UBC Physics 153 Crib Sheet

1 Thermodynamics

Boltzmann's constant $k=1.381 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
Calorie $1 \mathrm{cal}=4.184 \mathrm{~J}$
Gas constant $R=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
$\begin{array}{lll}\text { Latent heat } & \text { Ice to water } & L_{f, \text { water }}=333.5 \mathrm{~kJ} / \mathrm{kg} \\ & \text { Water to steam } & L_{v, \text { water }}=2257 \mathrm{~kJ} / \mathrm{kg}\end{array}$

$$
\text { valer co steanr } L_{v, w a t e r}=\angle L O T \mathrm{~kJ} / \mathrm{kg}
$$

$$
\text { Ice }\left(-10^{\circ} \mathrm{C}\right) \quad c_{i c e}=2.05 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
$$

$$
\text { Water } \quad c_{w a t e r}=4.18 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
$$

Stefan's constant $\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}$

1.1 Temperature

Pressure $P=\frac{F}{A}$
Ideal gas $P V=n R T$
van der Waals $\left(P+\frac{a n^{2}}{V^{2}}\right)(V-b n)=n R T$
Celsius $T_{C}=T-273.15 \mathrm{~K}$
Linear expansion $\frac{\Delta L}{L}=\alpha \Delta T$
Stress $\frac{F}{A}=Y \frac{\Delta L}{L}$
Average translational kinetic energy $K_{a v}=\frac{3}{2} k T$
Root-mean-square speed $K_{a v}=\frac{1}{2} m v_{r m s}^{2}$

1.2 Heat

Latent heat $Q=m L$ (phase change)
Specific heat $Q=m c \Delta T$
Conduction $I=\frac{d Q}{d t}=k A \frac{\Delta T}{\Delta x}$
Conduction $\Delta T=I R$
Resistance $R=\frac{\Delta x}{k A}$
...In series $R_{e q}=R_{1}+R_{2}+\ldots$
...In parallel $\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots$
Radiation $P=e \sigma A T^{4}$

Heat capacity	Monatomic gas	$C_{v}=\frac{3}{2} n R$
	Diatomic gas	$C_{v}=\frac{5}{2} n R$
	Constant pressure	$C_{p}=C_{v}+n R$

1.3 Gas processes

Sign convention ...
$Q+$ heat into system
$W \quad+\quad$ work done by system
First law $Q=\Delta U+W$
Work $W=\int P d V$
Internal energy $\Delta U=C_{v} \Delta T$
$\begin{array}{cl}\text { Adiabatic } & Q=0 \\ & P V^{\gamma}=\text { constant, } \gamma=\frac{C_{p}}{C_{v}} \\ \text { Isochoric } & \Delta V=0 \\ & W=0\end{array}$
$\begin{array}{ll}\text { Isothermal } & \Delta U=0 \\ & W=n R T \ln \frac{V_{f}}{V_{i}} \text { (ideal gas) }\end{array}$
Isobaric $\Delta P=0$

1.4 Engines

First law (1 cycle) $W=Q_{h}-\left|Q_{c}\right|$
Efficiency $\epsilon=\frac{W}{Q_{h}}$
Refrigerator $\mathrm{COP}=\frac{Q_{c}}{W}$

2 Oscillations and Waves

Speed of sound in air $\left(20^{\circ} \mathbf{C}\right) 343 \mathrm{~m} / \mathrm{s}$
Hearing threshold $I_{0}=1 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}$

2.1 Oscillations

Hooke's law $F_{x}=-k x$
Simple harmonic motion $\begin{aligned} & a=-\omega^{2} x \\ & x=A \cos (\omega t+\delta)\end{aligned}$
Angular frequency $\omega=2 \pi f$
Period $T=\frac{1}{f}$

2.2 Mass on a spring

Angular frequency $\omega_{0}=\sqrt{\frac{k}{m}}$
Potential Energy $U=\frac{1}{2} k x^{2}$
$\begin{array}{ll}\text { Mechanical energy } & E=K+U \\ & E=\frac{1}{2} k A^{2}\end{array}$
Damping $E=E_{0} e^{-t / \tau}$
Time constant $\tau=\frac{m}{b}$
Critical damping $b_{c}=2 m \omega_{0}$
Quality $Q=\omega_{0} \tau$
Resonance $\omega=\omega_{0}$
Width of resonance $\Delta \omega=\frac{\omega_{0}}{Q}$

2.3 Waves on a string

Wave number $k=\frac{2 \pi}{\lambda}$
Wave speed $v=\frac{\omega}{k}=f \lambda$
Tension $v=\sqrt{\frac{F}{\mu}}$
Power transmitted $P=\frac{1}{2} \mu \omega^{2} A^{2} v$

Standing waves	Node-node	$L=\frac{n}{2} \lambda_{n}$	$n=1,2,3, \ldots$
	Node-antinode	$L=\frac{n}{4} \lambda_{n}$	$n=1,3,5, \ldots$

2.4 Sound

Intensity $I=\frac{P_{a v}}{A}$
Loudness $\beta=10 \log \frac{I}{I_{0}}($ in dB$)$
Beat frequency $\Delta f=\left|f_{1}-f_{2}\right|$
Doppler shift $f=\frac{1+u_{r} / v}{1-u_{s} / v} f_{0}$
Sign convention ...
$\begin{array}{lll}u_{s} & +\quad \text { source approaching } \\ u_{r} & +\quad \text { receiver approaching }\end{array}$

3 Optics

$$
\begin{array}{lll}
\text { Refraction index } & \text { Air } & n_{\text {air }}=1 \\
& \text { Water } & n_{\text {water }}=1.33
\end{array}
$$

3.1 Mirrors

Focal length $f=\frac{1}{2} r$
Mirror eq. $\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}$
Magnification $m=\frac{y^{\prime}}{y}=-\frac{s^{\prime}}{s}$
Sign convention ...

s	$+\quad$ in front of mirror (real)
s^{\prime}	$+\quad$ in front of mirror (real)
r, f	$+\quad$ concave
m	$+\quad$ image has same orientation as object

3.2 Refraction

Snell's law $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
Total internal reflection $\theta=90^{\circ}$
Malus's law (polarizers) $I=I_{0} \cos ^{2} \theta$
Spherical surface $\frac{n_{1}}{s}+\frac{n_{2}}{s^{\prime}}=\frac{n_{2}-n_{1}}{r}$
Sign convention ...
$s \quad+\quad$ incident side
$s^{\prime} \quad+\quad$ transmission side
$r, f \quad+\quad$ center of curv. on transmission side

3.3 Thin Lenses

Lens-maker's eq. $\frac{1}{f}=(n-1)\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)$
Thin lens eq. same as Mirror eq.
Sign convention same as Refraction
Power $P=\frac{1}{f}$ (units: diopters, $1 \mathrm{D}=1 / \mathrm{m}$)

4 Electricity and Magnetism

Coulomb const. $k=8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$
Fundamental charge $e=1.60 \times 10^{-19} \mathrm{C}$
Permittivity $\epsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$

4.1 Discrete Charges

Coulomb's law $\mathbf{E}=\frac{k Q}{r^{2}} \hat{\mathbf{r}}$
Force on $q \mathbf{F}=q \mathbf{E}$
Moment $\mathbf{p}=q \mathbf{L}$
Dipole Torque $\tau=\mathbf{p} \times \mathbf{E}$
Potential Energy $U=-\mathbf{p} \cdot \mathbf{E}$

4.2 Continuous Distribution

Gauss's law $\phi_{\text {net }}=\sum_{\text {surfaces }} E_{\perp} \cdot A=\frac{Q_{n e t}}{\epsilon_{0}}$
Infinite line $E_{r}=2 k \frac{\lambda}{r}$
Infinite plane $E_{n}=2 \pi k \sigma$

4.3 Potential

Point charge $V=\frac{k Q}{r}$
Potential energy of $q U=q V$
Gradient of $\mathbf{E}\left(E_{x}, E_{y}, E_{z}\right)=-\left(\frac{\partial V}{\partial x}, \frac{\partial V}{\partial y}, \frac{\partial V}{\partial z}\right)$

4.4 Capacitance

Capacitance $C=\frac{Q}{V}$ (units: $1 \mathrm{~F}=1 \mathrm{C} / \mathrm{V}$)
Parallel plates $C=\frac{\epsilon_{0} A}{s}$
$\begin{array}{ll}\text { Dielectric } & \begin{array}{l}E=\frac{E}{\kappa} \\ C=\kappa C\end{array}\end{array}$

$$
C=\stackrel{\kappa}{\kappa} C_{0}
$$

Potential energy $U=\frac{1}{2} \frac{Q^{2}}{C}=\frac{1}{2} Q V=\frac{1}{2} C V^{2}$
...In series $\frac{1}{C_{e q}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\ldots$
...In parallel $C_{e q}=C_{1}+C_{2}+\ldots$

4.5 Circuits

Current $I=\frac{d Q}{d t}=n q A v_{d}\left(n=\frac{\#}{V}\right)$
Resistance $R=\frac{V}{I}=\rho \frac{L}{A}$
...In series $R_{e q}=R_{1}+R_{2}+\ldots$
...In parallel $\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots$
Power $P=I V=I^{2} R=\frac{V^{2}}{R}$
Kirchhoff's \#1 around a loop $\sum V=0$
Kirchhoff's \#2 at a branch $\sum I_{\text {in }}=\sum I_{\text {out }}$

$$
\text { Time constant } \tau=R C
$$

$$
Q(t)-Q_{0}=\left(Q_{\infty}-Q_{0}\right)\left(1-e^{-t / \tau}\right)
$$

RC circuits $I(t)-I_{0}=\left(I_{\infty}-I_{0}\right)\left(1-e^{-t / \tau}\right)$ $V(t)-V_{0}=\left(V_{\infty}-V_{0}\right)\left(1-e^{-t / \tau}\right)$
(note: need to calculate initial and final values)

