihood estimators. The ad-

vantage of the latter is that they are not graphical techniques but numerical—they

simply return the best estimate of the Hurst exponent directly. Unfortunately, they

require (at least) an assumption about the form of the long-range dependence (such

as fBm or fractional ARIMA) and perform poorly if the assumption is incorrect [124].

Each of the above methods suffers from biases and slow convergence (a large

dataset is required to reduce the bias). However, two methods have been consistently

better, requiring smaller datasets and exhibiting less bias [109,117,125]: dispersional

analysis and scaled-window variance analysis. Both of these methods are graphical,

producing a power law relationship from which the exponent can be read off as the

slope of the line when using double-logarithmic axes.

C.2.1 Dispersional analysis

Dispersional analysis, also known as the Aggregated Variance method [105], averages

the differenced fGn series over bins of width τ and calculates the variance of the

averaged dataset. Given a fGn series ξH(i), i = 1, . . . , N a particularly simple but

effective version of the algorithm follows:

1. Set the bin size to τ = 1.

2. Calculate the standard deviation of the N data points and record the point

(τ, τ · στ )).

3. Average neighbouring data points and store in the original dataset

ξH(i)← 1

2
[ξH(2i− 1) + ξH(2i)] (C.20)

and rescale N and τ appropriately

N ← N/2

τ ← 2τ.
(C.21)

4. As long as more than four data points remain (N > 4) return to Step 2. (The

reader may prefer to require more than four bins to reduce noise.)

5. Perform a linear regression on the log-log graph

log (τ · στ ) = H log τ + C; (C.22)

the calculated slope is the best estimate of H.
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Recording τ · στ in Step 2 instead of just the standard deviation στ is not

standard but it simplifies the regression because the Hurst exponent can be simply

be read off the graph instead of H − 1.

Fig. C.4 shows that Dispersional analysis performs significantly better than

rescaled range analysis.

C.2.2 Scaled Window Variance analysis

The other method well-received method, Scaled Window Variance analysis (SWV),

also known as Detrended Fluctuation Analysis [126] or Residuals of Regression [105],

applies to the cumulated fBm series instead. Given a fBm series XH(i), i = 1, . . . , N

my own variation of the algorithm follows:

1. Split the series into M ≡ bN/τc (where bxc is the floor operator—returning

the greatest integer not greater than x) evenly-spaced bins of size τ = 16

(SWV is inaccurate for smaller τ [109])

X
(k)
H (j) = XH ((k − 1)κ+ j) , j = 1 . . . τ (C.23)

where

κ =

⌊
N − τ
M − 1

⌋
(C.24)

This allows the option of setting a minimum and maximum on the number of

bins Mmin ≤M ≤Mmax. Setting Mmin larger than N/τ will necessarily result

in overlapping bins but this effect has been tested [118] and the benefit of the

larger sample size outweighs the influence of cross-correlations introduced.

2. For each bin k, k = 1 . . .M , detrend the local series by subtracting off

X
(k)
H (j) = mj + b (C.25)

Three options for calculating the trendline have been tested [125]:

(a) No detrending: m = 0, b = 0. This is only recommended for N < 29 data

points.

(b) Bridge detrending. Form a line between the first and last point in the

bin:
m = 1

τ−1

[
X

(k)
H (τ)−X(k)

H (1)
]

b = X
(k)
H (1)−m

(C.26)

Recommended for N > 212 data points.
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(c) Linear detrending. Perform a linear least-squares regression over the

entire bin to calculate m and b. Recommended for intermediate N .

3. Calculate the residuals after subtracting off the trend line

X̂
(k)
H (j) = X

(k)
H (j)−X(k)

H (j) (C.27)

4. Calculate the standard deviation of the residuals in each bin σ
(k)
τ and compute

the average and standard deviation of these samples

στ ≡
〈
σ

(k)
τ

〉

∆τ ≡
√〈(

σ
(k)
τ − στ

)2
〉 (C.28)

5. If the average standard deviation στ is non-zero convert it to a log-scale σlog τ ≡
log στ and plot σlog τ ± ∆log τ versus log τ . The uncertainty on the log scale

can be approximated by

∆log τ ≈
∆τ

στ
log e (C.29)

6. Double the bin size τ ← 2τ and repeat while N > 2τ .

7. Perform a linear regression on the log-log graph log στ = H log τ + C; the

calculated slope is the best estimate of H.

Sample fits using the SWV method (with at least Mmin = 4 bins) are shown

in Fig. C.3 using the same data as before. Notice that these data sets are rather

small (1000 data points each) but even so, the accuracy is remarkably good. When

compared with Hurst’s rescaled range analysis (see Fig. C.4) it becomes clear that

the SWV method is superior (also edging out the Dispersional method).

Another good feature of the SWV method is that, like all graphical tech-

niques, it clearly reveals multifractal behaviour. At some critical scale, the fractal

dimension may crossover to a new value. This is characterized in graphical tech-

niques by a discontinuity in the slope of the log-log graph. In particular, transitions

to H = 0.5 are often observed for large τ , indicating a transition from correlated

behaviour over short time scales to uncorrelated on long time scales. The memory

duration can simply be read off the graph as the transition point τ .

C.2.3 Lévy Flight

Despite its advantages, SWV fails in one respect: it is unable to distinguish be-

tween long-range correlations and uncorrelated Lévy flight. Lévy flight is similar
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Figure C.3: Scaled window variance analyses for the fractional Brownian motion
time series shown in Fig. C.1 (exact H=0.1, 0.5, and 0.9, respectively). The esti-
mated values of H shown represent the best fit slopes of the lines. The analysis used
Mmin = 4 (see the text).
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Figure C.4: Comparison of Hurst estimators using synthetic datasets of 1000 points
each. The scaled-window variance method (SWV, ∗) performs significantly bet-
ter than rescaled range analysis (R/S, +) and marginally better than dispersional
analysis (Disp., ×). (The points are offset slightly to improve readability.)

to (traditional) Brownian motion in that it is a cumulated series of independent,

identically-distributed (iid) increments, but in this case, the increments are Lévy

distributed instead of normally distributed.

Normal or Gaussian distributions are well known to obey the following sta-

bility property: if x1 and x2 are both Gaussian-distributed random variables then

their sum

x ≡ x1 + x2 (C.30)

is also Gaussian-distributed. Paul Lévy discovered a general class of distributions

which have the stability property [83,111,127]. Lévy distributions generally have no

closed analytical form but can be defined in terms of their characteristic function

f(k) (the Fourier-space representation of the probability distribution) [127,128]

ln f(k;α, β) =

{
− |k|α

(
1− iβ tan πα

2 sign(k)
)

α 6= 1

− |k|
(
1 + 2

π iβ ln |k| sign(k)
)

α = 1
(C.31)

where 0 < α ≤ 2 is a characteristic exponent and −1 ≤ β ≤ 1 is the skewness.

Special cases of the Lévy distribution include the Gaussian (α = 2, β = 0) and

Cauchy (α = 1, β = 0) distributions.
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The stability property says that the sum of a large number of iid Lévy random

variables will also be a Lévy random variable with the same α and β in apparent

violation of the Central Limit Theorem. The paradox is resolved by recognizing

that Lévy distributions with α < 2 have power-law tails far from the origin

p(x) ∼ 1

|x|α+1 as |x| → ∞ (C.32)

so the variance
〈
x2
〉

is infinite for α < 2 whereas the Central Limit Theorem assumes

a finite variance.

Another interesting property of Lévy distributions is that the cumulative

Lévy flight Xα is self-affine, scaling as

Xα(at)
d
= a1/αXα(t) (C.33)

which parallels the scaling relation Eq. C.8 for fractional Brownian motion. A

consequence of this is that Hurst coefficient estimators which depend on this scaling

property may erroneously predict positive long-term correlations with

H = 1/α (C.34)

when applied to uncorrelated Lévy flights with 1 < α < 2.

To test for this effect, data sets of 1000 symmetric (β = 0) Lévy distributed

random variables with were synthetically generated (using a simple and elegant

algorithm explained in Ref. [128]) and cumulated to produce a one-dimensional Lévy

flight. The synthetic data was then analyzed using the rescaled range, dispersional,

and scaled-window variance techniques. The results shown in Fig. C.5 indicate that

SWV is sensitive to Lévy noise whereas R/S and Dispersion are not. (Note also

that the Fourier spectrum of Lévy flight still approximates a power law 1/f 2 with

exponent 2 (indicating no correlations).)

C.3 Conclusions

In summary, to test for long-range correlations in a data set Dispersional analysis

is recommended. If more precision is required (especially for H near 1) and the

increments are Gaussian-distributed, a scaled window variance analysis should be

performed.

In this discussion we have explored tests for long-range correlations in frac-

tional Brownian motion (correlated with Gaussian increments) and Lévy flight (un-

correlated with non-Gaussian increments). These two extensions to Brownian mo-

tion are not exclusive. Fig. C.6 shows how that they are complementary notions
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Figure C.5: Comparison of Hurst estimators on uncorrelated Lévy flight with char-
acteristic exponent α using synthetic datasets of 1000 points each. Rescaled range
(R/S, +) and dispersional analysis (Disp., ×) perform well but scaled window vari-
ance analysis (SWV,∗) performs poorly, especially for small α, tending towards the
1/α curve. (The points are offset slightly to improve readability.)
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Figure C.6: Schematic representation of relation between fractional Brownian mo-
tion and Lévy flight. Traditional Brownian motion sits at the intersection (H = 1/2,
α = 2). The natural extension into the two-space is fractional Lévy motion which
has correlated, non-Gaussian increments.
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and the two ideas can be combined to produce fractional Lévy motion (fLm) with

correlated, non-Gaussian increments. There is very little literature on the subject

but it may be a useful model for some natural phenomena [129]. I am unaware of

any efficient algorithm to synthesize fLm but it would begin with the correlation

function in Eq. C.5, which still applies.
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