
Introduction to UNIX Notes . . . . . . . . . . . . . . . . . . . . . . . . . . Alistair Blachford

A Quickie Intro to UNIX, Linux, MacOSX

The Filesystem + some tools
For Snooping Around

1) pwd
• print the working directory

2) ls
• list names of the files and subdirectories in the current directory
? ls -F

list directory contents, with terminating marks to indicate subdirectories and executable
files.

? ls -a
list all files, even those begining with a ‘.’

? ls -l
list files in ‘long’ form giving a lot of information about each one

3) cd dirname
• change the current working directory to dirname
? cd data.d

change whatever the current working directory is to the directory data.d. This example
assumes data.d is a subdirectory (child) of the current directory.

? cd ..
change working directory to the one immediately above (parent).

? cd
cd with no arguments means go to the default place — your home directory

4) who
• print the list of users currently logged onto this computer

5) date
• print the date and time

6) cat filename...
• “copy all text” of filename(s) to the screen. When more than one filename is given, the

files are concatenated end-to-end.

7) more filename
• will “cat” a file to the screen, one screenfull at a time. Hit <return> to advance by only

one line, <space bar> to advance by a screenfull, and <q> to quit.

8) file filename
• this will make a good guess at what is contained in the file filename. Some possible

responses are: binary data, ASCII text, C program text, shell commands text.

1



Introduction to UNIX Notes . . . . . . . . . . . . . . . . . . . . . . . . . . Alistair Blachford

For Shuffling Files

9) rm file..
• remove the files given in the list file..
? rm data.1 data.2

removes the files data.1 and data.2

10) rmdir dirname
• remove a directory
? rmdir data.d

remove the directory data.d. The directory to be removed must be empty (see rm).

11) mkdir dirname
• make a directory
? mkdir data.d

make the directory data.d. The parent will be the current directory.

12) mv file1 file2
• moves file1 to file2. The effect is to change the name of the file file1 to file2.

mv file.. dirname
• moves the file(s) into directory dirname. Originals “disappear". The moved files retain

modification time, ownership and everything else.

13) cp file1 file2
• copy the contents of file1 into file2. If file2 exists it will be overwritten, so be careful.

Copying a file onto itself doen’t work.
cp file.. dirname
• puts copies of the file(s) into directory dirname. Originals remain untouched.

Miscellaneous

14) lpr file..
• copies files to the line printer

15) echo arguments
• echoes all of its arguments, exactly as it sees them
? echo hi there

this should echo hi there on your terminal screen.

16) head filename
• print the first 10 lines of the file filename

17) tail filename
• print the last 10 lines of the file filename

18) wc filename
• “word-count” actually returns three numbers: number of lines, number of ‘words’

(bunches of characters separated by spaces), and number of characters (includes space
characters).

2



Introduction to UNIX Notes . . . . . . . . . . . . . . . . . . . . . . . . . . Alistair Blachford

Redirecting Output

Programs usually read input from somewhere and write output to somewhere. By default
UNIX commands usually read from the terminal keyboard (standard input) and write to the termi-
nal screen (standard output). But you will often want output to go into files or directly into other
commands or programs. The UNIX shell helps you to redirect standard input and standard output
very simply.

19) program > file
• redirects standard output into a file. Any UNIX command that writes on standard output

can have its output written into a file instead.
? echo I like spiders and snakes > critters

causes the string “I like spiders and snakes” to be entered into the file named “critters”.
The redirector ‘>’ clobbers or creates — anything already in critters would be lost.

20) program >> file
• redirects standard output into a file. Same as a single ‘>’, but does not clobber existent

files. Instead the output is appended to the end of the file.
? echo Birds are covered with icky feathers >> critters

causes the string “Birds are covered with icky feathers” to be appended to the end of the
file named “critters”.

21) program1 | program2

• redirects standard output into another program, or command. This ‘|’ is called a “pipe”,
and the sequence of linked programs is a “pipeline”. Many programs serve as filters: they
acquire input, change the data somehow and write the results on standard output. The
UNIX pipeline allows you to easily combine filter ‘tools’, each with a clearly defined
function, into a sequence to perform a particular, more complex task. This is one of the
features that makes UNIX especially nice to use.

? echo pipelines are versatile | lpr
Prints “pipelines are versatile” on the line printer. Wow! A pipeline can be a lot longer
than this, with more than two linked commands or programs.

The ‘Toolbox’, Metacharacters and Permissions

The success of the UNIX operating system is due largely to its flexibility which, in turn,
springs mainly from its philosophy of software modularity — its ‘toolbox’ approach to computing
utilities. These ‘tools’ are so varied, and so flexible, that it is difficult to conceive of a text or data
manipulation problem that cannot be accomplished using them. Programming in languages such
as C or Java is almost never needed for such tasks.

The commands man and man -k make it easy to find and use these program tools. If you don’t
know the name of the command that might solve your problem, then use the man -k command.
Type:
man -k topic

3



Introduction to UNIX Notes . . . . . . . . . . . . . . . . . . . . . . . . . . Alistair Blachford

where topic is a word that you guess, and that is relevant to your problem. man -k will give you
a list of the commands and command-descriptions that contain your word topic somewhere within
them. This is a crude procedure, but it is often effective.

Once you know the command name, and you want to know more about it, or how to
use it, look it up in the UNIX Programmer’s Manual. An on-line copy of the UPM is
available through the man command. To find out more about it, use it on itself by typing
man man

File Permissions
give you total control over who can do what with your files. There are 3 kinds of permissions

(read, write, execute) for 3 different groups of people (you, your group, the world). To check the
permissions on thisfile, issue the command
ls -l thisfile

and inspect the string of characters at the beginning of the line. It potentially can be
rwxrwxrwx

which means that all three categories of people have read, write, and execute permision. Most files
are created by default as
rw-r--r--

meaning that the owner has read and write permission, and all other people can only read it. Read
permission means that a file can be copied and printed. Write permission allows modification or
removal of the file. If a file has execute permission, it can be invoked as a command simply by
typing its name.

File permission “modes” are changed using the chmod command.

Metacharacters
or “wild card characters” are short cuts to save typing time and hassle. Let’s say you are in a

directory that contains the following files (as revealed by ls):
file1 file2 filethree filex junkola

* matches any pattern. Examples:
rm * (would remove all of the files! BEWARE!)
rm j* (removes “junkola”, only)
rm *h* (removes “filethree”, only)

? matches any single character. Example:
rm file? (removes files “file1”, “file2”, and “filex”)

[list of possibles]Examples:
rm file[2x] (removes only “file2” and “filex”)

[c1-c2] matches any character in the range between character “c1” and character “c2”, inclusive.
Possible ranges are [0-9], [A-Z], [a-z], and subranges within them. Examples:
rm file[1-5] (removes only “file1” and “file2”)
rm file[a-z] (removes only “filex”)

So LOOK OUT for metacharacters in your command arguments. If you want to avoid their spe-
cial meanings, precede them with a backslash (\), or surround the argument with single quotes.
Examples:

4



Introduction to UNIX Notes . . . . . . . . . . . . . . . . . . . . . . . . . . Alistair Blachford

echo \*, and echo ’*’ both print a * character.
echo * will print all the filenames in the directory, because it is those names that the shell tries
to match patterns with, and * matches any pattern.

22) grep pattern filename
• prints out all of the lines in file filename which include the pattern pattern.
? grep gizmo *

prints all the lines with gizmo in them from all files in the current directory.
? grep fish references

is the command you would use if you had a file containing all of your references, and
you wanted a list of all the articles dealing with fish. This command would print out all
of the lines in the file references which had the word fish on it.

More On Redirection
Yesterday we looked at output redirection, and saw that the stream of information coming

out of a program (on “standard output”) could be deflected away from the screen (the default) and
into a file with ‘>’, onto the end of a file with ’>>’, and fed to another program as input with ‘|’.
Sometimes it is nice to have output come to the screen AND go into a file, at the same time. So we
use tee. tee is always used in a pipeline. Example:

who | tee whoison prints the output of who on the screen and puts the output of who into
the file whoison.

So what about INPUT redirection? It can be done also. Most UNIX commands allow you
to name the input file as one of the command arguments. If don’t name an input file, most UNIX
commands will look to the terminal keyboard for their input. From the terminal you then type the
‘input file’, and then end your input file with a <control>d. Example:

cat > junk
is missing the name of the file to be cat-ed into the file junk. UNIX stares at you without giving a
prompt. So you type:

socks shoes
undies pants
shirt pants
pants shoes
<control>d

And now you will have your familiar UNIX prompt back, and junk will contain the stuff you typed.

Commands that normally seek input from the terminal can be told to take their input from
a file with a ‘<’. You will need this more often for your own programs than for standard UNIX
commands. Anyway,

tsort < junk > getdressed
works. Now you know how to get dressed in the morning. Wondering what tsort does? Use the
man command! This was just a weird example of the many different UNIX tools available on any
mechine running UNIX, Linux, Mac OSX, Irix, Solaris, FreeBSD, Cray OS ...

A very brief intro to a handy editor present on all of the above operating systems can be found
on the next page.

5



Introduction to UNIX Notes . . . . . . . . . . . . . . . . . . . . . . . . . . Alistair Blachford

vi — the visual editor

WARNING: Some people hate vi.

Other people really like this editor. In an effort to steer beginners toward this latter category
(liking vi), here is a short introduction.

What drives some people crazy about vi is that it has two modes: command mode and insert
mode. In command mode, keystrokes are interpreted as orders for moving around the file, for
deleting pieces of the file, or for entering insert mode. While in insert mode, all keystrokes are
entered into the file (even control characters) with one exception . . . escape. Escape returns you to
command mode.

So what some people hate is that every once in a while they issue a command while insert
mode, and find their command entered into the file rather than acted upon! vi afficionados point
out that pressing the <esc> key to leave insert mode before issuing a command soon becomes
habit. And why put up with two modes? Because it means that most commands can be mnemonic
— making them easy to remember, and avoiding the need for drop-down menus or other help to
remind you of weird character sequences needed to accomplish routine operations. As examples,
dw deletes a word, 3dw deletes 3 words, fx moves you forward along a line to character x, and :wq
writes your entire file and quits vi.

The following small subset of vi commands will allow you to do just about anything. When
you’ve mastered these, Google for slightly more extensive cheat sheets for faster and faster ways.

vi file calls vi and starts you off in command mode.
Use <space>, <backspace>, and arrow keys to move the cursor around.

0 put cursor at the beginning of the line.
$ put cursor at end of line.

/pat scan for your chosen pattern pat.
x delete a character, i.e. cross it out!

dd delete entire line on which the cursor sits (sorry, not mnemonic)
u undo. Will undo the last change you made to the file.

:wq write and quit, i.e. save the file with the modifications just made
:q! quit without changing/creating the file

a append. Insert text after cursor. Enter insert mode.
i insert. Insert text before cursor. Enter insert mode.
o open line below the line containing the cursor. Enter insert mode.

O open line above the line containing the cursor. Enter insert mode.
<esc> escape (leave) insert mode, enter command mode. Use when in doubt.

vi (and vim, “vi improved") is a standard editor on UNIX systems of all sizes. It is also
available on virtually all other operating systems (e.g. gettable for free even for Windows).

6



Introduction to UNIX Notes . . . . . . . . . . . . . . . . . . . . . . . . . . Alistair Blachford

50 Nifty Commands

at queue jobs for later execution

awk / gawk pattern-directed scanning and processing (re-format data)

cal displays a calendar

chmod change file modes

cmp compare two files

comm select or reject lines common to two files

crontab / launchctl schedule commands to run automatically

date display or set date and time

df display free disk space

diff find differences between two files

du display disk usage statistics

echo write arguments to the standard output

expr evaluate expression

file determine file type

find walk a file hierarchy

grep, egrep, fgrep print lines matching a pattern (or not)

gzip, gunzip, zcat compress or expand files

head display first lines of a file

join relational database operator

kill terminate or signal a process

locate find filenames quickly

lpr print a file (line-printer / laser printer?)

man format and display the on-line manual pages

mkdir make directories

7



Introduction to UNIX Notes . . . . . . . . . . . . . . . . . . . . . . . . . . Alistair Blachford

more / less pager

open like double-clicking on files/ directories

passwd modify a user’s password

paste merge corresponding or subsequent lines of files

pbcopy, pbpaste provide copying and pasting to the Clipboard (Mac)

ps process status

pwd return working directory name

rm remove directory entries

rmdir remove directories

scp secure copy (remote file copy program)

screen screen manager for background jobs

script make typescript of terminal session

sed stream editor

sh command interpreter (shell)

sort sort lines of text files

ssh SSH client (remote login program)

tail display the last part of a file

tar tape archiver; manipulate tar archive files

tee clone/split standard output

test condition evaluation utility

top display updating information about running processes

tr translate characters

uniq report or filter out repeated lines in a file

vi text editors, along with ex and view

w “what’s up", summary of who is on, and system activity

wc word, line, character, and byte count

8



Introduction to UNIX Notes . . . . . . . . . . . . . . . . . . . . . . . . . . Alistair Blachford

Shell Scripts
Shell scripts

- are just text files containing UNIX commands
- can be used as commands once they are made executable by chmod +x script
- use a different “language” depending on the particular shell that will execute them

Different shells
- Shells themselves are programs that read from standard input and write to standard output.

The function of a shell is that of a command interpreter to help you specify, easily, what work
you would like done. For different purposes you may use whatever shell program you think
is most convenient. Some popular shells:

- sh
the original UNIX shell written by Bourne. Unless you specify otherwise, UNIX systems
will assume that your shell script is written in the syntax of the Bourne shell.

- csh
written by Bill Joy (the vi guy), the C-shell was intended to feel more like the C language
and thus more familiar to many programmers. Its innovative interactive features made it
the default interactive shell (the one you get when you login) on all UNIX systems. But
sh is easier to program.

- bash
from the GNU project, this is the “Bourne again shell”. It programs like sh and has the
interactive features of csh, plus more. It is standard on Linux systems.

- you can change shells any time just by running the one you want
- you can change your default shell with chsh.

Programming with programs
- Multiple commands on a line are separated by a semi-colon (;)
- Split up a line by typing a backslash (\) just before you hit a <return>
- Standard output generated by commands within backquotes (‘ ) stays right there between the

backquotes. So the output of echo The date and time are: ‘ date‘ produces:
The date and time are Mon 21 Feb 2011 17:06:50 PST

- You can do more than just list UNIX commands or chain them together in a linear pipeline (as
totally cool as pipelines are). Shell programs have all of the control structures of high level
computer languages, such as if-then, for-loop, while-loop and even a case statement.

- The condition part of an if or while statement is not a boolean value. It is a command. If the
command returns an exit status of 0 (meaning “I worked”) then it functions as a “true”.

9



Introduction to UNIX Notes . . . . . . . . . . . . . . . . . . . . . . . . . . Alistair Blachford

Interactive UNIX
Configuring Your UNIX Environment

The files “.cshrc” and “.login” in your home directory contain instructions for setting up your
computing environment (assuming your default shell is csh). The file “.cshrc” is read any time
you start a csh. This happens more often than you may think. For example, if you run a UNIX
command from the command line in vi, it is run in a separate shell. The “.login” file is run after
“.cshrc” when you first log in. By customizing these files you can tailor UNIX to your own tastes.
Shell variables and aliases are the features you will want to alter most frequently.

SHELL VARIABLES can be “set” or defined with the statement
set varname=expression

Now the shell variable varname can be used anywhere except within single quotes simply by
preceding it with a $ sign. (So, if you don’t want the shell to try substituting when it sees a $
sign, use single quotes. A backslash before the dollar sign also works). Suppose we save our large
database files in the directory /db/demo, and often have to go there. If the line

set g=/usr/games
appeared in our .login file, then any time we wanted to go to /usr/games we could just type

cd $g
and we would be there! Note that several shell variables are set in .login . The command

set
with no arguments, will print all of the currently defined shell variables. If you just want to check
the value of a particular one, type:

echo $varname
where varname is the name of the shell variable you are curious about.

ALIASES provide a way of customizing the commands you commonly use. For example, I
always like to have the information that is provided by the -F flag when I use the ls command. So
my .login file contains the line

alias ls ls -F and every time I type ls UNIX behaves as though I had typed ls -F. People
longing for DOS (not a practical example) might want
alias dir ls so that they can type dir to get a list of their files. To check all of your aliases,
type
alias and to check a particular one, e.g. ls, type
alias ls

For more information about any shell use the man command. Remember that the shell is
just a program, and that variations exist. The default interactive shell at many installations is the
“C-shell” (csh), the one we have been using. The most common shell to write “shell-scripts” in is
the original “Bourne shell” (sh).

History
The csh introduced various means of re-issuing and/or modifying previously executed com-

mands. They are collectively referred to as “history mechanisms”. Here are some handy ones to
know:

!! “bang-bang” is replaced by everything you typed on the previous command-line. You can add
to the end of the command. For example if the previous command simply wrote to standard

10



Introduction to UNIX Notes . . . . . . . . . . . . . . . . . . . . . . . . . . Alistair Blachford

output, you could type “!! > filename” to re-execute the last command but redirect its output
into the file filename.

!$ is replaced by the last thing on the previous command line. If you had just redirected output
into file bigfilename then you could peek at the first 3 lines of your output by typing
head -3 !$

history a long word to be typing in UNIX, but it will list the commands you have executed. And you
could always make a shorter alias for it if you want to.

!12 repeats command number 12, or whatever number you choose. The numbers are those you’d
see in a history listing, or perhaps in your UNIX prompt, it you are using a prompt with the
command-number in it.

!a repeats the last command starting with an “a”. Use whatever letter you want, and if you don’t
want the last command starting with an “a” but instead want the last command starting with
“aw” then just type as many character as you like to make the specification unique. This one
is very handy.

Job Control
Since UNIX is a multitasking operating system, you can run many tasks or ‘jobs’ at the same

time. When you start running large programs, you might get tired of waiting for them, and want to
work on something else while the computer is crunching. Or you might want to stop in the middle
of a program, do something else, then restart it. No problem:

&
• is a command terminator that causes the given command to run in the ‘background’.

Your terminal will be freed up, giving you another prompt from the shell, so you do not
have to wait for the command to terminate. Example:

? grep secret hugefile > stash
will go to work finding all the lines with the pattern secret in the file hugefile, and putting
them in the file stash. Meanwhile, I could do anything else rather than wait for it to
complete. If a program sends a lot of output to the screen, it is usually not convenient to
run it in the background and do something else.

<control>z
• stops the program that is currently running in the ‘foreground’. The program can later

be put back in the foreground, or in the background.
jobs
• prints out your currents list of jobs, and whether they are running, stopped, or done

(completed). Background jobs have a & at the end.
bg % n
• puts stopped job number n (in the list obtained by typing jobs) in the background and

starts it running. With no argument it applies to the job just stopped (with <control>z).
fg % n
• starts stopped job number n running in the foreground.

Background jobs save you waiting time, and the job control commands allow you to change
your mind a lot! If you want to scrap a particular job altogether, use

kill % n
• terminates job number n (in the list obtained by typing jobs).

11



Introduction to UNIX Notes . . . . . . . . . . . . . . . . . . . . . . . . . . Alistair Blachford

Using a remote UNIX machine

ssh youracct@remote.machine.ca
This is what you use to sign on, a “secure shell". Unlike the older Telnet program, your

password will not go over in the clear and, in fact, everything sent in both directions will be
encrypted. Check your accountname on your current machine by typing whoami. If it is the same
as the accountname on the remote machine, you can omit the youracct@ part. If your current
machine is actually on the .machine.ca network, you may only need to type ssh remote. When
you sign on you will have a standard terminal window and UNIX shell.

scp filehere youracct@remote.machine.ca:.
scp youracct@remote.machine.ca:filethere .

This is the fast way to transmit a file to the home directory on the remote machine, or from
there to the current directory on your local machine. It works exactly the same ways as the standard
cp command except that you can prepend acct@host: to any pathname.

ssh-keygen -t rsa
This will generate a pair of encryption keys you can use to avoid typing your password when

using ssh or scp. The keys will be put in the “.ssh" directory under your home directory on the local
machine. Take the key that is the file id rsa.pub and put it in (append it to) the file authorized keys
in the .ssh directory of the remote machine.

* * * * * * * *

To check the load and what is running on the remote machine, or any UNIX machine, use the
commands w and top.

If it is easy to direct all output from the program you are running on the remote machine into
a file, then you can simply start it in the background, or start it then put it in the background, sign
off, and come back later to check on it. Example:

./netlogo-headless.sh –threads 4 –model lemming.nlogo –experiment discts05 &

Otherwise you can use the program screen to capture all of the output within a virtual screen . . .
which can be detached to run in the background for later. Example:

screen
start the program
ctrl-a, d (to detach the virtual screen)
start another one, or log off to go out and play
later, ssh back in
screen -R (to re-attach), or
screen -ls (to list the choices if you left multiple screens, then screen -R thisone)
ctrl-d (to terminate the virtual screen, which is a shell)

12


