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Abstract

While information about a species’ demography is interesting in its own right, it is an

absolute necessity for certain types of population genetic analyses. The most widely used

methods to infer a species’ demographic history do not take intralocus recombination or

recent divergence into account, and some methods take several weeks to converge. Here,

we present Jaatha, a new composite-likelihood method that does incorporate recent

divergence and is also applicable when intralocus recombination rates are high. This

new method estimates four demographic parameters. The accuracy of Jaatha is

comparable to that of other currently available methods, although it is superior under

certain conditions, especially when divergence is very recent. As a proof of concept, we

apply this new method to estimate demographic parameters for two closely related wild

tomato species, Solanum chilense and S. peruvianum. Our results indicate that these

species likely diverged 1.44ÆN generations ago, where N is the effective population size of

S. chilense, and that some introgression between these species continued after the

divergence process initiated. Furthermore, S. peruvianum likely experienced a popula-

tion expansion following speciation.

Keywords: composite-likelihood method, demography, recent divergence, wild tomatoes (Sola-

num chilense, S. peruvianum)
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Introduction

The availability of more and more affordable genome

technologies has allowed scientists to venture outwards

from the classical model systems and to begin answer-

ing questions about evolutionary genetics and trait evo-

lution in nonmodel systems. A first step in many of

these evolutionary studies is the description of a spe-

cies’ demography. This is important because some

demographic effects can leave similar signatures in the

genome as natural selection (Robertson 1975; Andolfatto

& Przeworski 2000; Teshima et al. 2006).

Here, we focus on the inference of historical demog-

raphy of two closely related populations or species

from neutral loci. We assume that the two populations

recently split from a single ancestral population. For

this situation, Nielsen, Wakeley and Hey have devel-

oped Bayesian MCMC methods to infer parameters
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including the time since the population split and the

migration rates between the populations (Nielsen &

Wakeley 2001; Hey & Nielsen 2004). For the case in

which no population size change is incorporated, Hey

& Nielsen (2007) derived an analytical result that makes

the MCMC procedure more efficient. Hey (2010)

extended this method to account for up to 10 related

populations. Implementations of these methods are

available in Jody Hey’s programs IM, IMa and IMa2.

One limitation of these programs is that they do not

allow for intralocus recombination. The robustness of

IMa against moderate violations of this and other

assumptions was examined in a recent simulation study

(Strasburg & Rieseberg 2010). The authors found, for

example, that even recombination rates as low as

0.005 per bp per 4Ne generations could result in Ne 90%

highest point density (HPD) intervals that did not con-

tain the true value used in the simulation (3 of 10

cases). The HPD intervals never included the true value

when recombination rates were above 0.02, because

recombination events were considered to be mutations.
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Estimates of divergence time were also biased upwards

as recombination increased. Strasburg & Rieseberg

(2010) also tested a pragmatic approach, in which they

divided the loci into apparently nonrecombining blocks.

These blocks were then treated as if they were indepen-

dent loci and analysed with IMa. This approach is not

well reasoned from a theoretical perspective, but in the

simulation study of Strasburg & Rieseberg (2010), it

removed much of the bias for most parameters.

The software LAMARC (Kuhner 2006) incorporates in-

tralocus recombination using an MCMC method to esti-

mate population genetic parameters in a Bayesian, as

well as in a maximum-likelihood framework. Because it

assumes a constant population structure, this method is

inappropriate for analysing data from two populations

that have recently split from a joint ancestral population

(Kuhner 2006). To analyse data sets with a high amount

of intralocus recombination from recently diverged spe-

cies, Becquet & Przeworski (2007) introduced an MCMC

method (MIMAR) that is based on four summary statis-

tics, similar to those described in Wakeley & Hey (1997).

This is in contrast to LAMARC and IM/IMa/IMa2,

which employ the likelihood or posterior probability

given the full set of sequence data. The major drawback

of all of these methods is their rather long run-times that

require several weeks to converge.

Gutenkunst et al. (2009) implemented a promising

diffusion approximation in ¶a¶i, which is considerably

faster than the methods described earlier and can be

used for various demographic scenarios of up to three

populations. In this composite-likelihood method,

which assumes unlinked SNPs (see also Kim & Stephan

2000; Hudson 2001; McVean et al. 2002), the data are

summarized with the full joint site frequency spectrum

(JSFS). The JSFS is a matrix of integers (ai,j), where ai,j is

the number of polymorphic sites where the derived

nucleotide type is observed in i sequences of those

sampled from species 1 and in j sequences sampled in

species 2. The four summary statistics of Wakeley &

Hey (1997) can be computed from the JSFS: fixed differ-

ences between species, shared polymorphisms, differ-

ences that are only polymorphic in species 1, and those

that are only polymorphic in species 2. Li & Stephan

(2006) showed that it is worthwhile to use more infor-

mation from the JSFS than these four summary statistics

for inference of demographic histories using population

genetic data. Other JSFS-based sets of summary statis-

tics are examined by Tellier et al. (2011), with the main

conclusion that especially further division of the shared

polymorphisms results in better estimations of diver-

gence times and migration rates. Garrigan (2009) com-

bines the maximum-likelihood method of Li & Stephan

(2006) with a composite-likelihood approach and turns

it into a Bayesian (MC)MCMC sampling method to esti-
mate the ratios of population sizes, timing of size

changes and population splits. Garrigan (2009) reports a

typical run-time of his method of several days for a

data set. Li & Stephan (2006) and Garrigan (2009)

assume that there is no migration between populations

following the split.

Here, we introduce the method Jaatha (abbreviation

for ‘JSFS associated approximation of the ancestry’, also

the Malayalam word for ‘past’), which uses JSFS-based

summary statistics in a composite-likelihood approach.

We perform simulation studies to assess the estimation

accuracy of Jaatha for three different demographic mod-

els on three different data sets each. Because of the fast

run-time and great flexibility of the underlying demo-

graphic cases, we chose ¶a¶i for comparing the results

with our program. To compare Jaatha with the full-like-

lihood method IM, we applied the programs to simu-

lated data sets without intralocus recombination.

We apply our new method to estimate demographic

parameters based on DNA sequence data from two clo-

sely related wild tomato species, Solanum chilense and

S. peruvianum. These species are endemic to the western

coast of South America and are closely related to the

cultivated tomato. S. peruvianum is widespread and

often occurs in large stands in central and southern

Peru and northern Chile [reviewed in Chetelat et al.

(2009)]. S. chilense has a more restricted range, occur-

ring in northern Chile and southern Peru, and is

adapted to exceptionally dry habitats (Chetelat et al.

2009). Previous studies support a very recent diver-

gence time between these species with population

growth in S. peruvianum (Städler et al. 2008). Although

the ‘isolation’ model of speciation (Wakeley & Hey

1997) could not be rejected, Städler et al. (2008) found

some evidence for postdivergence introgression using

the LD-based method of Machado et al. (2002). Because

of the recency of divergence and high amount of

within-locus recombination in these species, this data

set serves as an appropriate test case for our method.
Methods and models

Demographic models

We assume that autosomal DNA sequences of diploid

organisms are sampled from two populations P1 and P2

having current effective population sizes N1 and N2,

respectively. P1 and P2 originated sÆ4N1 generations ago

from a common ancestral population PA of effective size

NA (Wakeley & Hey 1997). Immediately following the

split, the effective population size of P2 was NA)N1. We

denote the mutation rate per locus and per generation

by l and define hi ¼ 4Nil for i 2 {1,2,A}. P2 may

undergo exponential population growth at rate g or
� 2011 Blackwell Publishing Ltd
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shrinkage (when g < 0), whereas P1 and PA remain con-

stant in size. We allow for ongoing symmetric migra-

tion between P1 and P2. Following Hudson (2002), the

migration rate m is scaled with 4N1. In other words, in

each generation, m
4N1
�N1 ¼ m=4 individuals of P1 and

m
4N1
�N2 of P2 are replaced by migrants from the other

population. Assuming the infinite sites model for

sequence evolution, Jaatha estimates h1 and three addi-

tional parameters.

In our simulation studies described below, we assess

the accuracy of Jaatha’s estimations for the parameters

h1, the population size ratio q ¼ N2

N1
¼ h2

h1
, the divergence

time s and the migration rate m. The simulations are

based on the following three variants of the demo-

graphic model (Fig. 1):

Constant Model. The size of population P2 remains con-

stant following the split, and hA ¼ h1 + h2.

Growth Model. The ancestral population splits into two

populations of equal size. Thus, h1 ¼ 1
2�hA and

h2 ¼ 1
2 hA �esg.

Fraction-Growth Model. Immediately following the

split, population P1 is twenty times as large as popula-

tion P2. Thus, h1 ¼ 20
21�hA and h2 ¼ 1

21 hA �esg. The ms
θ

2 θ

mθ θq

q θ(1+   )

mPresent

τ

Constant Model Growt

Fig. 1 The different demographic models for populations P1 and P2

parameter for P1, m ¼ migration rate scaled by 4N1 generations, q ¼ s

in 4N1 generations.

(1+  )s

q θ
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θ

θ

τ

Present

noMig Model

Fig. 2 Additional models applied to the tomato data, where s ¼ the

other parameters are defined as in Fig. 1.
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commands (Hudson 2002) to simulate data according to

these models are included in the supplementary

information.

We consider two additional models for the applica-

tion to the wild tomato species, S. chilense and S. peru-

vianum (Fig. 2). For these two models, we include the

initial size ratio s of P2 and P1 after the split as an addi-

tional parameter. As the current version of Jaatha is

restricted to estimating four parameters including h1,

we had to set one of the remaining parameters to a

fixed value. In one case, we set the migration rate to

zero (noMig Model) and in the other, we set s to 0.36

(fixedTau Model). This is the estimate of s from the anal-

yses using the Growth Model. Changing this value to

0.40 had negligible effect on parameter estimation or

the fit of the model to the tomato data (data not

shown).
Estimating demographic parameters with Jaatha

The aim of Jaatha is to estimate demographic parame-

ters from SNP data for which ancestral and derived

states can be distinguished. Jaatha consists of two

phases: a training phase and an estimation phase. In

the training phase, Jaatha uses simulated data to learn

how the expectation values for 23 summary statistics
1.05

θ

θ

θmθ

θ
0.05 θ

q q

h Model Fraction−Growth Model

used for the simulation study where h ¼ population mutation

ize ratio between P2 and P1 and s ¼ divergence time measured

(1+  )s

θq

θs

θ

θ

m

τ = 0.36

fixedTau Model

initial size ratio of P2 and P1 immediately after the split. The
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S ¼ (S1,…,S23) depend on the model parameters. In the

estimation phase, we follow a composite-likelihood

approach. That is, we apply maximum-likelihood

parameter estimation in a model in which the observed

values of S1,…,S23 are independently Poisson distrib-

uted. As parameters for the Poisson distributions, we

use the results of the training phase. The Poisson

approximation corresponds to treating all SNPs as if

they were independent. Consequently, sequences from

different genomic regions of the same individual can be

concatenated before proceeding with Jaatha.

The run-time for the estimation phase of Jaatha is

£ 15 s. The training phase takes up to 5 days on a mod-

ern desktop PC, using a single processor kernel. If more

processors kernels are available, it is straightforward to

parallelize the training phase. The results of the training

phase can be reused for data sets with similar parame-

ter ranges and sample sizes. This is especially advanta-

geous when simulation studies or bootstrap methods

are applied to assess estimation accuracy (Efron & Tib-

shirani 1993).

Joint site frequency spectrum and summary statistics. Our

23 summary statistics S ¼ (S1,…,S23) form a coarsening

of the joint site frequency spectrum (JSFS), which is

defined as follows: Let m and n be the numbers of

sequences sampled from P1 and P2, and A ¼
{0,…,m} · {0,…,n}\{(0,0), (m,n)}. The JSFS assigns to each

(a,b) 2 A the number of polymorphisms Ja,b for which

the derived state at this position is observed in exactly

a sequences sampled from P1 and b sequences sampled

from P2. We partition A into 23 disjoint subsets A1,…,

A23 as shown in Fig. 3 and define each summary statis-
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Fig. 3 Partition of domain of the joint site frequency spectrum

(JSFS) for two populations where m and n denote the number

of sampled alleles per locus of each population. Entries of the

JSFS are summed up to result in 23 summary statistics.
tic Si by summing up the JSFS within Ai: Si ¼P
(a,b) 2 Ai

Ja,b. Other summations of the JSFS are also

possible and are compared by Tellier et al. (2011).

Training phase. We use the parameter space of the

Growth Model as an example to describe the training

phase. Let y be the numbers of polymorphisms

observed in the data and y¢ the number of polymor-

phisms in a simulation with parameter values

h01; s
0;m0 and q0. For fixed values s¢, m¢ and q¢, we esti-

mate h1 by h01 �y=y0. Thus, we separate the estimation of

h1 from the estimation of the other parameters. Jaatha

generates training data for each parameter combination

on a 40 · 40 · 40 grid in the parameter space

P ¼ ½smin; smax� � ½mmin;mmax� � ½qmin; qmax�. For a

higher resolution in the lower parameter ranges, the

grid is uniform on the log-scaled parameter space. The

log transformation is given by

d : P! ½1; 40� � ½1; 40� � ½1; 40�
ðs;m; qÞ7!ðds; dm; dqÞ ¼ ðlogzs

ðs=smaxÞ
þ 1; logzm

ðm=mmaxÞ þ 1; logzq
ðq=qmaxÞ þ 1Þ;

where zp ¼ 39
ffiffiffiffiffiffiffi
pmin

pmax

q
for each parameter p 2 {s,m,q}. The

inverse transformations are given by p ¼ pmax �z
dp�1
p .

The grid consists of all integer triples

(ds,dm,dq) 2 {1,2,…,40}3 � [1,40]3 in the log-scaled

parameter space. For each of the 64,000 parameter com-

binations (s,m,q) corresponding to grid points, Jaatha

calls the program ms (Hudson 2002) to simulate 10

independent data sets with 7 loci (1 kb long) and h1 ¼
5 per locus. The recombination rate is set to 20 with

1000 possible recombination points per locus. Increasing

the recombination rate would make the method more

precise but would also result in longer run-times of ms.

To fit log-linear generalized linear models (GLMs) of

type Poisson to the summary statistics, we divide the

log-scaled parameter space into bins. In each dimen-

sion, the range [1, 40] is divided into eight intervals [1,

5.5], (5.5, 10.5], (10.5, 15.5], …, (35.5, 40], where (a, b]

denotes the interval {x: a < x £ b}. We chose these grid

and bin sizes because they provide a reasonable com-

promise between accuracy and run-time but they can

be changed by the user. Each of the 83 ¼ 512 bins con-

tains 125 (¼53) grid points. For each bin and for each of

the 23 summary statistics Si, we fit a Poisson GLM to

the simulated data to estimate how Si depends on ds,

dm and dq within the range of this bin. For any bin (as,

bs] · (am,bm] · (aq,bq], we take simulated data from grid

points in the range (as ) 3, bs + 3] · (am ) 3, bm + 3] ·
(aq ) 3, bq + 3] into account, whereas in the fitting pro-

cedure, we give lower weights to the points outside the

bin. This leads to 512 (¼83) parameter combinations at

the edges of the parameter space and up to 1331 (¼113)
� 2011 Blackwell Publishing Ltd
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in the interior. Grid points in the bin are weighted

with 1. For the other grid points, the weight is halved

for each dP that lays outside the range (aP,bP], such that

we obtain four different weights 1, 1
2 ;

1
4 and 1

8.

The Poisson GLM fits coefficients b0,i, bs,i, bm,i and

bq,i to the simulated data from the training phase such

that

bb0;i þ bbs;i � ds þ bbm;i �dm þ bbq;i �dq ¼ lnðkiÞ;

where ki is the expected value of Si, which is assumed

to be Poisson distributed. The dependence of ki on the

original parameters s, m and q takes the form

ki ¼ a0;i �sas;i �mam;i �qaq;i

within each block, where aP,i equals bP,i up to a con-

stant factor. Jaatha calls the R function glm() to fit the

weighted Poisson GLMs (R Development Core Team

2009).

Estimation phase. For the estimation of h let s1,…,s23 be

the values of the 23 summary statistics observed in the

given data set, b be a bin in the log-scaled parameter

space, and let s
ðbÞ
1 ; . . . ; s

ðbÞ
23 be the Poisson GLM predic-

tions for the summary statistics in the centre of b. One

simulated data set of the training phase consists of

7 loci with h1 ¼ 5 per locus, so we estimate h1 for bin b

by

bhb ¼
P23

i¼0 siP23
j¼0 s

ðbÞ
j =35

;

i.e. Jaatha will always return estimates ðbs; bm;bqÞ together

with bhb, where b is the bin that contains ðdbs; dbm; dbqÞ.
The composite-likelihood of a parameter combination

(s,m,q) is the probability that the summary statistics

S1,…,S23 take the observed values s1,…,s23, assuming

the Poisson model with the parameter values s, m, q

and h ¼ bhb, where ðdbs; dbm; dbqÞ 2 b. In the Poisson

model, all sites are assumed to be independent, i.e.

unlinked. This corresponds to the heuristic of taking an

infinite sites model to the limit of high recombination

rates. Thus, Si is an independent Poisson random vari-

able, and the probability that it takes the values si is

PrðS1 ¼ s1; . . . ; S23 ¼ s23Þ ¼
Y23

i¼1

ksi

i �e�ki

si!
;

where k1 ¼ ES1; . . . ; k23 ¼ ES23 are the expectation val-

ues of the summary statistics S1,…,S23. The main idea

behind Jaatha is to estimate how k1,…,k23 depend upon

s, m and q and then to maximize the resulting approxi-

mate composite-likelihood function
� 2011 Blackwell Publishing Ltd
Ls1;...;s23
ðs;m; qÞ �

Y23

i¼1

bkiðs;m; qÞsi �e�bkiðs;m;qÞ

si!
: ð1Þ

Here, bkiðs;m; qÞ is our estimation for ESi in terms of

s, m, q and implicitly the corresponding bhb. The use of

the simple estimator bhb saves us one dimension in the

optimization procedure, at the cost of some amount of

accuracy. As the estimator bhb is mainly based on the

total number of polymorphisms, using bhb in the esti-

mation of the other parameters may have a similar

effect as conditioning on the total number of polymor-

phisms. This suggests that replacing the Poisson-distri-

bution weights in the approximation (eqn 1) by

multinomial-distribution weights (as proposed by an

anonymous reviewer) may lead to improvements in

the approximation accuracy (Sawyer & Hartl 1992;

Adams & Hudson 2004). To test this, we have imple-

mented a version of Jaatha, in which we replace

approximation (eqn 1) by

Ls1;...;s23
ðs;m; qÞ ¼

P
j sj

s1; . . . ; s23

� �
�
Y23

i¼1

kiP
j kj

 !si

: ð2Þ

Jaatha optimizes Ls1,…,s23
(s,m,q) (or, more precisely, its

approximation using formula (1 or 2) within each bin

using the optim function of R and the optimization pro-

cedure of Byrd et al. (1995), using the bin centres as

starting points. Unless otherwise noted, we use the

default Jaatha version with approximation (eqn 1).

Our implementation of Jaatha in R (R Development

Core Team 2009) provides three additional variants of

the optimization procedure, which combine the proce-

dures J1, J2 and J4 described by Tellier et al. (2011) with

the estimation of h described earlier. The R script is

freely available from the website http://evol.bio.

lmu.de/_statgen/software/jaatha/.
Comparison of Jaatha, IM and ¶a¶i

We compare the accuracy of parameter estimations for

h, s, m and q by IM (Hey & Nielsen 2004), ¶a¶i version

1.3.4 (Gutenkunst et al. 2009) and a version of Jaatha

that uses approximation (eqn 1). A simulation study to

compare a variant of Jaatha with MIMAR (Becquet &

Przeworski 2007) and PopABC (Lopes et al. 2009) has

been performed by Tellier et al. (2011). We applied the

three programs Jaatha, IM and ¶a¶i to data sets that we

simulated with Hudson’s ms software for three differ-

ent demographic models, each with three scenarios

described in the following. These scenarios differ in

their number of loci, type of migration (asymmetric or

symmetric) and amount of recombination. For each sce-

nario and population, 100 data sets were simulated

with 25 sequences sampled from each population. The
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parameter ranges and the underlying demographic

models were as described elsewhere (for ms commands

as well as parameter ranges, see Supporting Informa-

tion).

7-loci scenario 100 data sets were simulated

with seven loci, asymmetric migration between popula-

tions and a within-locus recombination rate q chosen

randomly between 5 and 20 per locus (0.005–0.02/bp)

per 4N1 generations where N1 is the effective popula-

tion size of P1, i.e. S. chilense.

100-loci scenario 100 data sets were simu-

lated with 100 loci, symmetric migration between popu-

lations and no within-locus recombination.

1000-loci scenario 100 data sets were sim-

ulated with 1000 loci, symmetric migration between

populations and a within-locus recombination rate cho-

sen randomly between 5 and 20 per locus.

Because IM was designed for data without intralocus

recombination, we applied it to the data from the

100-loci scenario only and reported the HiPt

value. To convert the ms outputs to IM inputs, we

replaced ‘0’ (ancestral state) with ‘A’ and ‘1’ (derived

state) with ‘T’. (Note that h is defined per locus such that

the actual length of the locus does not play a role.) For

each IM run, we used one chain without heating. The

number of burn-in steps was set to 100 000. As IM has a

high demand for computer run-time, this simulation

study was limited to 10 data sets per demographic model.

We restricted the run-time to five weeks per IM run. To

assess convergence we performed two independent runs

with different random seeds for each of the 10 data sets.

¶a¶i was run on all three demographic models and all

three simulation scenarios. The underlying demo-

graphic models and parameter ranges (except for h)

were precisely specified for ¶a¶i analyses. Note that this

is not possible for IM; there, we may neither specify the

parameter ranges precisely nor that while P1 is constant

in size, P2 is not. Parameter estimates that fell outside

the ranges were set to the closest value within the range

for each method.
Application to tomato data

For the two wild tomato species S. peruvianum and

S. chilense, sequences of 7 loci between 0.8 to 1.9 kb in

size were available (Städler et al. 2008). Following Stä-

dler et al. (2008), who found evidence for population

expansion only in S. peruvianum, we limited the analy-

sis to models with growth in one species. Because this

method requires one or more outgroups so that muta-

tions can be classified as either ancestral or derived, we

chose S. ochranthum and S. lycopersicoides as outgroups.

We classified a nucleotide as derived when it was dif-

ferent from the outgroup. We followed this rule also for
positions with multiple hits. In the tomato loci, 7.34%

of the polymorphic sites show three or four different

nucleotides across the sampled sequences including the

outgroup sequences, and therefore, two or more muta-

tional events must have occurred at these sites. For the

simulations in Jaatha’s training phase, we sampled 45

sequences per species, matching the average number of

samples available in the tomato data set. We fit all five

models specified previously to the tomato data and

compared the Poisson-model maximum-likelihood (ML)

values for the models.

Confidence intervals

To assess the uncertainty of the parameter estimates for

the tomato data, we used a parametric bootstrap

approach to calculate confidence intervals. For each

combination of model and estimation method, we simu-

lated 1000 bootstrap replicates using the respective ML

estimates. Each replicate, simulated using the ms pro-

gram (Hudson 2002), contained 7 loci from 45 samples

per population. A normal approximation of the log-

transformed bootstrap results was used to derive the

bias-corrected intervals
h

exp
�

2� b/ � /� � 1:96�rð/�Þ
�
;

exp
�

2� b/ � /� þ 1:96�rð/�
�i

, where b/ is our estimate of

the log-scaled parameter /, /� is the mean and r(/*) is

the standard deviation of the bootstrap results (Efron &

Tibshirani 1993). Additionally, we computed bootstrap

confidence intervals with BCa correction as described

by DiCiccio & Efron (1996). The correction was applied

on the logarithmic scale.

The choice of recombination rate used in the boot-

strap simulations may affect the width of the confidence

intervals. High recombination rates mean that the data

are more independent and lead to lower variance in the

statistics and to narrower confidence intervals. To be

conservative, we used a recombination rate on the low

end of the range of plausible values for this parameter.

Based on our estimates of recombination rates in S. chi-

lense obtained using the LDhat software (Hudson 2001;

McVean et al. 2002; Table S1, in Supporting Informa-

tion), and the values reported by Arunyawat et al.

(2007), we decided to use q ¼ 5 in the bootstrap simula-

tions.

To validate the coverage of the bootstrap confidence

intervals, we performed a metabootstrap analysis. We

simulated 1000 data sets under the best-fitting fixedTau

Model with the estimates for the tomato data (‘true val-

ues’), used Jaatha on them and computed bootstrap

confidence intervals for each of the 1000 resulting

estimates, which involved simulating 1000 · 1000

new data sets. For the recombination rate, we used

q ¼ 10, which is still relatively low compared with
� 2011 Blackwell Publishing Ltd
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the estimates from the S. chilense data (Table S1, in

Supporting Information). We counted the bootstrap

confidence intervals that contained the ‘true value’ of

the parameter.
Model selection and testing

As our models all have the same number of free

parameters, model selection criteria such as AIC or

BIC (Akaike 1973; Schwarz 1978) will always favour

the one with the highest likelihood. Again, a boot-

strap-like simulation strategy can be applied to check

whether a model of higher likelihood fits significantly

better than the others. For example, our analyses indi-

cated nonzero migration rates after the initial diver-

gence of these species. To determine whether this

evidence for introgression was significant, we applied

a likelihood-ratio test. These likelihood ratios are actu-

ally ratios of composite-likelihoods, because the likeli-

hoods were computed for the Poisson model that

neglects linkage between the polymorphic sites. For

this reason and because the models are not nested, we

could not apply v2 approximations to compute P-val-

ues. Instead, we used another simulation-based

approach. Using the ML parameter estimates from

noMig Model assuming no migration (values from col-

umn 5 of Table 1), we simulated 1000 data sets with

q ¼ 5 using Hudson’s ms. We then analysed the simu-

lated data sets with the noMig Model and with the

three models Constant, Growth and Fraction-Growth

(which allow for migration). We calculated the ratios

of the maximum composite-likelihood of the models

allowing for migration and the noMig Model. We com-

pared these likelihood ratios with the corresponding

likelihood ratios from the analysis of the tomato data
Table 1 Estimates for the parameters (bh1 per locus, bq size ratio betwbs divergence time, bs starting size of S. peruvianum immediately follo

bias-corrected confidence intervals estimated using a parametric boots

accelerated (BCa) confidence intervals are given. The log likelihoods

the Constant Model is the worst

Parameter Constant Growth Fr

bh1 9.41 (7.14–12.59)

[6.35–13.92]

10.30 (8.29–13.02)

[7.85–12.20]

12

[9.bq 1.83 (1.23–2.69)

[1.02–2.11]

4.24 (2.58–6.95)

[2.39–6.93]

4.2

[2.bm 0.36 (0.06–4.89)

[0.004–0.79]

0.36 (0.09–2.34)

[0.02–0.71]

0.7

[0.bs 0.41 (0.05–1.82)

[0.18–3.54]

0.37 (0.11–0.93)

[0.17–1.13]

0.7

[0.bs — — —

log-likelihood )189.51 )119.70 )1
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set. The fraction of simulated data sets with a likeli-

hood ratio equal to or higher than the tomato likeli-

hood ratio is then a P-value for the null hypothesis of

no gene flow after the split.

We applied a similar likelihood ratio (LR) test to the

fixedTau Model to test whether the growth of S. peru-

vianum was significant. For this purpose, we modified

Jaatha such that the likelihood was optimized only for

two parameters, setting the founding size of S. peruvia-

num (s) equal to the present-day population size ratio

(q), in the following constant fixedTau Model (cFT). To

assess the power of this test, we simulated 100 data

sets with the parameters as estimated for the tomato

data in the fixedTau Model and q ¼ 10. Then, we

applied Jaatha to the simulated data sets using the

fixedTau Model as well as the cFT Model and calculated

the LRs. With each estimate of the cFT Model 1000

data sets were generated, analysed with both models,

their LR estimated and compared with the original LR.

The proportion of LRs that were smaller than the ori-

ginal LR was taken as a P-value for the null hypothe-

sis cFT. We estimated the power of this test by the

fraction of the 100 simulated data sets for which the

P-value was smaller than 5%.
Results

Comparison of accuracy of parameter estimation by
Jaatha, ¶a¶i and IM

We evaluated the performance of Jaatha in comparison

with ¶a¶i, a composite-likelihood approach, and IM, a

full-data Bayesian method. For the parameter estimates

of h and q, Jaatha and ¶a¶i have similar accuracy

(Fig. 4). Jaatha estimates divergence times reliably,
een S. peruvianum and S. chilense, bm symmetric migration rate,

wing the split) using Jaatha. In round parentheses are the 95%

trap approach. In squared brackets, the 95% bias-corrected and

(bottom rows) indicate that the fixedTau Model fits best, while

action-Growth noMig fixedTau

.56 (9.61–16.38)

29–15.47]

13.34 (10.29–17.35)

[9.97–16.60]

12.22 (9.37–15.09)

[9.47–15.01]

9 (2.71–6.38)

66–5.93]

8.67 (5.34–15.00)

[4.46–10.72]

4.94 (3.28–7.85)

[3.25–7.70]

3 (0.39–1.27)

36–1.17]

0 0.55 (0.22–1.03)

[0.16–0.96]

9 (0.37–1.63)

39–1.76]

0.14 (0.10–0.23)

[0.10–0.24]

0.36

0.44 (0.18–0.98)

[0.16–0.90]

0.33 (0.11–1.10)

[0.08–0.81]

01.58 )133.06 )93.96
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Fig. 4 Ratio of estimated to true values by ¶a¶i and Jaatha of four parameters across models and methods for 100-loci
scenario. The 100 simulated data sets were generated without intralocus recombination.
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especially when divergence times are so low that other

methods fail, i.e. s < 0.3 (Figs 4 and 5a). For data sets

with low divergence times, ¶a¶i systematically estimates

the most extreme s and m, which explains the large
variances of these two estimates by ¶a¶i in Fig. 4, and

Figs S1 and S2 (Supporting Information). Migration rate

estimates are similar between Jaatha and ¶a¶i, although

¶a¶i has a slight tendency to overestimate migration
� 2011 Blackwell Publishing Ltd
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Fig. 5 The values estimated by Jaatha (s), IM (· for ESS > 100) and ¶a¶i (D) of (a) divergence time and (b) migration plotted against

true values for the 100-loci scenario of the Constant Model where true s < 0.3.
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when divergence is recent (i.e. for low s; Figs 4 and

5B). The accuracy of ¶a¶i improves as s increases.

To compare our method with IM, we analysed simu-

lated data sets of 100 loci with no intralocus recombina-

tion. Owing to the computational demands of IM, this

analysis was restricted to ten data sets. For the IM anal-

yses, we executed two independent runs of each data

set and evaluated their convergence using the effective

sampling size (ESS). The numbers of nonconverging

runs based on the criterion ESS > 100 were two for the

Constant Model, four for the Growth Model and seven for
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Fig. 6 Arrow plots of divergence time and migration for (a) 7 loci an

species and symmetric migration rates using Jaatha. The true values

the estimated values are at the heads of each arrow. Short arrows, a

arrows indicate that s is estimated precisely but m is not. The circle is

� 2011 Blackwell Publishing Ltd
the Fraction-Growth Model. Overall, IM estimates h and q

more accurately than ¶a¶i and Jaatha; however, IM

tends to overestimate the divergence time and migra-

tion rate (Figs S3 and S4, in Supporting Information).
Comparison of different versions of Jaatha

In Tellier et al.’s (2011) study, an earlier version of Jaa-

tha with other optimization procedures (J1 ) J4) is

examined, where J3 corresponds to the method

described earlier. As the number of sampled loci
b)
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s in the 1000 loci case, represent accurate estimates. Horizontal

the estimated value for the tomato data under this model.
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increases, our method gets more accurate, with the J4

method showing the greatest improvement (Fig. 6 and

Fig. S5A,B, in Supporting Information). These arrow

plots are from the analyses of 225 simulated data sets

for both 7 and 1000 loci under the Growth Model with

symmetric migration and q uniformly drawn between 5

and 20. For the simulations, we combined 15 different

values for the migration rate m with 15 different values

for the divergence time s. For the parameter h1 and the

population size ratio q, we used the J4 estimates

obtained for the tomato data with the fixedTau Model

(Table S2, in Supporting Information), bh1 ¼ 13:08 andbq ¼ 4:64. Jaatha was applied to estimate all four param-

eters h1, s, m and q (results for h1 and q not shown).

Each arrow in Fig. 6 and Fig. S5 (Supporting Informa-

tion) represents the estimation error for one simulated

data set. The co-ordinates at the tail of the arrow are

the values of m and s that were used for the simulation.

The co-ordinates of the arrowheads are the estimates

for m and s given by Jaatha. Thus, the length of the

arrow is a measure for the estimation error. Arrows

parallel to the migration rate axis indicate precise s esti-

mates with imprecise estimates for m (Fig. 6). These are

frequent for s < 0.05. With 1000 loci, divergence times

are also difficult to estimate when s and m are high but

this gets better when J4 or the multinomial model for

the likelihood estimation is used (Fig. S5, in Supporting

Information). The more thorough optimization methods,

J3 and J4, are superior when many loci are available (i.e.

>100). For data sets with few loci, the very fast optimi-

zation methods, J1 and J2, are as accurate as the more

thorough procedures (data not shown).

The observed differences in accuracy were negligible

between the default Jaatha method (J3) and the variant

J-mul that uses the multinomial approximation (eqn 2)

in the studies of 7 loci (Figs S1 and S5C, in Supporting

Information and Fig. 6a). For some simulations with

1000 loci, the J-mul estimates for size ratio q and diver-

gence time s were slightly more accurate than those of

J3 (Figs S2 and S5D, in Supporting Information and

Fig. 6B). However, this improvement does not exactly

match what can be achieved by using a more thorough

numerical optimization procedure (Fig. S5B, in Sup-

porting Information).
Application to tomato data

For the two wild tomato species S. chilense and S. peru-

vianum, sequences of seven housekeeping loci between

0.8 and 1.9 kb in size were available (Städler et al.

2008). The point estimates for the different parameters

of models and estimation methods are shown in

Table 1 and Table S2 (Supporting Information). The

observed marginal site-frequency spectra (SFS) for the
two populations and their expectation values for all

models (approximated by averageing over 100 indepen-

dent simulations) are shown in Fig. S6 (Supporting

Information).

Consistent results across all models are that S. peru-

vianum has experienced a size expansion (i.e. bq > 1)

and is currently larger than S. chilense (at least 1.7 · the

size). All models also require nonzero estimates of

migration to explain the high amount of shared poly-

morphism between the two species. In the model that

assumes no migration, extremely short divergence times

are required to offset the lack of ongoing migration (i.e.

less than half of the divergence time as in the other

models).

The estimates for the tomato data are located near a

region of long arrows indicating low certainty in

parameter estimates in this range (Fig. 6). This under-

lines the importance of considering confidence intervals

for the estimates. In a metabootstrap analysis, we

assessed the reliability of the 95% bootstrap confidence

intervals given in Table 1. For the parameters h1, q and

m the coverage was 94%, 94% and 97%, which means

that the bootstrap confidence interval is acceptable as

approximate 95% confidence intervals. The estimated

coverage of the bootstrap confidence intervals was only

92% for s (starting size of S. peruvianum). We also com-

puted bias-corrected and accelerated (BCa) bootstrap

confidence intervals (Efron & Tibshirani 1993), which

takes into account that the variance of an estimator can

depend on the true parameter value and applies a cor-

rection that is based on the skewness of the bootstrap

results. In most cases, using the BCa confidence inter-

vals improved the coverage (h1: 95%, q: 93%, m: 95%,

s: 94%). The BCa intervals for the tomato data (Table 1,

squared brackets) show little difference to the BC inter-

vals in all but three cases, bm of Constant and Growth

Model and bs of the Constant Model. Because the boot-

strap results are not symmetrically distributed around

the mean, in the case of bm, the BCa intervals are smaller

or, in case of bs, larger.

To our surprise, the model having the highest likeli-

hood indicated that gene exchange between the two

tomato species continued after their initial divergence.

The (composite-) likelihood ratios favoured models with

gene flow after the population split (Growth and Frac-

tion-Growth Model) over the noMig Model without gene

flow after the split. In fact, the poorest fit to our data is

that of the Constant Model, which does not incorporate

population expansion in S. peruvianum. The negative

log likelihood-ratios in Table 1 show that this model

fits even worse than the noMig Model. We confirmed

that the models with gene flow and growth of S. peru-

vianum fit significantly better than the noMig Model by

comparing the observed log likelihood-ratio with the
� 2011 Blackwell Publishing Ltd



Table 2 Log likelihood-ratios of models with migration to

noMig Model applied to the tomato data. Positive values indi-

cate that the model with migration is a better fit to the data

than one without. In the third column, the ranges of log

likelihood-ratios (‘LR) of 1000 simulated bootstrap replicates

are given. In the fourth column (P-value), the proportion of

bootstrap ‘LR that were bigger than or equal to the corre-

sponding tomato ‘LR are given

Model compared

with noMig

tomato

‘LR

range of

bootstrap ‘LR P-value

Constant )53.12 [)136, )9] 0.272

Growth 13.31 [)68, 22] 0.003

Fraction-Growth 35.21 [)86, 59] 0.003
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distribution of log likelihood-ratios from the corre-

sponding bootstrap data sets (P < 0.003 for Growth and

P < 0.003 for Fraction-Growth Model, Table 2). We

repeated this likelihood-ratio test with six different

HKY model parameter settings (Hasegawa et al. 1985)

with the base frequencies estimated from the tomato

data to see whether finite sites models would yield the

same results. The finite sites models differed in their

transition–transversion (ts/tv) ratio (estimated from the

data, values used: either 2 or 3) and the gamma shape

parameter a (0.2, 0.3, 0.6). The latter models mutation

rate heterogeneity between the sites, with smaller val-

ues of a causing more heterogeneity. The recombination

rate was set to q ¼ 20. The incorporation of finite sites

did not change the results significantly. The only differ-

ences from the earlier analyses were that the P-values

were slightly larger for the Growth Model (P < 0.004)

and the P-values for the Fraction-Growth Model were

smaller (P < 0.001), except for the case where ts/tv

ratio ¼ 2 and a ¼ 0.2 (P ¼ 0.07). However, an a of 0.2 is

an extreme value as values of a ranged from 0.46 to

1.09 across loci based on the best-fitting model

(GTR + G + I) according to Modeltest (Posada & Cran-

dall 1998).

To examine the power of a Jaatha-based test for pop-

ulation growth, we simulated 100 data sets under the

fixedTau Model and applied a simulation-based test with

the constant fixedTau Model, where no population

growth was allowed, as the null hypothesis. In all 100

cases, we obtained a significant result (P < 0.001), cor-

rectly favouring the model including growth over the

model without growth. For the tomato data, we

obtained a highly significant result as well (P < 0.001).
Discussion

In this study, we introduce a new algorithm, Jaatha, for

inferring population genetic parameters from DNA

sequence data. In most of our simulation studies, Jaatha
� 2011 Blackwell Publishing Ltd
gave comparable results to other programs (IM and

¶a¶i) and, for low divergence times (e.g. 0.017–0.15

measured in 4N1 generations), Jaatha even outper-

formed other programs. One possible explanation why

¶a¶i had difficulty estimating parameters when diver-

gence times are recent may be that the JSFS looks simi-

lar to that in the case of high divergence time and high

migration rates, and it is therefore difficult to distin-

guish between these cases (R. Gutenkunst, personal

communication). Furthermore, although our method is

based on the assumption of the independence of sites,

its accuracy is not compromised when used on data sets

of sufficiently many unlinked loci with limited or no

within-locus recombination (e.g. Fig. 4 and Fig. S3, in

Supporting Information). Thus, Jaatha may be a fast

and reliable alternative to currently available full-likeli-

hood methods and offers a solution when no suitable

full-likelihood method is available.

Jaatha can be run using four different optimization

methods, J1 ) J4, where J3 is described in this manu-

script. When only few loci are available for analysis, J3

provides a good compromise between run-time

( < 15 sec) and accuracy. For data sets with more loci,

the more precise optimization J4 gives the best results

and should be the method of choice. A variant of Jaatha

(J-mul) that uses the multinomial approximation (eqn 2)

instead of the Poisson approximation (eqn 1) to com-

pute the composite-likelihood is slightly more accurate.

This results from the way in which we estimate h1. In

upcoming versions of Jaatha, we plan to estimate h1 in

the same way as with other parameters, which means

that the exact equation for the composite-likelihood will

be analogous to the Poisson approximation (eqn 1).

The current version of Jaatha was intended as a proof

of concept for fast and simple parameter estimation

procedures in population genetics. However, our appli-

cation of Jaatha to an analysis of divergence between

two closely related wild tomato species shows that Jaa-

tha can be readily applied to draw biologically mean-

ingful conclusions from actual data. However, because

our simulation studies indicate that analyses based only

on a limited number of loci (e.g. seven or fewer) are

challenging for accurate parameter estimation, we con-

sider our parameter estimates for the wild tomato spe-

cies as preliminary. Based on the best-fitting model

(fixedTau) and a mutation rate of 5.1Æ10)9/site/year at

silent sites (Roselius et al. 2005) and a total length of all

loci excluding gaps of 8844 bp (954 SNPs), the split

time between these two species is either 730 000 years,

if we assume one generation per year, or 	5.1 million

years, if we assume a generation every 7 years. The

exact generation time of these species is not known.

These species are short-lived perennials and have a via-

ble seed bank (R. Chetelat, personal communication).
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Seed germination and fecundity are likely affected by

El Niño and La Niña cycles, and therefore, two differ-

ent generation times were considered [see also Roselius

et al. (2005) and Arunyawat et al. (2007)]. According to

the best-fitting model, the effective population size of

S. chilense is 	72 000. All models indicate that S. peru-

vianum is larger than S. chilense, although we also

allowed for population shrinkage of S. peruvianum.

These results are consistent with the conclusions made

by Städler et al. (2005). Our estimated size ratio

between these two species ranges from 1.83 to 8.67,

including values close to those estimated previously by

Städler et al. (2005). Our highest values for this size

ratio emerge from the model without migration. This

model also has the smallest estimated divergence time,

which is required to explain the high proportion of

shared polymorphism between these species, if migra-

tion is excluded. In contrast, from the Fraction-Growth

Model, in which the population size of S. peruvianum is

set to 5% of the size of S. chilense population at the

time of the split, we recover the largest values for diver-

gence times. Higher values of s are needed to explain

the present-day differences in population sizes between

these species, because S. peruvianum has the larger pop-

ulation size, but was forced in the Fraction-Growth Model

to be much smaller at the time of the splitting event.

The metabootstrap analysis showed that the coverage

of the bias-corrected bootstrap confidence intervals

depended on the parameter estimated and is close to

the target value of 95% (h1: 94%, q: 94%, m: 97%). For

the parameter s, the initial population size of S. peruvia-

num, of the fixedTau Model, the coverage of the boot-

strap confidence intervals was slightly poorer (92%).

The bootstrap confidence intervals with BCa correction

showed satisfactory coverage for all four parameters

(h1: 95%, q: 93%, m: 95%, s: 94%).

All models estimate nonzero migration rates, indicat-

ing that some gene flow was likely following the initial

divergence between these species. With a simulation-

based hypothesis test, we showed that there is signifi-

cant evidence for population growth in S. peruvianum

(P < 0.001) and also for post-divergence migration

(P < 0.003). The simulation-based approach with multi-

ple finite site models yielded similar significant results.

We were surprised to find significant evidence for gene

flow after the species split as although contemporary

populations of these species are sympatric, no hybrids

between these have been reported in the field (R. Chet-

elat, personal communication). Furthermore, forced

hybridizations between these species result in small

inviable seeds with underdeveloped embryos and endo-

sperm (Rick & Lamm 1955). One possible explanation

for the signature of gene flow following the split is that

the accumulation of the present-day hybrid barriers
was a gradual process and that some hybridization took

place during the early stages of the divergence process.

Hybridization likely became less and less common with

the acquisition of proper speciation barriers, which are

currently in place. The incorporation of haplotype infor-

mation into Jaatha may allow us to distinguish between

hybridization that took place more recently and less

recently. We would expect that more recent hybridiza-

tion would contain recognizable haplotypes brought

into the sister species through migration, while recom-

bination would have obliterated shared haplotypes if

hybridization occurred early on in the divergence pro-

cess (Machado et al. 2002).

Because our simulation studies show a remarkable

improvement in accuracy when the number of loci is

increased, we aim to develop and analyse a much larger

data set for this pair of tomato species (Fig. 6 and

Fig. S2, in Supporting Information). This will serve as a

cornerstone for future studies looking at the molecular

evolution of genes underlying ecologically relevant traits

such as parasite resistance. Another limitation of the cur-

rent data set is the sampling regime as discussed by Stä-

dler et al. (2009), in which individuals from four

geographically isolated populations per species were

studied. Although this is a very good starting point for

genetic studies, this is not the preferred sampling

scheme for establishing historical demography. Either

the species should be sampled on a species-wide level or

the structure the sampling scheme introduces (i.e. when

local populations are sampled) should be accounted for

in the underlying model. Therefore, it will be one of our

next steps in the further development of Jaatha to take

substructure of the two species into account.

In our simulation studies, we focused on scenarios in

which the assumption of infinite sites is met and only

four parameters are to be estimated. The assumption of

infinite sites is rarely fulfilled in real data sets, and this

assumption is known to be violated in the data set from

wild tomatoes. However, the current version of Jaatha

is only applicable if these two constraints are met,

namely infinite sites and estimation of a maximum of

four parameters. In this respect, IM and ¶a¶i are more

flexible. Both can be applied for the joint estimation of

more than four parameters. Moreover, IM can take into

account back-mutations and multiple hits using the

HKY model for sequence data (Hasegawa et al. 1985) or

a stepwise-mutation model for microsatellite data (Kim-

ura & Ohta 1978). Even though the current version of

Jaatha estimates four parameters, the optimization step

operates on a cube of only three dimensions. This is

possible because we apply a method of moments to

estimate h1 which we can seamlessly combine with the

composite ML estimation of the other three parame-

ters because the expectation values of the JSFS are
� 2011 Blackwell Publishing Ltd
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proportional to h1. The latter applies only under infinite

sites assumptions. Thus, allowing for finite sites muta-

tion models in Jaatha will expand the search space by

at least one dimension.

Future versions of Jaatha will also offer the option to

jointly estimate more than four parameters. In this

mode, however, it will not be feasible to perform a pri-

ori all simulations that are necessary to approximate the

composite-likelihood function on a fine grid of parame-

ter combinations. Instead, we will start with a very

coarse grid or randomly chosen combinations of param-

eter values and sample locally from a finer grid as

required during the optimization procedure. Of course,

the parameter optimization phase of Jaatha will take

noticeably longer if more than four parameters are

jointly estimated. For a Bayesian version of Jaatha, we

plan to build upon ideas from MCMC-ABC (cf. Beau-

mont et al. 2002; Marjoram & Tavare 2006; Wegmann

et al. 2009; Leuenberger & Wegmann 2010). Jaatha

already has in common with ABC methods that the

(composite-) likelihood function is not computed but

estimated from simulation runs. This makes it very easy

to implement changes into the method. Likewise, the

choice of summary statistics is of crucial importance.

The 23 JSFS-based summary statistics worked well for

our purposes but it may be possible to further optimize

the set of summary statistics by applying PLS (Weg-

mann et al. 2009) or the method of Joyce & Marjoram

(2008) to the JSFS and to haplotype-based statistics.

In our simulation studies, parameter estimates from

data sets with a limited number of independent loci (10

or fewer) were quite inaccurate. We conjecture that this

is not the result of poor performance of the numerical

estimation procedures, but rather because these ‘small’

data sets do not contain sufficient information. Thus, it

is questionable whether one should try to estimate more

than four parameters from such data sets and whether

it is worthwhile to apply sophisticated and run-time-

intensive estimation procedures. In contrast, when data

from 100 or 1000 independent loci are available, our

simulation studies indicate that simple and fast meth-

ods like Jaatha can estimate a limited number of param-

eters with satisfying accuracy. Full-data methods like

IM, which do not rely on summary statistics, are per-

haps most useful for data sets with an intermediate

number of independent loci. For cases with either very

low or very high numbers of independent loci, sum-

mary-statistic-based methods like Jaatha may be an

alternative to get fast results of reasonable accuracy.
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Table S1 Estimated recombination rates with LDhat for S. chi-

lense loci—Recombination rates per locus and per 4N1 genera-

tions estimated with LDhat (Hudson 2001; McVean et al. 2002)

using the S. chilense sequences and hsite ¼ 0.01.

Table S2 Estimates for parameters of models fitted to tomato

data. Estimates for the parameters (ĥ1 per locus, q̂ size ratio

between S. peruvianum and S. chilense, m̂ symmetric migration

rate, ŝ divergence time, ŝ starting size of S. peruvianum right

after the split) using the J1, J2, J4, and multinomial estimation

methods. In parentheses are the 95% BC-confidence intervals

estimated using a parametric bootstrap approach. The log-

likelihood (bottom rows) are calculated using the Poisson

model and indicate that the fixedTau Model fits best while the

Constant Model is the worst.

Fig. S1 Ratio of estimated to true values by ¶a¶i, Jaatha, and

Jaatha with the (composite-) likelihood estimation based on a
� 2011 Blackwell Publishing Ltd



ESTIMATION OF DEMOGRAPHIC PARAMETERS 2723
multinomial model (J-mul) of four parameters, across models

and methods for 7-loci scenario.

Fig. S2 Ratio of estimated to true values by ¶a¶i, Jaatha, and

Jaatha with the (composite-) likelihood estimation based on a

multinomial model (J-mul) of four parameters across models

and methods for 1000-loci scenario.

Fig. S3 Ratio of estimated to true values of four parameters

across models and methods for 100-loci scenario (no

recombination). IM results with ESS <100 are not included in

the boxplots but drawn in additionally(D). Results for ¶a¶i and

Jaatha with the same 10 simulated datasets for Constant,

Growth, and Fraction-Growth Models are shown.

Fig. S4 Estimations of the four parameters using the three

methods: Jaatha (o), ¶a¶i (D), and IM (· for ESS > 100; + for

ESS < 100 of that variable). These methods were applied to 10

simulated datasets each with 100 loci, without intralocus

recombination. Shown are the estimations assuming three dif-

ferent underlying demographic models.
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Fig. S5 Arrow plots of divergence time and migration for

seven and 1000 loci under the Growth Model with 45 samples

per species and symmetric migration rates with J4 (A and B, as

in Tellier et al.) and Jaatha using a multinomial approximation

(J-mul) for the composite-likelihood (C and D). The circle is the

estimated value for the tomato data under this model. Each

estimation in A and B took on average 15 minutes and in C

and D only 15 seconds.

Fig. S6 The marginal site frequency spectra (SFS) for the

tomato data and the average of 100 simulated data sets with

each seven loci for the tested five models fixedTau, noMig, Con-

stant, Growth, and FractionGrowth. The line represents the

expected SFS of the neutral Wright-Fisher Model of constant

size without migration (Fu, 1995).
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