
ON THE NATURE OF THE STOCK MARKET:
SIMULATIONS AND EXPERIMENTS

by

Hendrik J. Blok

B.Sc., University of British Columbia, 1993
M.Sc., University of British Columbia, 1995

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE STUDIES

(Department of Physics and Astronomy)

We accept this dissertation as conforming
to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

November 2000

c© Hendrik J. Blok, 2000



Appendix A

Discounted least-squares curve

fitting

In this appendix the standard method of least-squares curve fitting is modified in

order to make it more amenable to time series. In particular the goal is to use time

series data for forecasting by extrapolating from historical data. As will be shown

this method can require fewer computations and less storage. Also, by discounting

historical data extrapolated forecasts become more robust to outliers.

The reader should keep in mind that, despite the similarity of notation with

standard least-squares curve fitting, the following is specifically meant to be applied

to time series, where the relevance of past data are discounted as newer data arrive.

This appendix borrows heavily from Press et al.’s excellent discussion of

generalized least-squares curve fitting [20, Sect. 15.4] which is highly recommended.

A.1 Least-squares curve fitting

We use the index i to label our data points where i = 0 indicates the most recently

acquired datum and i = 1, 2, 3, . . . indicate successively older data. Each point

consists of a triplet (x, y, σ) where x is the independent variable (eg. time), y is the

dependent variable, and σ is the associated measurement error in y.

We wish to fit data to a model which is a linear combination of any M

specified functions of x. The general form of this kind of model is

y(x) =
M∑

j=1

ajXj(x) (A.1)

where X1(x), . . . , XM (x) are arbitrary fixed functions of x, called the basis functions.

For example, a polynomial of degree M − 1 could be represented by Xj(x) = xj−1.
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(Note that the functions Xj(x) can be wildly nonlinear functions of x. In this

discussion “linear” refers only to the model’s dependence on its parameters aj .)

A merit function is defined

χ2 =
N∑

i=0

[
yi −

∑
j ajXj(xi)

σi

]2

. (A.2)

which sums the (scaled) squared deviations from the curve of all N points. The goal

is to minimize χ2.

The derivative of χ2 with respect to all M parameters aj will be zero at the

minimum

0 =
∑

i

1

σ2
i


yi −

∑

j

ajXj(xi)


Xk(xi), k = 1, . . . ,M (A.3)

giving the best parameters aj .

If we define the components of an M ×M matrix [α] by

αkj =
∑

i

Xj(xi)Xk(xi)

σ2
i

(A.4)

and a vector [β] of length M by

βk =
∑

i

yiXk(xi)

σ2
i

(A.5)

then Eq. A.3 can be written as the single matrix equation

[α] · a = [β] (A.6)

where a is the vector form of the parameters aj .

Eqs. A.3 and A.6 are known as the normal equations of the least-squares

problem and can be solved for the vector parameters a by singular value decompo-

sition (SVD) which, although slower than other methods, is more robust and is not

susceptible to round-off errors [20, Ch. 2].

A.2 Discounting

The discussion above applies to all linear least-squares curve fitting. The variation

proposed here is to discount the relevance of historical data as new data arrive. This

was motivated by time series where the fitting parameters may vary slowly.

Fitting time series is typically handled with a moving window over the last

N data points. Each of the last N points is weighted equally and all prior data is
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Figure A.1: Comparison of weightings using standard and discounted windows.
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discarded as shown in Fig. A.1. The discontinuous weighting function can introduce

discontinuities in the fitting parameters aj as the data is updated, particularly when

an outlier (a strongly atypical y-value) is suddenly discarded.

These discontinuities can be avoided by steadily discounting old data as new

data arrive. As will be shown, this method also has computational and resource

advantages.

As before, we use the index i to label our data points with larger i indicating

older data. As a new datum arrives (x0, y0, σ0) we shift the indices of prior data

and scale up the errors by some factor 0 < γ < 1

(xi+1, yi+1, σi+1)← (xi, yi, σi/γ). (A.7)

If we define σ∗i as the original value of σi then after applying i of the above

operations

σi = σ∗i /γ
i (A.8)

so, since γ < 1, the historical deviations grow exponentially as new information is

acquired. Increasing the error effectively decreases the weight of a datum in the

fitting procedure.

Calculation of the covariance matrix and the uncertainties of the parameters

proceeds as with standard least-squares fitting (see [20, Ch. 15], for instance) so I

will just mention the main result, namely that the inverse of [α]

C = [α]−1 (A.9)

gives the covariances of the fitting parameters

Cov [aj , ak] = Cjk (A.10)

and the variance of a single parameter is, of course,

Var [aj ] = Cjj . (A.11)

A.3 Storage and updating

So far we have made no mention of N , the number of data points to be fit. From

Fig. A.1 it appears we need to store the entire history to apply this technique. But

notice that as we acquire a new datum (x0, y0, σ0), from Eqs. A.4 and A.5, the

matrix [α] and vector [β] update as

αkj ←
Xj(x0)Xk(x0)

σ2
0

+ γ2αkj (A.12)
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and

βj ←
Xj(x0)y0

σ2
0

+ γ2βj (A.13)

so it appears we need not store any data points, but should just store [α] and [β]

and update them as new data are accumulated.

A useful measure we have neglected to calculate so far is χ2, the chi-square

statistic itself. In (partial) matrix notation Eq. A.2 can be written

χ2 =
∑

i

y2
i

σ2
i

+ aT · [α] · a− aT · [β]− [β]T · a (A.14)

=
∑

i

y2
i

σ2
i

+ aT · ([α] · a− [β])− [β]T · a (A.15)

=
∑

i

y2
i

σ2
i

− [β]T · a (A.16)

(A.17)

which appears to still depend on the data history in the first term. Let us define

this term as a new variable δ,

δ ≡
∑

i

y2
i

σ2
i

. (A.18)

Then, similarly to Eqs. A.12 and A.13, δ can be updated as more information is

accumulated

δ ← y2
0

σ2
0

+ γ2δ (A.19)

without requiring the entire data history.

Finally, it may be useful to record the number of points accumulated. But

because each point loses relevance as it gets “older” we should likewise discount this

measure, giving an effective memory

N∗ ← 1 + γ2N∗ (A.20)

(not to be confused with the number of parameters M .)

So, to store all relevant historical information we need only remember [α], [β],

δ, and N∗ for a total of M 2+M+2 numbers, regardless of how many data points have

been acquired. Fig. A.2 shows that for many practical problems discounted least-

squares fitting requires less storage than the standard moving window. Although it

has not been tested, I expect a similar condition to hold for processing time.

As the reader can justify, all of these values should be initialized (prior to

any data) with null values: [α] = 0, [β] = 0, δ = 0, and N ∗ = 0.
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Figure A.2: Discounted least-squares fitting has a computational storage advantage
over moving windows of N data points when N > M 2 + M + 2 where M is the
number of parameters to be fitted.

A.4 Memory

For traditional least-squares fitting it is well known that if the measurement errors

of yi are distributed normally then the method is a maximum likelihood estimation

and the expectation value of Eq. A.2 evaluates to

〈
χ2
〉

= N −M (A.21)

because each term (yi − y(xi))/σi should be distributed normally with mean zero

and variance one and there are N−M degrees of freedom to sum the variances over.

Similarly with discounting, assuming (yi−y(xi))/σ
∗
i has variance one (notice

this is the unscaled error),

〈
χ2
〉

=
N∑

i=0

γ2i

〈[
yi − y(xi)

σ∗i

]2〉
−M (A.22)

=
∑

i

γ2i −M (A.23)

= N∗ −M (A.24)

from Eq. A.20.
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Notice that as the amount of data collected grows

N∗
max ≡ lim

N→∞
N∗ =

1

1− γ2
(A.25)

which relates the discounting factor γ to the effective memory N ∗. Conversely, it is

more natural to set γ such that it produces the desired memory via

γ(N∗
max) =

√
1− 1

N∗
max

. (A.26)

A.5 Unknown measurement errors

On occasion measurement uncertainties are unknown and least-squares fitting can be

used to recover an estimate of these uncertainties. Be forewarned that this technique

assumes normally distributed (around the curve) y data with identical variances. If

this is not the case, the results become meaningless. It also precludes the use of a

“goodness-of-fit” estimator (such as the incomplete gamma function, see [20, Sect.

6.2] because it assumes a good fit.

We begin by assuming σ∗i = 1 for all data points and proceeding with our

calculations of a and χ2. If all (unknown) variances are equal σ∗ ≡ σ∗i then Eq.

A.24 actually becomes 〈
χ2
〉

= (N∗ −M)σ∗ 2 (A.27)

so the actual data variance is best estimated by

σ∗ 2 =
χ2

N∗ −M . (A.28)

We can update our parameter error estimates by recognizing that, from Eqs.

A.4 and A.9, the covariance matrix is proportional to the variance in the data, so

Cjk ← σ∗ 2Cjk. (A.29)

A.6 Forecasting

Forecasting via curve fitting is a dangerous proposition because it requires extrap-

olating into a region beyond the scope of the data, where different rules may apply

and, hence, different parameter values. Nevertheless, it is often used simply for its

convenience. We assume the latest parameter estimations apply at the forecasted

point x and simply use Eq. A.1 to predict

yf = y(x) =
∑

j

ajXj(x). (A.30)
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The uncertainty in the prediction can be estimated from the covariance ma-

trix. Recall, the definition of variance is

Var [z] ≡
〈

(z − 〈z〉)2
〉

(A.31)

and the covariance between two variables is defined as

Cov [z1, z2] ≡ 〈(z1 − 〈z1〉) (z2 − 〈z2〉)〉 (A.32)

so Eq. A.1 has variance

Var [y(x)] = Var


∑

j

ajXj(x)


 (A.33)

=

〈
∑

j

(aj − 〈aj〉)Xj(x)




2〉
(A.34)

=
∑

jk

Xj(x) 〈(aj − 〈aj〉) (ak − 〈ak〉)〉Xk(x) (A.35)

=
∑

jk

Xj(x)CjkXk(x) (A.36)

where C is the covariance matrix with possible updating, in the absence of mea-

surement errors, according to Eq. A.29.

The above gives the uncertainty in y(x) but in the derivation it was assumed

that the observed y-values were distributed normally around the curve where y(x)

represents the mean of the distribution. Similarly for the prediction, y(x) is the

prediction of the mean with its own uncertainty—on top of which there is the mea-

surement uncertainty of data around the mean σmeas. These two uncertainties are

mutually independent so the variances of the two simply add to give the cumulative

variance of the prediction

Var [yf ] = Var [y(x)] + σ2
meas (A.37)

=
∑

jk

Xj(x)CjkXk(x) + σ2
meas. (A.38)

A.6.1 Unknown measurement errors

If the measurement errors are not known in advance, but are calculated from Eq.

A.28 then the above formula should be rewritten

Var [yf ] = σ∗ 2


∑

jk

Xj(x)CjkXk(x) + 1


 (A.39)

where Cjk in this equation, are the covariances without rescaling.
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A.7 Summary

Discounted least-squares curve fitting differs from the traditional linear least-squares

method in that the uncertainties of older data are artificially amplified as new data

are acquired, effectively discounting the relevance of older data. Discounting pro-

vides a very efficient method of storing the entire data series in only M 2 + M + 2

values, where M is the number of parameters to be fit, regardless of the length of

the series. Discounting also smooths the fit, reducing the effects of outliers.

It has been demonstrated how discounted least-squares can be used for fore-

casting. Whether it is valid depends very much on the time series in question, and

its consistency. If the fitting parameters vary on time scales of the same order or

smaller than the memory N ∗ of the fit then the forecasts will not be reliable. (Of

course, a suitable model of the time series is necessary as well.)

I have found no evidence of discounting being applied to curve fitting before;

the only similar procedure I have found is “exponential smoothing”, a technique

which uses damping coefficients to smooth forecasts. However, being such a simple

premise I am confident this technique has already been discovered, I just don’t know

where to look.
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