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The stressful conditions associated with future climate change 
could reveal cryptic genetic variation for traits (Fisher, 1930) and 
thereby enhance adaptive potential. Various studies have high-
lighted the divergent ways in which environmental change can 
alter genetic variation (Berger et al., 2021; Charmantier & Garant, 
2005), generating predictions of increased, decreased, or no 
change in genetic variance (Hoffmann & Merilä, 1999).

To explore how climate change might alter future genetic varia-
tion, we conducted a meta-analysis on measurements of additive 
genetic variation under current and future (stressful) climates 
(see Supplementary Material for details). We found 10 studies on 
15 species that reported 284 evolvabilities and 37 studies on 35 
species that reported 677 heritabilities (see Supplementary Table 
S1 for a list of studies included in the meta-analysis). Although 
evolvabilities frequently changed between climate treatments 

in individual studies (Figure 2; mean absolute change = +5.9), 
the overall mean evolvability did not change, on average, under 
future climates (Supplementary Tables S2 and S3; +4.1, 95% cred-
ible intervals [CIs] = –17.1, 23.8). Heritabilities similarly changed 
individually across climate treatments (Figure 2; mean absolute 
change = +0.21), but the mean heritability did not change in 
future climates (Supplementary Tables S4–S9; +0.02, 95% CIs = 
–0.01, 0.06). Trait type (life history, morphology, physiology) and 
climate treatment (acidity, drought, heat, hypoxia, salinity, pre-
cipitation) generally did not affect results, except for higher her-
itabilities of life-history traits during drought (+0.24, 95% CIs = 
0.01, 0.49) and lower evolvabilities of morphology during drought 
(–10.5, 95% CIs = –18.2, –2.7). Another meta-analysis focused on 
general stress responses and not focused on climate responses 
(Rowiński & Rogell, 2017) likewise found no overall change in 

Box 1. Measuring genetic variability in a changing world.

The evolvability of a population facing a changing environment depends on its genetic variation, but what is the most useful meas-
ure of this variation for predicting evolutionary rescue—a population’s additive genetic variance or its heritability?

The relationship between genetic variation and response to selection is well described by classic multilocus quantitative genetic 
models (Lynch & Walsh, 1998). Famously, the evolutionary response to selection is written in two ways:

� � ��� (1)

or

�� � ��� (2)

In the first equation, S is the selection differential or the distance between the mean trait among individuals that survive and 
reproduce relative to all individuals, h2 is the heritability or the additive genetic variance VA divided by the phenotypic variance VP, 
and � � �� is the response to selection.

The two equations are mathematically equivalent, but the second equation measures selection relative to the phenotypic vari-
ance (� � ����), where � represents the coefficient in a regression between fitness and phenotype. Equations 1 and 2 also differ in 
whether h2 or VA influences the response to selection. Which is more relevant to predicting how fast a natural population adapts 
to climate change?

Animal breeders developed the breeder’s equation (Lush, 1945) to predict the change in trait values when selecting some fraction 
of the population to survive and reproduce based on trait values. If these selected individuals have a mean trait value S above the 
average for the population, heritability predicts the response to selection. Alternatively, if individuals with the most extreme traits 
along a desirable trait axis are chosen to breed (truncation selection), the selection differential, S, equals the intensity of selection 
(i, depending only on the selected fraction) multiplied by the phenotypic standard deviation [� � �

�
��; (Falconer & Mackay, 1996)]. 

Thus, the more variable the population, the more selected parents will differ from the population, causing stronger selection (S) and 
a larger response (R). The breeder’s equation best describes the response to selection when the trait value of an individual relative 
to the population determines fitness.

When considering selection induced by climate change, however, it is the absolute trait value of an individual, not its trait value 
relative to the population, that typically determines fitness, as captured by the selection gradient, �. For example, all individuals 
with thermal tolerance curves that match a warming environment might survive, rather than the fraction of the population with 
the best tolerance curves. In this case, the additive genetic variance, not heritability, determines evolutionary responses to changing 
environments (Equation 2; Hansen et al., 2011; Houle, 1992).

For example, consider a Gaussian-shaped fitness surface, with an optimal trait value, θ, that has shifted away from the mean 
trait value, x (i.e., fitness is given by ���

�
� �������

� ��

�
, where �� measures the width of the fitness distribution, with larger values imply-

ing weaker selection). The response to selection becomes:

� � �� � ���
��

�� � �� (3)

(Bulmer, 1980). Because the phenotypic distribution is rarely wider than the fitness distribution (�� �� ��), the response to selec-
tion becomes largely independent of phenotypic variance 

�
� � ������

�� ��

�
 and becomes proportional to the additive genetic variance 

instead of heritability (Houle, 1992). Similarly, the chance that a population adapts fast enough to persist in the new environment 
depends primarily on additive genetic variance (Gomulkiewicz & Holt, 1995).

However, if the fitness distribution shifts and narrows substantially such that only a small proportion of the population has 
any appreciable fitness (�� �� ��), Equation 3 approaches � � �� � �����. This selection acts more like a breeder: selecting those 
individuals with traits � � � � �� above the mean, whereby heritability best predicts the response to selection. However, population 
persistence is also less likely because most individuals have near-zero fitness.
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heritability in more stressful environments, but the study found 
an increased additive genetic variance and phenotypic variance 
for life-history traits. The difference between these results and 
ours deserves further investigation to determine if climate stress 
produces different responses than general stress.

Evolvabilities and heritabilities in our meta-analysis averaged 
6.1 (95% CIs = 1.2, 10.6) and 0.32 (0.14, 0.49), respectively, indicat-
ing an overall optimistic level of adaptability to future climate 
change. Although these studies are skewed toward common and 
tractable species, the results match larger reviews where herita-
bilities averaged 0.37 (Mousseau & Roff, 1987). Thus, we find rea-
sonable additive genetic variances that could frequently facilitate 
adaptation to climate change. However, these genetic variances 
often change unpredictably under future conditions, contributing 
to high uncertainty.

Species with larger and more connected populations generally 
should harbor greater genetic variation (Campbell et al., 2017), 
although empirical results from natural populations are mixed 
(Wood et al., 2016). Gene flow can facilitate adaptations to climate 
change by supplying adaptive genes or producing new adaptive 
combinations (Sexton et al., 2011)—the most important mecha-
nism facilitating adaptive responses according to our poll. Along 
climate gradients, gene flow from interior populations could facil-
itate adaptations to changing climate conditions at range edges 
(Kottler et al., 2021; Lee‐Yaw et al., 2016), as recently demon-
strated experimentally (Aguilée et al., 2016; Bontrager & Angert, 
2019). In contrast, gene flow from cooler regions could swamp 
adaptations to warming temperatures along trailing range edges 
(Nadeau & Urban, 2019).

Enabling future predictions
Ongoing work is needed to measure additive genetic variances 
for more species, populations, and traits and connect these 
estimates to climate gradients. These efforts will provide both  
population-specific estimates and general insights about changes 
in evolvability across traits, species, and climate gradients.

Meanwhile, genomic advances could provide alternative esti-
mates for predicting climate change adaptation. For example, 
genotyping individuals can yield accurate estimates of additive 
genetic variance in natural populations (Bérénos et al., 2014; 
Stanton‐Geddes et al., 2013; Yang et al., 2017), reducing the 
current reliance on pedigrees or complex husbandry experi-
ments and facilitating measurements under natural conditions 
(Gienapp et al., 2017). Genomic methods also can detect loci of 
large effect underlying the genetic architecture of adaptation 
in natural systems (Rodrigues et al., 2022), which could bet-
ter inform evolutionary predictions. Genomic approaches that 
link selection to environmental variation (e.g., environmental 
associations, genome scans) also can dissect past responses to 
climatic variation and suggest the genetic changes needed for 
future climates (Jones et al., 2012; Louis et al., 2021; Yeaman et 
al., 2016). For traits characterized by simple genetic architectures, 
genome-wide association studies can highlight alleles affecting 
trait evolution, identify vulnerable populations that lack adap-
tive alleles, and inform which sources of gene flow might rescue 
vulnerable populations (Bay et al., 2018; Exposito-Alonso et al., 
2018, 2019; Gougherty et al., 2021; Ruegg et al., 2018). Because 
the spatial distribution of adaptive alleles is likely heterogeneous, 

Figure 2.  A meta-analysis of 284 estimates of (A) evolvability and (B) 677 estimates of trait heritability measured under current and future 
environmental changes associated with climate change (heat, drought, acidity, wetness, hypoxia, salinity, carbon dioxide) revealed that individual 
heritability estimates increased (blue) and decreased (red) in future environments, but overall did not significantly change (black line). We constrained 
heritabilities to a maximum value of 1 and omitted incomplete data.
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some populations will require large shifts in allele frequencies to 
reduce maladaptation. Relating the adaptive genomic composi-
tion of populations to current and future climates can estimate 
this adaptation lag.

Transcriptomic studies also can highlight loci expressed in 
different environments and connect underlying genes-to-trait 
variation, potentially indicating the genes under selection or con-
tributing to plasticity (Oomen & Hutchings, 2022). Target genes 
could be manipulated through selective breeding, knock-outs, 
or CRISPR to establish the genes-to-trait mapping with certainty, 
although some of these manipulative practices remain controver-
sial (Gudmunds et al., 2022). Transcriptomics, however, provides 
less direct information about evolvability than other approaches 
and is most usefully applied to better-studied species. As insights 
accumulate, these studies might eventually inform efforts to pre-
dict adaptability and the repeatability of evolutionary trajecto-
ries for understudied species, assuming conservatism of shared 
genetic pathways.

We envision that future efforts will leverage complementary 
resources from quantitative genetics, genomics, and transcrip-
tomics from experiments and observations to advance reliable 
estimates of the evolutionary potential of natural populations 
and predict responses to climate change. However, the large 
sample sizes needed for accurate results, financial tradeoffs 
with collecting other critical data or implementing conservation 
measures, and remaining uncertainties caution against relying 
solely on genomic tools for the near term.

Evolutionary responses
Overview of challenges
The few studies to date that have demonstrated evolutionary res-
cue during climate change can inform potential genetic pathways 
and provide general insights (Franks et al., 2007; Gonzalez et al., 
2013; Hoffmann & Sgro, 2011; Hoffmann et al., 2021). However, 
most current insights come from lab-based or model systems and 
thus might not apply broadly to natural populations. In natural 
systems, the potential to adapt to climate change is often inferred 
from observations during short-term weather fluctuations or from 
existing adaptations to climate across landscapes (Hoffmann & 
Sgro, 2011; Merilä & Hendry, 2014; Urban et al., 2014). Yet, short-
term weather fluctuations might not simulate future climates 
accurately, and adaptive gene flow across landscapes might not 
rescue local populations fast enough. So far, predictions about 
evolutionary responses in the wild have usually been inaccurate 
(Pujol et al., 2018), highlighting the need to deepen our under-
standing of evolutionary mechanisms and improve the precision 
of parameter estimates in natural populations.

State of current predictions
Species with large population sizes, short generation times, and 
high additive genetic variation likely will adapt more quickly 
to climate change (Franks et al., 2007; Geerts et al., 2015). Even 
longer-lived species can adapt to climatic changes if selection is 
strong and consistent enough, as observed for Darwin’s finches, 
red deer, and common terns (Bonnet et al., 2019; Grant & Grant, 
2002; Moiron et al., 2024, 8–17). However, other species, like the 
Soay sheep, responded to climate variation primarily via plas-
tic, rather than genetic, responses despite evolutionary potential 
(Ozgul et al., 2009). Overall, species that have already adapted 
to climate variation across their range and that disperse well 
enough to spread adaptive alleles are likely to adapt more easily 

to future climates, especially if those conditions were encoun-
tered in the past.

Ultimately, our ability to predict evolutionary responses relies 
on understanding the tension between necessity and chance in 
evolutionary biology (Gould, 1990). Accumulated evidence from 
parallel evolution experiments and observations suggests that 
over shorter periods and in response to strong selection analo-
gous with past selection, evolution often produces similar pheno-
types, but not always via the same genetic pathways (Abouheif & 
Wray, 2002; Colosimo et al., 2005; Conte et al., 2012). Over longer 
periods and in response to novel selection regimes, evolution is 
less likely to operate in parallel and more likely to require de novo 
mutations such that evolutionary trajectories become contingent 
on the existing genetic architecture (Blount et al., 2008; Lenski, 
2017; Whitehead et al., 2017). Therefore, we are more confident 
about predicting evolutionary responses to climate change over 
shorter periods in response to analog climates and less confident 
about making longer-term evolutionary predictions under non-
analog conditions.

Enabling future predictions
We advocate for initiating and maintaining long-term studies and 
periodic common garden or transplant experiments that record 
changes in selection, fitness, traits, and genetics. We also advo-
cate for the collection and preservation of seeds or propagules at 
regular intervals, such as being done in Project Baseline (Etterson 
et al., 2016), that would support future resurrection experiments 
that can detect adaptation over time (Etterson et al., 2016; Franks 
et al., 2018; Geerts et al., 2015; Orsini et al., 2013). Also, experi-
mental evolution followed by genomic sequencing of ancestors 
and evolved lineages holds promise for understanding the repeat-
ability of evolved climate change responses under natural con-
ditions (Bailey & Bataillon, 2016). Comparing ancient DNA from 
specimens in museums and herbaria with current-day genomes 
can also reveal adaptive genetic differences (Hofreiter et al., 2015; 
Kreiner et al., 2022; Meineke et al., 2018). In situ climate change 
experiments in nature offer promising ways to evaluate evolu-
tionary responses under natural conditions, assuming that future 
conditions can be simulated. Accumulated results would facili-
tate unified sets of predictions across systems and potentially 
demonstrate common responses across organisms and ecosys-
tems that can inform understudied systems. Additionally, these 
experiments will likely reveal when, where, and why some sys-
tems are predictable while others remain unpredictable despite 
our best efforts.

Successfully employing these methods requires coordinated 
efforts among a global community of researchers committed to 
unifying analytical and predictive frameworks. Synthetic efforts 
in other disciplines (e.g., climate change, subatomic physics) have 
succeeded due to the commitment of extensive resources, the for-
mation of global institutions to organize efforts, and the develop-
ment of strong cultures of collaboration and sharing (Urban, 2019). 
Facilitating and adopting these practices would similarly promote 
predictions for climate change evolution. Limited resources are 
likely the greatest current impediment, and therefore we need to 
demonstrate and communicate how better evolutionary predictions 
can directly improve people’s lives (Carroll et al., 2014).

Population dynamics
Overview of challenges
A population must persist to adapt to climate change, and there-
fore, population dynamics should be included in any serious 
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discussion of adaptive evolution in response to climate change. 
Models of evolutionary rescue suggest that sufficient genetic 
variation can support population recovery through adaptation 
(Carlson et al., 2014; Gomulkiewicz & Holt, 1995; Gonzalez et 
al., 2013). However, small populations could limit this potential. 
Besides outright persistence, small populations are also expected 
to maintain less genetic variation and respond less efficiently to 
selection, but see (Wood et al., 2016) for contrasting empirical 
examples.

Predicting population persistence requires understanding pop-
ulation sizes, their underlying demographic processes, and how 
future climates might affect them. Thus, predicting future pop-
ulation trajectories poses many of the same challenges as pre-
dicting evolutionary change: The need to understand correlated, 
nonlinear, and indirect effects on fitness. Unfortunately, many 
of the demographic parameters needed to project population 
dynamics are missing or incomplete for all but the most common 
species (Urban et al., 2016). Vital rates, such as survival, fecun-
dity, and development rate, are often highly plastic and therefore 
should be measured as functions of climate rather than static 
means. When available, vital rates are commonly measured on 
one population even though local adaptation highlights the need 
for population- and environment-specific estimates (Hoffmann 
et al., 2021). Vital rates are also often density- and/or frequency- 
dependent, which can jointly affect population and evolutionary 
responses (Engen et al., 2020). Demographic responses could also 
be nonlinear or involve thresholds that are not easily extrapo-
lated based on past or current responses. Population persistence 
often depends on immigration and emigration, yet dispersal rates 
and the dynamic regional context of other populations might 
often be unknown (Urban et al., 2013).

State of current predictions
Demographic models for making population predictions are 
well-developed  and often accurate if parameterized with 
high-quality data and not extrapolated into non-analog climate 
conditions (Crone et al., 2013; Doak et al., 2021). Meanwhile, 
newer, more flexible integral projection models have expanded 
these models’ usefulness by incorporating individual trait varia-
tion, plasticity, and genetic variation (Buckley et al., 2010; Enquist 
et al., 2015; Hanski et al., 2017). However, predicting long-term 
population dynamics remains challenging due to inaccurate 
parameters and a lack of information on density dependence, 
interspecific interactions, and overall evolutionary dynamics.

Initially, large populations or many populations linked by 
dispersal into metapopulations might be resilient unless they 
decline substantially (Hanski & Gaggiotti, 2004; Massot et al., 
2008; Wright, 1978). High dispersal can allow populations to 
track their climate niche across elevations or latitudes (Chen 
et al., 2011). Besides adding genetic variation, dispersal can also 
promote evolutionary rescue by bolstering declining population 
abundances (Carlson et al., 2014) although these effects might 
sometimes be transitory (Lotsander et al., 2021). Small popula-
tions with limited dispersal are likely to become isolated and 
face increasing levels of demographic stochasticity that can limit 
the potential for persistence and adaptive evolution (Nadeau & 
Urban, 2019). Additionally, species with low population growth 
rates and long generation times will be less likely to overcome 
acute stress from climate change because their numbers cannot 
rebound fast enough (Pearson et al., 2014). Overall, anything that 
buffers population declines, including plasticity and dispersal, 
could provide the time and raw supply of individuals needed to 
facilitate evolutionary rescue (Gómez-Llano et al., 2024, 149–160).

Enabling future predictions
With growing evidence for feedback between demography and 
evolution, eco-evolutionary dynamics models are likely needed to 
predict joint demographic-evolutionary responses (Pelletier et al., 
2007; Walsh & Reznick, 2010). These models can quickly become 
quite complex and analytically intractable. However, simulations 
might provide insights until analytical approximations become 
available. Ultimately, modeling should be thought of as an itera-
tive process that cycles between prediction, validation, and model 
revision (Dietze et al., 2018).

More detailed and realistic demographic models will require 
better information on demographic parameters (Urban et al., 
2016). Biologists and amateur naturalists increasingly collabo-
rate to record population abundances and traits. GEO-BON is now 
standardizing and aggregating monitoring data to streamline 
data collection and make them available for modeling (Pereira et 
al., 2013). To this end, smaller and more effective transmitters can 
collect finely resolved demographic data such as survival and dis-
persal rates. The next step is to evaluate how certain traits, such 
as physiological stress or body size, might provide early warnings 
of impending population collapse (Clements et al., 2019; Huey 
et al., 2012). Aggregating demographic trait data into searcha-
ble databases like COMPADRE will facilitate access to and use of 
these data (Salguero‐Gómez et al., 2016). Combining these exist-
ing data with phylogenetic and life-history information can fill 
gaps for less-studied species (Santini et al., 2016). Concurrently, 
metapopulation studies are uncovering how multiple populations 
vary in key demographic traits, and this variation can enable pre-
dictions across larger and more relevant spatial scales (Buckley, 
2008; Hanski & Saccheri, 2006; Hanski et al., 2017).

Ten actions to predict evolutionary 
responses to climate change
Based on our review, we advocate for the following 10 actions to 
improve the understanding of when and how organisms might 
adapt genetically to climate change.

1	 Expand your knowledge of the natural history of the spe-
cies and system with which you work. Then develop col-
laborations with local scientists and community members 
(Haelewaters et al., 2021) to expand knowledge in under-
studied systems and strive for a more global representa-
tion of species and ecosystems.

2	 Design long-term monitoring programs for characterizing 
population demography, natural selection, and phenotypic 
and genetic variation through standardized observations, 
sample collections, and genomic assays across wild popu-
lations along climate gradients and as climate changes.

3	 Develop experimental assays estimating the relative 
importance of within- and among-generation plasticity 
relative to adaptive evolution across varying periods and 
determining the limits for phenotypic plasticity, when it 
evolves, and when it interferes with evolution. Link the 
relative contributions of plasticity versus adaptation in 
response to climate change to organisms’ ecology and his-
torical exposure to climate variation.

4	 Implement and coordinate the systemic deployment of 
common garden/transplant experiments, resurrection 
experiments, and evolutionary resurveys across climate 
gradients to evaluate how climate change alters evolu-
tionary responses and develop the infrastructure to record 
changes.

D
ow

nloaded from
 https://academ

ic.oup.com
/evlett/article/8/1/172/7455738 by guest on 20 February 2024



Evolution Letters (2024), Vol. 8  |  181

5	 Estimate gene flow across populations and climate gradi-
ents, its contributions to adaptive potential, and its impact 
on hybrid individuals under future conditions.

6	 Contribute data on selection, traits, genetics, evolutionary 
rates, and population demography to searchable publica-
tions and databases to make it available to others. These 
data, together with phylogenetic information, can later be 
synthesized to enable generalizations that apply to species 
and systems with limited information.

7	 Perform research aimed at understanding the level of 
detailed genetic information needed to make accurate pre-
dictions about evolutionary responses to climate change. 
Specifically, answer the question: When do we need meas-
ures from quantitative genetics versus genomic sequence 
data to predict the evolutionary potential of traits under 
selection?

8	 Build and test mechanistic eco-evolutionary models that 
can incorporate varying levels of genetic detail. These mod-
els should be flexible enough to apply to different species, 
systems, and questions and incorporate levels of genetic 
specificity from individual loci to quantitative genetics.

9	 Understand if and when evolution matters for different 
traits, populations, species, ecosystems, and questions. 
The answer is likely context-dependent, but we cannot 
know the answer until we test models of varying com-
plexity across various systems and assess how well they 
predict out-of-sample observations. Important questions 
to answer include: What evolutionary mechanisms are 
required to make accurate predictions, and when are demo-
graphic models without evolution sufficient? Alternatively, 
is it reasonably accurate to assume a moderate level of 
evolvability or heritability (e.g., 6 and 0.3, respectively, in 
our meta-analysis) for all traits in the absence of detailed 
information?

10	 Identify and prioritize (triage) the species and regions 
that are in greatest need of evolutionary rescue. Decisions 
should be based on their threat and their importance to 
ecosystem function (Urban et al., 2017; Zarnetske et al., 
2012). Efforts to estimate the potential for evolutionary res-
cue should be conducted across the phylogenetic spectrum 

so that we can interpolate insights into closely related 
species or species with similar traits (Santini et al., 2016). 
Apply general models and emerging cross-system insights 
to develop broader management guidelines that promote 
future resilience, such as conserving or augmenting exist-
ing genetic variation, improving connectivity among popu-
lations, and increasing population size by maintaining or 
restoring habitat.

Conclusions
Despite the many uncertainties associated with predicting evo-
lutionary responses to climate change, the immediate goal is to 
make better predictions. Therefore, we should not let perfection 
become the enemy of good. However, we must also be humble. 
Our predictions will only be as good as data quality and uncer-
tainty dictate. That means estimating all forms of uncertainty, 
including parameters, model choice, and future climate change, 
and openly discussing this uncertainty. We will eventually need to 
test predictions against future data to see when we were right or 
wrong. Even if wrong, we will have learned much and can use this 
information to improve future models. As we learn how to make 
better predictions, we should treat early predictions with caution 
and simultaneously promote both the specific mitigation actions 
suggested by models and more universal mitigation actions that 
broadly maintain natural ecological and evolutionary processes 
and thereby lend restorative powers during and (hopefully) after 
climate change.

The potential for evolutionary rescue offers a reason for opti-
mism in the face of changing climates. Although we still know 
little about when evolution might rescue populations, progress 
is being made. Sometimes we can predict evolution better than 
commonly thought given improved data availability and infor-
mation about which traits and gene complexes might evolve. 
Based on this growing body of evidence, we conclude that pre-
dictions about future evolutionary responses to climate change 
are becoming more certain, especially for well-studied ecosys-
tems with direct climate change impacts, populations with traits 
predictably mapped to genetics, and species for which climate 
change more directly affects fitness.

Figure 3.  Responses from 28 authors of this special issue to the question, “How well do you think we will be able to predict adaptive responses to 
climate change right now or as we gain more knowledge in the next 20 years?” on a scale from 1 (Not at all) to 5 (Very well). Responses are indicated 
by color and medians are indicated by diamonds.
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Inspiring hope for the future, many authors in this special 
issue were optimistic about the ability to predict future adaptive 
responses to climate change (Figure 3). Overall, authors rated 
this ability as moderate now (median = 3 of 5, where 5 means 
very well) and even better (median = 4) in 20 years. Hence, even a 
group of careful and skeptical evolutionary biologists think that 
better predictions of evolutionary responses to climate change 
are possible now and will become even better in the future.
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